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Abstract
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correlations, leads to valid confidence intervals. However, in the absence of
random assignment of the covariates, ignoring general correlation structures
may lead to biases in standard errors. We illustrate our findings using the 5%
public use census data. Based on these results we recommend that researchers
as a matter of routine explore the extent of spatial correlations in explanatory
variables beyond state level clustering.
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1 Introduction

Many economic studies that analyze the causal effects of interventions on economic

behavior study interventions or treatments that are constant within clusters whereas

the outcomes vary at a more disaggregate level. In a typical example, and the one

we focus on in this paper, outcomes are measured at the individual level, whereas

interventions vary only at the state (cluster) level. Often, the effect of interventions

is estimated using least squares regression. Since the mid-eighties [1? ] empiri-

cal researchers in social sciences have generally been aware of the implications of

within-cluster correlations in outcomes for the precision of such estimates. The typ-

ical approach is to allow for correlation between outcomes in the same state in the

specification of the error covariance matrix. However, there may well be more com-

plex correlation patterns in the data. Correlation in outcomes between individuals

may extend beyond state boundaries, it may vary in magnitude between states, and

it may be stronger in more narrowly defined geographical areas.

In this paper we investigate the implications, for the repeated sampling variation

of least squares estimators based on individual-level data, of the presence of correla-

tion structures beyond those that are constant within and identical across states, and

vanish between states. First, we address the empirical question whether in census data

on earnings with states as clusters such correlation patterns are present. We estimate

general spatial correlations for the logarithm of earnings, and find that, indeed, such

correlations are present, with substantial correlations within groups of nearby states,

and correlations within smaller geographic units (specifically pumas, public use mi-

crodata areas) considerably larger than within states. Second, we address whether

accounting for such correlations is important for the properties of confidence inter-

vals for the effects of state-level regulations or interventions. We report theoretical

results, and demonstrate their relevance using illustrations based on earnings data

and state regulations, as well as Monte Carlo evidence. The theoretical results show
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that if covariate values are as good as randomly assigned to clusters, implying there is

no spatial correlation in the covariates beyond the clusters, variance estimators that

incorporate only cluster-level outcome correlations remain valid despite the misspec-

ification of the error-covariance matrix. Whether this theoretical result is useful in

practice depends on the magnitude of the spatial correlations in the covariates. We

provide some illustrations that show that, given the spatial correlation patterns we

find in the individual-level variables, spatial correlations in state level regulations can

have a substantial impact on the precision of estimates of the effects of interventions.

The paper draws on three strands of literature that have largely evolved sepa-

rately. First, it is related to the literature on clustering, where a primary focus is on

adjustments to standard errors to take into account clustering of explanatory vari-

ables. See, e.g., (author?) [1], ? ], ? ], ? ] and the textbook discussions in ? ], ?

], and ? ]. Second, the current paper draws on the literature on spatial statistics.

Here a major focus is on the specification and estimation of the covariance structure

of spatially linked data. For textbook discussions see Schabenberger and Gotway

(2004) and Gelfand, Diggle, Fuentes, and Guttorp (2010). In interesting recent work

Bester, Conley and Hansen (2009) and Ibragimov and Müller (2009) link some of the

inferential issues in the spatial and clustering literatures. Finally, we use results from

the literature on randomization inference going back to Fisher (1925) and Neyman

(1923). For a recent textbook discussion see Rosenbaum (2002). Although the cal-

culation of Fisher exact p-values based on randomization inference is frequently used

in the spatial statistics literature (e.g., Schabenberger and Gotway, 2004), and some-

times in the clustering literature (Bertrand, Duflo and Mullainathan, 2004; Abadie,

Diamond, and Hainmueller, 2009), Neyman’s approach to constructing confidence

intervals using the randomization distribution is rarely used in these settings. We

will argue that the randomization perspective provides useful insights into the in-

terpretation and properties of confidence intervals in the context of spatially linked
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data.

The paper is organized as follows. In Section 2 we introduce the basic set-up.

Next, in Section 3, using census data on earnings, we establish the presence of spatial

correlation patterns beyond the constant-within-state correlations typically allowed

for in empirical work. In Section 4 we discuss randomization-based methods for

inference, first focusing on the case with randomization at the individual level. Section

5 extends the results to cluster-level randomization. In Section 6, we present the main

theoretical results. We show that if cluster-level covariates are randomly assigned to

the clusters, the standard variance estimator based on within-cluster correlations

can be robust to misspecification of the error-covariance matrix. Next, in Section 7

we show, using Mantel-type tests, that a number of regulations exhibit substantial

regional correlations, suggesting that ignoring the error correlation structure may

lead to invalid confidence intervals. Section 8 reports the results of a small simulation

study. Section 9 concludes. Proofs are collected in an appendix.

2 Framework

Consider a setting where we have information on N units, say individuals in the

United States, indexed by i = 1, . . . , N . Associated with each unit is a location Zi,

measuring latitude and longitude for individual i. Associated with a location z are

a unique puma P (z) (public use microdata area, a census bureau defined area with

at least 100,000 individuals), a state S(z), and a division D(z) (also a census bureau

defined concept, with nine divisions in the United States). In our application the

sample is divided into 9 divisions, which are then divided into a total of 49 states (we

leave out individuals from Hawaii and Alaska, and include the District of Columbia

as a separate state), which are then divided into 2,057 pumas. For individual i, with

location Zi, let Pi, Si, and Di, denote the puma, state, and division associated with

the location Zi. The distance d(z, z′) between two locations z and z′ is defined as
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the shortest distance, in miles, on the earth’s surface connecting the two points. To

be precise, let z = (zlat, zlong) be the latitude and longitude of a location. Then the

formula for the distance in miles between two locations z and z′ we use is

d(z, z′) = 3, 959× arccos(cos(zlong− z′long) · cos(zlat) · cos(z′lat) + sin(zlat) · sin(z′lat)).

In this paper, we focus primarily on estimating the slope coefficient β in a linear

regression of some outcome Yi (e.g., the logarithm of individual level earnings for

working men) on a binary intervention or treatment Wi (e.g., a state-level regulation),

of the form

Yi = α + β ·Wi + εi. (2.1)

A key issue is that the explanatory variable Wi may be constant withing clusters of

individuals. In our application Wi varies at the state level.

Let ε denote the N -vector with typical element εi, and let Y, W, P, S, and D,

denote the N -vectors with typical elements Yi, Wi, Pi, Si, and Di. Let ιN denote the

N -vector of ones, let Xi = (1,Wi), and let X and Z denote the N × 2 matrices with

ith rows equal to Xi and Zi, respectively, so that we can write in matrix notation

Y = ιN · α + W · β + ε = X
(
α β

)′
+ ε. (2.2)

Let N1 =
∑N

i=1Wi, N0 = N−N1, W = N1/N , and Y =
∑N

i=1 Yi/N . We are interested

in the distribution of the ordinary least squares estimators:

β̂ols =

∑N
i=1(Yi − Y ) · (Wi −W )∑N

i=1(Wi −W )2
, and α̂ols = Y − β̂ols ·W.

The starting point is the following model for the conditional distribution of Y

given the location Z and the covariate W:

Assumption 1. (Model)

Y
∣∣∣ W = w,Z = z ∼ N (ιN · α + w · β,Ω(z)).
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Under this assumption we can infer the exact (finite sample) distribution of the

least squares estimator, conditional on the covariates X, and the locations Z.

Lemma 1. (Distribution of Least Squares Estimator) Suppose Assumption

1 holds. Then β̂ols is unbiased and Normally distributed,

E
[
β̂ols |W,Z

]
= β, and β̂ols

∣∣∣ W,Z ∼ N (β,VM(W,Z)) , (2.3)

where

VM(W,Z) =
1

N2 ·W 2 · (1−W )2

(
W −1

) (
ιN W

)′
Ω(Z)

(
ιN W

)(W
−1

)
. (2.4)

We write the model-based variance VM(W,Z) as a function of W and Z to make

explicit that this variance is conditional on both the treatment indicators W and the

locations Z. This lemma follows directly from the standard results on least squares

estimation and is given without proof. Given Assumption 1, the exact distribution

for the least squares coefficients (α̂ols, β̂ols)
′ is Normal, centered at (α, β)′ and with

covariance matrix (X′X)−1 (X′Ω(Z)X) (X′X)−1. We then obtain the variance for β̂ols

in (2.4) by writing out the component matrices of the joint variance of (α̂ols, β̂ols)
′.

It is also useful for the subsequent discussion to consider the variance of β̂ols, con-

ditional on the locations Z, and conditional on N1 =
∑N

i=1Wi, without conditioning

on the entire vector W. With some abuse of language, we refer to this as the uncon-

ditional variance VU(Z) (although it is still conditional on Z and N1). Because the

conditional and unconditional expectation of β̂ols are both equal to β, it follows that

the unconditional variance is simply the expected value of the model-based variance:

VU(Z) = E[VM(W,Z) | Z]

=
N2

N2
0 ·N2

1

· E [(W −N1/N · ιN)′Ω(Z)(W −N1/N · ιN) | Z] .
(2.5)

3 Spatial Correlation Patterns in Earnings

In this section we provide some evidence for the presence and structure of spatial

correlations, that is, how Ω varies with Z. Specifically we show in our application,

[5]



first, that the structure is more general than the state-level correlations that are

typically allowed for, and second, that this matters for inference.

We use data from the 5% public use sample from the 2000 census. Our sample

consists of 2,590,190 men at least 20 and at most 50 years old, with positive earnings.

We exclude individuals from Alaska, Hawaii, and Puerto Rico (these states share

no boundaries with other states, and as a result spatial correlations may be very

different than those for other states), and treat DC as a separate state, for a total of

49 “states”. Table 1 presents some summary statistics for the sample. Our primary

outcome variable is the logarithm of yearly earnings, in deviations from the overall

mean, denoted by Yi. The overall mean of log earnings is 10.17, the overall standard

deviation is 0.97. We do not have individual level locations. Instead we know for

each individual only the puma (public use microdata area) of residence, and so we

take Zi to be the latitude and longitude of the center of the puma of residence.

Let Y be the variable of interest, in our case log earnings in deviations from the

overall mean. Suppose we model the vector Y as

Y | Z ∼ N (0,Ω(Z, γ)).

If researchers have covariates that vary at the state level, the conventional strategy is

to allow for correlation at the same level of aggregation (“clustering by state”), and

model the covariance matrix as

Ωij(Z, γ) = σ2
ε · 1i=j + σ2

S · 1Si=Sj
=


σ2
S + σ2

ε if i = j
σ2
S if i 6= j, Si = Sj

0 otherwise,
(3.1)

where Ωij(Z, γ) is the (i, j)th element of Ω(Z, γ). The first variance component, σ2
ε ,

captures the variance of idiosyncratic errors, uncorrelated across different individuals.

The second variance component, σ2
S, captures correlations between individuals in the

same state. Estimating σ2
ε and σ2

S on our sample of 2,590,190 individuals by maximum

likelihood leads to σ̂2
ε = 0.929 and σ̂2

S = 0.016. The question addressed in this section
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is whether the covariance structure in (3.1) provides an accurate approximation to

the true covariance matrix Ω(Z). We provide two pieces of evidence that it is not.

The first piece of evidence against the simple covariance matrix structure is based

on simple descriptive measures of the correlation patterns as a function of distance

between individuals. For a distance d (in miles), define the overall, within-state, and

out-of-state covariances as

C(d) = E [Yi · Yj| d(Zi, Zj) = d] ,

CS(d) = E [Yi · Yj|Si = Sj, d(Zi, Zj) = d] ,

and

CS(d) = E [Yi · Yj|Si 6= Sj, d(Zi, Zj) = d] .

If the model in (3.1) was correct, then CS(d) should be constant (but possibly non-

zero) as a function of the distance d, and CS(d) should be equal to zero for all d.

We estimate these covariances using averages of the products of individual level

outcomes for pairs of individuals whose distance is within some bandwidth h of the

distance d:

Ĉ(d) =
∑
i<j

1|d(Zi,Zj)−d|≤h · Yi · Yj
/∑

i<j

1|d(Zi,Zj)−d|≤h,

ĈS(d) =
∑

i<j,Si=Sj

1|d(Zi,Zj)−d|≤h · Yi · Yj
/ ∑

i<j,Si=Sj

1|d(Zi,Zj)−d|≤h,

and

ĈS(d) =
∑
i<j

1Si 6=Sj
· 1|d(Zi,Zj)−d|≤h · Yi · Yj

/ ∑
i<j,Si 6=Sj

1|d(Zi,Zj)−d|≤h.

Figures 1a and 1b show the covariance functions for ĈS(d) and ĈS(d) for the band-

width h = 50 miles for the within-state and out-of-state covariances. (Results based

on a bandwidth h = 20 are similar.) The main conclusion from Figure 1a is that
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within-state correlations decrease with distance. Figure 1b suggests that correlations

for individuals in different states are non-zero, also decrease with distance, and are

of a magnitude similar to within-state correlations. Thus, these figures suggest that

the simple covariance model in (3.1) is not an accurate representation of the true

covariance structure.

As a second piece of evidence we consider various parametric structures for the

covariance matrix Ω(Z) that generalize (3.1). At the most general level, we specify

the following form for Ωij(Z, γ):

Ωij(Z, γ) =



σ2
dist · exp(−α · d(Zi, Zj)) + σ2

D + σ2
S + σ2

P + σ2
ε if i = j,

σ2
dist · exp(−α · d(Zi, Zj)) + σ2

D + σ2
S + σ2

P if i 6= j, Pi = Pj,

σ2
dist · exp(−α · d(Zi, Zj)) + σ2

D + σ2
S if Pi 6= Pj, Si = Sj,

σ2
dist · exp(−α · d(Zi, Zj)) + σ2

D if Si 6= Sj, Di = Dj,

σ2
dist · exp(−α · d(Zi, Zj)) if Di 6= Dj.

(3.2)

Beyond state level correlations the most general specification allows for correlations

at the puma level (captured by σ2
P ) and at the division level (captured by σ2

D). In

addition we allow for spatial correlation as a smooth function geographical distance,

declining at an exponential rate, captured by σ2
dist · exp(−α · d(z, z′)). Although more

general than the typical covariance structure allowed for, this model still embodies

important restrictions, notably that correlations do not vary by location. A more

general model might allow variances or covariances to vary directly by the location z,

e.g., with correlations stronger or weaker in the Western versus the Eastern United

States, or in more densely or sparsely populated parts of the country.

Table 2 gives maximum likelihood estimates for the covariance parameters γ given

various restrictions, based on the log earnings data, with standard errors based on the

second derivatives of the log likelihood function. To put these numbers in perspective,

the estimated value for α in the most general model, α̂ = 0.0293, implies that the

pure spatial component, σ2
dist · exp(−α · d(z, z′)), dies out fairly quickly: at a distance
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of about twenty-five miles the spatial covariance due to the σ2
dist · exp(−α · d(z, z′))

component is half what it is at zero miles. The covariance of log earnings for two

individuals in the same puma is 0.080/0.948 = 0.084. For these data, the covariance

between log earnings and years of education is approximately 0.3, so the within-puma

covariance is substantively important, equal to about 30% of the log earnings and

education covariance. For two individuals in the same state, but in different pumas

and ignoring the spatial component, the total covariance is 0.013. The estimates

suggest that much of what shows up as within-state correlations in a model such

as (3.1) that incorporates only within-state correlations, in fact captures much more

local, within-puma, correlations.

To show that these results are typical for the type of correlations found in indi-

vidual level economic data, we calculated results for the same models as in Table 2

for two other variables collected in the census, years of education and hours worked.

Results for those variables are reported in an earlier version of the paper that is

available online. In all cases puma-level correlations are an order of magnitude larger

than within-state out-of-puma level correlations, and within-division correlations are

of the same order of magnitude as within-state correlations.

The two sets of results, the covariances by distance and the model-based esti-

mates of cluster contributions to the variance, both suggest that the simple model in

(3.1) that assumes zero covariances for individuals in different states, and constant

covariances for individuals in the same state irrespective of distance, is at odds with

the data. Covariances vary substantially within states, and do not vanish at state

boundaries.

Now we turn to the second question of this section, whether the magnitude of

the correlations we reported matters for inference. In order to assess this, we look

at the implications of the models for the correlation structure for the precision of

least squares estimates. To make this specific, we focus on the model in (2.1), with
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log earnings as the outcome Yi, and Wi equal to an indicator that individual i lives

in a state with a minimum wage that is higher than the federal minimum wage

in the year 2000. This indicator takes on the value one for individuals living in

nine states in our sample, California, Connecticut, Delaware, Massachusetts, Oregon,

Rhode Island, Vermont, Washington, and DC, and zero for all other states in our

sample (see Figure 2a for a visual impression). (The data come from the website

http://www.dol.gov/whd/state/stateMinWageHis.htm. To be consistent with the

2000 census, we use the information from 2000, not the current state of the law.) In

the second to last column in Table 2, under the label “MW,” we report in each row

the standard error for β̂ols based on the specification for Ω(Z, γ) in that row. To be

precise, if Ω̂ = Ω(Z, γ̂) is the estimate for Ω(Z, γ) in a particular specification, the

standard error is

s.e.(β̂ols) =

(
1

N2W
2
(1−W )2

(
W
−1

)′ (
ιN W

)′
Ω(Z, γ̂)

(
ιN W

)( W
−1

))1/2

.

With no correlation between units at all, the estimated standard error is 0.002. If we

allow only for state level correlations, Model (3.1), the estimated standard error goes

up to 0.080, demonstrating the well known importance of allowing for correlation

at the level that the covariate varies. There are two general points to take away

from the column with standard errors. First, the biggest impact on the standard

errors comes from incorporating state-level correlations (allowing σ2
S to differ from

zero), even though according to the variance component estimates other variance

components are substantially more important. Second, among the specifications that

allow for σ2
S 6= 0, however, there is still a substantial amount of variation in the

implied standard errors. Incorporating only σ2
S leads to a standard error around

0.080, whereas also including division-level correlations (σ2
D 6= 0) increase that to

approximately 0.091, an increase of 15%. We repeat this exercise for a second binary

covariate, with the results reported in the last column of Table 2. In this case the

covariate takes on the value one only for the New England (Connecticut, Maine,
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Massachusetts, New Hampshire, Rhode Island, and Vermont) and East-North-Central

states (Illinois, Indiana, Michigan, Ohio, and Wisconsin), collectively referred to as

the NE/ENC states from here on. This set of states corresponds to more geographical

concentration than the set of minimum wage states (see Figure 2b). In this case, the

impact on the standard errors of mis-specifying the covariance structure Ω(Z) is even

larger, with the most general specification leading to standard errors that are almost

50% larger than those based on the state-level correlations specification (3.1). In the

next three sections we explore theoretical results that provide some insight into these

empirical findings.

4 Randomization Inference

In this section we consider a different approach to analyzing the distribution of the

least squares estimator, based on randomization inference (e.g., Rosenbaum, 2002).

Recall the linear model (2.1),

Yi = α + β ·Wi + εi, with ε|W,Z ∼ N (0,Ω(Z)).

In Section 2 we analyzed the properties of the least squares estimator β̂ols under

repeated sampling. To be precise, the sampling distribution for β̂ols was defined by

repeated sampling in which we keep both the vector of treatments W and the location

Z fixed on all draws, and redraw only the vector of residuals ε for each sample. Under

this repeated sampling thought-experiment, the exact variance of β̂ols is VM(W,Z)

as given in Lemma 1.

It is possible to construct confidence intervals in a different way, based on a dif-

ferent repeated sampling thought-experiment. Instead of conditioning on the vector

W and Z, and resampling the ε, we can condition on ε and Z, and resample the

vector W. To be precise, let Yi(0) and Yi(1) denote the potential outcomes under

the two levels of the treatment Wi, and let Y(0) and Y(1) denote the corresponding

N -vectors. Then let Yi = Yi(Wi) be the realized outcome. We assume that the effect
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of the treatment is constant, Yi(1)− Yi(0) = β. Defining α = E[Yi(0)], the residual is

εi = Yi−α−β ·Wi. In this section we focus on the simplest case, where the covariate

of interest Wi is completely randomly assigned, conditional on
∑N

i=1Wi = N1.

Assumption 2. Randomization

pr(W = w | Y(0),Y(1),Z) = 1

/ (
N
N1

)
, for all w s.t.

N∑
i=1

wi = N1.

Under this assumption we can infer the exact (finite sample) variance for the least

squares estimator for β̂ols conditional on Z and (Y(0),Y(1)):

Lemma 2. Suppose that Assumption 2 holds and that the treatment effect Yi(1) −

Yi(0) = β is constant for all individuals. Then (i), β̂ols conditional on (Y(0),Y(1))

and Z is unbiased for β,

E
[
β̂ols

∣∣∣Y(0),Y(1),Z
]

= β, (4.1)

and, (ii), its exact conditional (randomization-based) variance is

VR(Y(0),Y(1),Z) = V
(
β̂ols

∣∣∣Y(0),Y(1),Z
)

=
N

N0 ·N1 · (N − 2)

N∑
i=1

(εi − ε)2 , (4.2)

where ε =
∑N

i=1 εi/N .

Because this result direct follows from results by Neyman (1923, reprinted in 1990)

on randomization inference for average treatment effects, specialized to the case with

a constant treatment effect, the proof is omitted. Note that although the variance is

exact, we do not have exact Normality, unlike the result in Lemma 1.

In the remainder of this section we explore two implications of the randomization

perspective. First of all, although the model and randomization variances VM and

VR are exact if both Assumptions 1 and 2 hold, they differ because they refer to

different repeated sampling thought experiments, or, alternatively, to different con-

ditioning sets. To illustrate this, let us consider the bias and variance under a third
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repeated sampling thought experiment, without conditioning on either W or ε, just

conditioning on the locations Z and (N0, N1), maintaining both the model and the

randomization assumption.

Lemma 3. Suppose Assumptions 1 and 2 hold. Then (i), β̂ols is unbiased for β,

E
[
β̂ols

∣∣∣Z, N0, N1

]
= β, (4.3)

(ii), its exact unconditional variance is:

VU(Z) =

(
1

N − 2
trace(Ω(Z))− 1

N · (N − 2)
ι′NΩ(Z)ιN

)
· N

N0 ·N1

, (4.4)

and (iii),

VU(Z) = E [VR(Y(0),Y(1),Z)|Z, N0, N1] = E [VM(W,Z)|Z, N0, N1] .

Thus, in expectation, VR(Y(0),Y(1),Z), is equal to the expectation of VM(W,Z).

For the second point, suppose we had focused on the repeated sampling variance

for β̂ols conditional on W and Z, but possibly erroneously modeled the covariance

matrix as constant times the identify matrix, Ω(Z) = σ2 · IN . Using such a (pos-

sibly incorrect) model a researcher would have concluded that the exact sampling

distribution for β̂ols conditional on the covariates would be

β̂ols

∣∣∣W,Z ∼ N (β,VINC) , where VINC = σ2 · N

N0 ·N1

. (4.5)

If Ω(Z) differs from σ2 · IN , then VINC is not in general the correct (conditional)

distribution for β̂ols. However, in some cases the misspecification need not lead to

invalid inferences in large samples. To make that precise, we first need to define

precisely how inference is performed. Implicitly the maximum likelihood estimator

for the misspecified variance defines σ2 as the probability limit of the estimator:

σ̂2 = arg max

{
N

2
ln(σ2)− 1

2σ2

N∑
i=1

(
Yi − α̂ols − β̂olsWi

)2}

[13]



=
1

N

N∑
i=1

(
Yi − α̂ols − β̂olsWi

)2
.

The probability limit for this estimator σ̂2, under Assumptions given in the Lemma

below, is plim(trace(Ω(Z))/N). Then the probability limit of the normalized variance

based on the possibly incorrect model is

N · VINC = plim(trace(Ω(Z))/N) plim

(
N2

N0 ·N1

)
.

The following result clarifies the properties of this probability limit.

Lemma 4. Suppose Assumption 1 holds with Ω(Z) satisfying trace(Ω(Z))/N → c for

some 0 < c < ∞, and ι′NΩ(Z)ιN/N
2 → 0, and Assumption 2 holds with N1/N → p

for some 0 < p < 1. Then

N · (VINC − VU(Z))
p−→ 0, and N · VINC

p−→ c

p · (1− p)
.

Hence, and this is a key insight of this section, if the assignment W is completely

random, and the treatment effect is constant, one can, at least in large samples, ignore

the off-diagonal elements of Ω(Z), and (mis-)specify Ω(Z) as σ2 · IN . Although the

resulting variance estimator will not be estimating the variance under the repeated

sampling thought experiment that one may have in mind, (namely VM(W,Z)), it

leads to valid confidence intervals under the randomization distribution. The result

that the mis-specification of the covariance matrix need not lead to inconsistent stan-

dard errors if the covariate of interest is randomly assigned has been noted previously.

Greenwald (1983) writes: “when the correlation patterns of the independent variables

are unrelated to those across the errors, then the least squares variance estimates are

consistent.” Angrist and Pischke (2009) write, in the context of clustering, that: “if

the [covariate] values are uncorrelated within the groups, the grouped error structure

does not matter for standard errors.” The preceding discussion interprets this result

formally from a randomization perspective.
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5 Randomization Inference with Cluster-level Ran-

domization

Now let us return to the setting that is the main focus of the paper. The covariate

of interest, Wi, varies only between clusters (states), and is constant within clusters.

Instead of assuming that Wi is randomly assigned at the individual level, we now

assume that it is randomly assigned at the cluster level. Let M be the number of

clusters, M1 the number of clusters with all individuals assigned Wi = 1, and M0 the

number of clusters with all individuals assigned to Wi = 0. The cluster indicator is

Cim = 1Si=m =

{
1 if individual i is in cluster/state m,
0 otherwise,

with C the N ×M matrix with typical element Cim. For randomization inference

we condition on Z, ε, and M1. Let Nm be the number of individuals in cluster m.

We now look at the properties of β̂ols over the randomization distribution induced

by this assignment mechanism. To keep the notation precise, let W̃ be the M -

vector of assignments at the cluster level, with typical element W̃m. Let Ỹ(0) and

Ỹ(1) be M -vectors, with m-th element equal to Ỹm(0) =
∑

i:Cim=1 Yi(0)/Nm, and

Ỹm(1) =
∑

i:Cim=1 Yi(1)/Nm respectively. Similarly, let ε̃ be an M -vector with m-th

element equal to ε̃m =
∑

i:Cim=1 εi/Nm, and let ε̃ =
∑M

m=1 ε̃m/M .

Formally the assumption on the assignment mechanism is now:

Assumption 3. (Cluster Randomization)

pr(W̃ = w̃ | Z = z) = 1

/(
M
M1

)
, for all w s.t.

M∑
m=1

w̃m = M1, and 0 otherwise.

We also make the assumption that all clusters are the same size:

Assumption 4. (Equal Cluster Size) Nm = N/M for all m = 1, . . . ,M .

[15]



Lemma 5. Suppose Assumptions 3 and 4 hold, and the treatment effect Yi(1)−Yi(0) =

β is constant. Then (i), the exact sampling variance of βols, conditional on Z and ε,

under the cluster randomization distribution is

VCR(Y(0),Y(1),Z) =
M

M0 ·M1 · (M − 2)

M∑
m=1

(
ε̃m − ε̃

)2
, (5.1)

(ii) if also Assumption 1 holds, then the unconditional variance is

VU(Z) = E [VCR(Y(0),Y(1),Z)|Z,M1] =

M2

M0 ·M1 · (M − 2) ·N2
· (M · trace (C′Ω(Z)C)− ι′Ω(Z)ι) . (5.2)

The unconditional variance is a special case of the expected value of the uncon-

ditional variance in (2.5), with the expectation taken over W given the cluster-level

randomization.

6 Variance Estimation Under Misspecification

In this section we present the main theoretical result in the paper. It extends the

result in Section 4 on the robustness of model-based variance estimators under com-

plete randomization to the case where the model-based variance estimator accounts

for clustering, but not necessarily for all spatial correlations, and that treatment is

randomized at cluster level.

Suppose the model generating the data is the linear model in (2.1), with a general

covariance matrix Ω(Z), and Assumption 1 holds. The researcher estimates a para-

metric model that imposes a potentially incorrect structure on the covariance matrix.

Let Ω(Z, γ) be the parametric model for the error covariance matrix. The model is

misspecified in the sense that there need not be a value γ such that Ω(Z) = Ω(Z, γ).

The researcher then proceeds to calculate the variance of β̂ols as if the postulated

model is correct. The question is whether this implied variance based on a misspeci-

fied covariance structure leads to correct inference.
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The example we are most interested in is characterized by a clustering structure

by state. In that case Ω(Z, γ) is the N ×N matrix with γ = (σ2
ε , σ

2
S)′, where

Ωij(Z, σ
2
ε , σ

2
S) =


σ2
ε + σ2

S if i = j
σ2
S if i 6= j, Si = Sj,

0 otherwise.
(6.1)

Initially, however, we allow for any parametric structure Ω(Z, γ). The true covariance

matrix Ω(Z) may include correlations that extend beyond state boundaries, and that

may involve division-level correlations or spatial correlations that decline smoothly

with distance as in the specification (3.2).

Under the (misspecified) parametric model Ω(Z, γ), let γ̃ be the pseudo true value,

defined as the value of γ that maximizes the expectation of the logarithm of the

likelihood function,

γ̃ = arg max
γ

E
[
−1

2
· ln (det (Ω(Z, γ)))− 1

2
· ε′Ω(Z, γ)−1ε

∣∣∣∣Z] .
Given the pseudo true error covariance matrix Ω(γ̃), the corresponding pseudo-

true model-based variance of the least squares estimator, conditional on W and Z,

is

VINC,CR =
1

N2W
2
(1−W )2

(
W
−1

)′ (
ιN W

)′
Ω(Z, γ̃)

(
ιN W

)(W
−1

)
.

Because for some Z the true covariance matrix Ω(Z) differs from the misspeci-

fied one, Ω(Z, γ̃), it follows that in general this pseudo-true conditional variance

VM(Ω(Z, γ̃),W,Z) will differ from the true variance VM(Ω(Z),W,Z). Here we fo-

cus on the expected value of VM(Ω(Z, γ̃),W,Z), conditional on Z, under assump-

tions on the distribution of W. Let us denote this expectation by VU(Ω(Z, γ̃),Z) =

E[VM(Ω(Z, γ̃),W,Z)|Z]. The question is under what conditions on the specifica-

tion of the error-covariance matrix Ω(Z, γ), in combination with assumptions on

the assignment process, this unconditional variance is equal to the expected vari-

ance with the expectation of the variance under the correct error-covariance matrix,

VU(Ω(Z),Z) = E[VM(Ω(Z),W,Z)|Z].
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The following theorem shows that if the randomization of W is at the cluster level,

then solely accounting for cluster level correlations is sufficient to get valid confidence

intervals.

Theorem 1. (Clustering with Misspecified Error-Covariance Matrix)

Suppose Assumption 1 holds with Ω(Z) satisfying trace(C′Ω(Z)C)/N → c for some

0 < c < ∞, and ι′NΩ(Z)ιN/N
2 → 0, Assumption 3 holds with M1/M → p for some

0 < p < 1, and Assumption 4 holds. Suppose also that that Ω(Z, γ) is specified as in

(6.1). Then

N · (VINC,CR − VU(Z))
p−→ 0, and N · VINC,CR

p−→ c

N2
m · p · (1− p)

.

This is the main theoretical result in the paper. It implies that if cluster level

explanatory variables are randomly allocated to clusters, there is no need to consider

covariance structures beyond those that allow for cluster level correlations. In our

application, if the covariate (state minimum wage exceeding federal minimum wage)

were as good as randomly allocated to states, then there is no need to incorporate

division or puma level correlations in the specification of the covariance matrix. It

is in that case sufficient to allow for correlations between outcomes for individuals in

the same state. Formally the result is limited to the case with equal sized clusters.

There are few exact results for the case with variation in cluster size, although if the

variation is modest, one might expect the current results to provide useful guidance.

In many econometric analyses researchers specify the conditional distribution of

the outcome given some explanatory variables, and ignore the joint distribution of the

explanatory variables. The result in Theorem 1 shows that it may be useful to pay

attention to this distribution. Depending on the joint distribution of the explanatory

variables, the analyses may be robust to mis-specification of particular aspects of the

conditional distribution. In the next section we discuss some methods for assessing

the relevance of this result.
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7 Spatial Correlation in State Averages

The results in the previous sections imply that inference is substantially simpler if the

explanatory variable of interest is randomly assigned, either at the unit or cluster level.

Here we discuss tests originally introduced by Mantel (1967) (see, e.g., Schabenberger

and Gotway, 2004) to analyze whether random assignment is consistent with the data,

against the alternative hypothesis of some spatial correlation. These tests allow for

the calculation of exact, finite sample, p-values. To implement these tests we use

the location of the units. To make the discussion more specific, we test the random

assignment of state-level variables against the alternative of spatial correlation.

Let Ys be the variable of interest for state s, for s = 1, . . . , S, where state s

has location Zs (the centroid of the state). In the illustrations of the tests we use

an indicator for a state-level regulation, and the state-average of an individual-level

outcome. The null hypothesis of no spatial correlation in the Ys can be formalized as

stating that conditional on the locations Z, each permutation of the values (Y1, . . . , YS)

is equally likely. With S states, there are S! permutations. We assess the null

hypothesis by comparing, for a given statistic M(Y,Z), the value of the statistic

given the actual Y and Z, with the distribution of the statistic generated by randomly

permuting the Y vector.

The tests we focus on in the current paper are based on Mantel statistics (e.g.,

Mantel, 1967; Schabenberger and Gotway, 2004). These general form of the statistics

we use is Geary’s c (also known as a Black-White or BW statistic in the case of binary

outcomes), a proximity-weighted average of squared pairwise differences:

G(Y,Z) =
S−1∑
s=1

S∑
t=s+1

(Ys − Yt)2 · dst, (7.1)

where dst = d(Zs, Zt) is a non-negative weight monotonically related to the proximity

of the states s and t. Given a statistic, we test the null hypothesis of no spatial

correlation by comparing the value of the statistic in the actual data set, Gobs, to
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the distribution of the statistic under random permutations of the Ys. The latter

distribution is defined as follows. Taking the S units, with values for the variable

Y1, . . . , YS, we randomly permute the values Y1, . . . , YS over the S units. For each

of the S! permutations g we re-calculate the Mantel statistic, say Gg. This defines

a discrete distribution with S! different values, one for each allocation. The one-

sided exact p-value is defined as the fraction of allocations g (out of the set of S!

allocations) such that the associated Mantel statistic Gg is less than or equal to the

observed Mantel statistic Gobs:

p =
1

S!

S!∑
g=1

1Gobs≥Gg
. (7.2)

A low value of the p-value suggests rejecting the null hypothesis of no spatial corre-

lation in the variable of interest. In practice the number of allocations is often too

large to calculate the exact p-value and so we approximate the p-value by drawing a

large number of allocations, and calculating the proportion of statistics less than or

equal to the observed Mantel statistic. In the calculations below we use 10, 000, 000

draws from the randomization distribution.

We use six different measures of proximity. First, we define the proximity dst as

states s and t sharing a border:

dBst =

{
1 if s, t share a border,
0 otherwise.

(7.3)

Second, we define dst as an indicator for states s and t belonging to the same census

division of states (recall that the US is divided into 9 divisions):

dDst =

{
1 if Ds = Dt,
0 otherwise.

(7.4)

The last four proximity measures are functions of the geographical distance between

states s and t:

dGDst = −d (Zs, Zt) , and dαst = exp (−α · d (Zs, Zt)) (7.5)
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where d(z, z′) is the distance in miles between two locations z and z′, and Zs is

the latitude and longitude of state s, measured as the latitude and longitude of the

centroid for each state. We use α = 0.00138, α = 0.00276, and α = 0.00693. For

these values the proximity index declines by 50% at distances of 500, 250, and 100

miles.

We calculate the p-values for the Mantel test statistic based on three variables.

First, an indicator for having a state minimum wage higher than the federal minimum

wage. This indicator takes on the value 1 in nine out of the forty nine states in our

sample, with these nine states mainly concentrated in the North East and the West

Coast. Second, we calculate the p-values for the average of the logarithm of yearly

earnings. Third, we calculate the p-values for the indicator for NE/ENC states. The

results for the three variables and six statistics are presented in Table 3. All three

variables exhibit considerable spatial correlation. Interestingly the results are fairly

sensitive to the measure of proximity. From these limited calculations, it appears

that sharing a border is a measure of proximity that is sensitive to the type of spatial

correlations in the data.

8 A Small Simulation Study

We carried out a small simulation study to investigate the relevance of the theoretical

results from Section 6. In all cases the model was

Yi = α + β ·Wi + εi,

with N = 2, 590, 190 observations to mimic our actual data. In our simulations every

state has the same number of individuals, and every puma within a given state has

the same number of individuals. We considered three distributions for Wi. In all

cases Wi varies only at the state level. In the first case Wi = 1 for individuals in nine

randomly chosen states. In the second case Wi = 1 for the the nine minimum wage

states. In the third case Wi = 1 for the eleven NE/ENC states. The distribution
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for ε is in all cases Normal with mean zero and covariance matrix Ω. The general

specification we consider for Ω is

Ωij(Z, γ) =


σ2
D + σ2

S + σ2
P + σ2

ε if i = j,

σ2
D + σ2

S + σ2
P if i 6= j, Pi = Pj,

σ2
D + σ2

S if Pi 6= Pj, Si = Sj,

σ2
D if Si 6= Sj, Di = Dj,

We look at two different sets of values for (σ2
ε , σ

2
P , σ

2
S, σ

2
D), (0.9294, 0, 0.0161, 0) (only

state level correlations, corresponding to the second pair of rows in Table 2) and

(0.8683, 0.0056, 0.0058, 0.0660) (puma, state and division level correlations, corre-

sponding to the fifth pair of rows in Table 2).

Given the data, we consider five methods for estimating the variance of the least

squares estimator β̂ols, and thus for constructing confidence intervals. The first is

based on the randomization distribution:

V̂CR(Y(0),Y(1),Z) =
M

M0 ·M1 · (M − 2)

M∑
m=1

ˆ̃ε2m,

where ˆ̃εm is the average value of the residual ε̂i = Yi − α̂ols − β̂ols ·Wi over cluster m.

The second, third and fourth variances are model-based:

V̂M(Ω̂(Z),W,Z) =
1

N2 ·W 2 · (1−W )2
(W −1)

(
ιN W

)′
Ω̂(Z)

(
ιN W

)( W
−1

)
,

using different estimates for Ω̂(Z). First we use an infeasible estimator, namely the

true value for Ω(Z). Second, we specify

Ωij(Z, γ) =

{
σ2
S + σ2

ε if i = j,

σ2
S if i 6= j, Si = Sj.

We estimate σ2
P and σ2

S using moment-based estimators, and plug that into the ex-

pression for the covariance matrix. For the third variance estimator in this set of

three variance estimators we specify

Ωij(Z, γ) =


σ2
D + σ2

S + σ2
P + σ2

ε if i = j,

σ2
D + σ2

S + σ2
P if i 6= j, Pi = Pj,

σ2
D + σ2

S if Pi 6= Pj, Si = Sj,

σ2
D if Si 6= Sj, Di = Dj,
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and again use moment-based estimators.

The fifth and last variance estimator allows for more general variance structures

within states, but restricts the correlations between individuals in different states to

zero. This estimator assumes Ω is block diagonal, with the blocks defined by states,

but does not impose constant correlations within the blocks. The estimator for Ω

takes the form

Ω̂STATA,ij(Z) =


ε̂2i if i = j,

ε̂i · ε̂j if i 6= j, Si = Sj,

0 otherwise,

leading to

V̂STATA =
1

N2 ·W 2
(1−W )2

·(W −1)
(
ιN W

)′
ΩSTATA(Z)

(
ιN W

)( W
−1

)
.

This is the variance estimator implemented in STATA and widely used in empirical

work.

In Table 4 we report the actual level of tests of the null hypothesis that β = β0

with a nominal level of 5%. First consider the two columns with random assign-

ment of states to the treatment. In that case all variance estimators lead to tests

that perform well, with actual levels between 5.0 and 7.6%. Excluding the STATA

variance estimator the actual levels are below 6.5%. The key finding is that even if

the correlation pattern involves pumas as well as divisions, variance estimators that

ignore the division level correlations do very well.

When we do use the minimum wage states as the treatment group the assignment

is no longer completely random. If the correlations are within state, all variance esti-

mators still perform well. However, if there are correlations at the division level, now

only the variance estimator using the true variance matrix does well. The estimator

that estimates the division level correlations does best among the feasible estimators,

but, because the data are not informative enough about these correlations to pre-

cisely estimate the variance components, even this estimator exhibits substantial size
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distortions. The same pattern, but even stronger, emerges with the NE/ENC states

as the treatment group.

9 Conclusion

In empirical studies with individual level outcomes and state level explanatory vari-

ables, researchers often calculate standard errors allowing for within-state correlations

between individual-level outcomes. In many cases, however, the correlations may ex-

tend beyond state boundaries. Here we explore the presence of such correlations, and

investigate the implications of their presence for the calculation of standard errors.

In theoretical calculations we show that under some conditions, in particular random

assignment of regulations, correlations in outcomes between individuals in different

states can be ignored. However, state level variables often exhibit considerable spa-

tial correlation, and ignoring out-of-state correlations of the magnitude found in our

application may lead to substantial underestimation of standard errors.

In practice we recommend that researchers explicitly explore the spatial correla-

tion structure of both the outcomes as well as the explanatory variables. Statistical

tests based on Mantel statistics, with the proximity based on shared borders, or

belonging to a common division, are straightforward to calculate and lead to exact

p-values. If these test suggest that both outcomes and explanatory variables exhibit

substantial spatial correlation, we recommend that one should explicitly account for

the spatial correlation by allowing for a more flexible specification than one that only

accounts for state level clustering.
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Appendix

For the general model, leaving aside terms that do not involve unknown parameters, the
log likelihood function is

L(γ|Y) = −1

2
ln (det(Ω(Z, γ)))− ε′Ω−1(Z, γ)ε/2.

The matrix Ω(Z, γ) is large in our illustrations, with dimension 2,590,190 by 2,590,190.
Direct maximization of the log likelihood function is therefore not feasible. However, because
locations are measured by puma locations, Ω(Z, γ) has a block structure, and calculations
of the log likelihood simplify and can be written in terms of first and second moments by
puma. We first give a couple of preliminary results.

Theorem A.1. (Sylvester’s Determinant Theorem) Let A and B be arbitrary M×N
matrices. Then:

det(IN +A′B) = det(IM +BA′).

Proof of Theorem A.1: Consider a block matrix
(
M1 M2
M3 M4

)
. Then:

det
(
M1 M2
M3 M4

)
= det

(
M1 0
M3 I

)
det
(
I M−1

1 M2

0 M4−M3M
−1
1 M2

)
= detM1 det(M4 −M3M

−1
1 M2)

similarly

det
(
M1 M2
M3 M4

)
= det

(
I M2
0 M4

)
det
(
M1−M2M

−1
4 M3 0

M−1
4 M3 I

)
= detM4 det(M1 −M2M

−1
4 M3)

Letting M1 = IM ,M2 = −B,M3 = A′,M4 = IN yields the result.

Lemma A.1. (Determinant of Cluster Covariance Matrix) Suppose C is an N ×
M matrix of binary cluster indicators, with C′C equal to a M ×M diagonal matrix, Σ is
an arbitrary M ×M matrix, and IN is the N -dimensional identity matrix. Then, for scalar
σ2ε , and

Ω = σ2ε IN + CΣC′ ΩC = Σ + σ2ε (C
′C)−1,

we have

det(Ω) = (σ2ε )
N−M det(C′C) det(ΩC).

Proof of Lemma A.1: By Sylvester’s theorem:

det(Ω) = (σ2ε )
N det(IN + CΣ/σ2εC

′) = (σ2ε )
N det(IM + C′CΣ/σ2ε )

= (σ2ε )
N det(IM + C′CΩC/σ

2
ε − IM ) = (σ2ε )

N det(C′C) det(ΩC/σ
2
ε )

= (σ2ε )
N−M

(∏
Np

)
det(ΩC).

Lemma A.2. Suppose Assumptions 3 and 4 hold. Then for any N ×N matrix Ω,

E
[
W′ΩW

]
=
M1 · (M1 − 1)

M · (M − 1)
· ι′NΩιN +

M1 ·M0

M · (M − 1)
· trace

(
C′ΩC

)
.
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Proof of Lemma A.2: We have

E[Wi ·Wj ] =

{
M1/M if ∀m,Cim = Cjm,
(M1 · (M1 − 1))/(M · (M − 1)) otherwise.

it follows that

E[WW′] =
M1 · (M1 − 1)

M · (M − 1)
· ιN ι′N +

(
M1

M
− M1 · (M1 − 1)

M · (M − 1)

)
·CC′

=
M1 · (M1 − 1)

M · (M − 1)
· ιN ι′N +

M1 ·M0

M · (M − 1)
·CC′.

Thus

E[W′ΩW] = trace
(
E[ΩWW′]

)
= trace

(
Ω ·
(
M1 · (M1 − 1)

M · (M − 1)
· ιN ι′N +

M1 ·M0

M · (M − 1)
·CC′

))
=
M1 · (M1 − 1)

M · (M − 1)
· ι′NΩιN +

M1 ·M0

M · (M − 1)
· trace

(
C′ΩC

)
.

Lemma A.3. Suppose the N ×N matrix Ω satisfies

Ω = σ2ε · IN + σ2C ·CC′,

where IN is the N ×N identity matrix, and C is an N ×M matrix of zeros and ones, with
CιM = ιN and C′ιN = (N/M)ιM , so that,

Ωij =


σ2ε + σ2C if i = j
σ2C if i 6= j,∀m,Cim = Cjm,
0 otherwise,

(A.1)

Then, (i)

ln (det (Ω)) = N · ln
(
σ2ε
)

+M · ln
(

1 +
N

M
·
σ2C
σ2ε

)
,

and, (ii)

Ω−1 = σ−2ε · IN −
σ2C

σ2ε · (σ2ε + σ2C ·N/M)
·CC′

Proof of Lemma A.3: First, consider the first part. Apply Lemma A.1 with

Σ = σ2C · IM , and C′C =
N

M
· IM , so that ΩC =

(
σ2C + σ2ε ·

M

N

)
· IM .

Then, by Lemma A.1, we have

ln det(Ω) = (N −M) · ln(σ2ε) +M · ln(N/M) + ln det(ΩC)
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= (N −M) · ln(σ2ε) +M · ln(N/M) +M · ln
(
σ2C + σ2ε ·

M

N

)
= (N −M) · ln(σ2ε) +M · ln

(
N

M
σ2C + σ2ε

)
= N · ln(σ2ε) +M · ln

(
1 +

N

M
·
σ2C
σ2ε

)
.

Next, consider part (ii). We need to show that

(
σ2ε · IN + σ2C ·CC′

)(
σ−2ε · IN −

σ2C
σ2ε · (σ2ε + σ2C ·N/M)

·CC′
)

= IN ,

which amounts to showing that

−
σ2ε · σ2C

σ2ε · (σ2ε + σ2C ·N/M)
·CC′ + σ2C ·CC′σ−2ε −CC′ ·

σ4C
σ2ε · (σ2ε + σ2C ·N/M)

·CC′ = 0.

This follows directly from the fact that C′C = (N/M) · IM and collecting the terms.

Proof of Lemma 3: The unbiasedness result directly follows from the conditional unbi-
asedness established in Lemma 2. Next we establish the second part of the Lemma. By the
Law of Iterated Expectations,

VU (Z) = V
(
E
[
β̂ols | Y(0),Y(1),Z

]
| Z, N1

)
+E

[
V
(
β̂ols

∣∣∣Y(0),Y(1),Z
)
| Z, N1

]
(A.2)

= E
[
V
(
β̂ols

∣∣∣Y(0),Y(1),Z
)
| Z, N1

]
where the second line follows since β̂ols is unbiased. By Lemma 2, we have:

E
[
V
(
β̂ols

∣∣∣Y(0),Y(1),Z
)
| Z, N1

]
= E

[
N

N0 ·N1 · (N − 2)

N∑
i=1

(εi − ε)2 | Z, N1

]

Observe that we can write:

N∑
i=1

(εi − ε)2 = (ε− ιN ι′Nε/N)′(ε− ιN ι′Nε/N)

= ε′ε− 2ε′ιN ι
′
Nε/N + ε′ιN ιN ιN ι

′
Nε/N

2

= ε′ε− ε′ιN ι′Nε/N.

Hence:

VU (Z) =
N

N0 ·N1 · (N − 2)
E
[
ε′ε− ε′ιN ι′Nε/N

∣∣Z, N0, N1

]
=

N

N0 ·N1 · (N − 2)
trace

(
E
[
εε′ − ι′Nεε′ιN/N

∣∣Z, N0, N1

])
=

N

N0 ·N1 · (N − 2)

(
trace (Ω(Z))− ι′NΩ(Z)ιN/N

)
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which establishes (4.4). Finally, we prove the third part of the Lemma. By Lemma 1, β̂ols
is unbiased conditional on Z,W, so that by argument like in Equation (A.2) above, we can
also write:

VU (Z) = V
(
E
[
β̂ols | Z,W

]
| Z, N1

)
+ E

[
V
(
β̂ols

∣∣∣Z,W)
| Z, N1

]
= E

[
V
(
β̂ols

∣∣∣Y(0),Y(1),Z
)
| Z, N1

]
which equals E [VR (Y(0),Y(1),Z) | Z, N1] by (A.2).

Suppose Assumptions 1 holds with Ω(Z) satisfying trace(Ω(Z))/N → c for some 0 < c <∞,
and ι′NΩ(Z)ιN/N

2 → 0, and Assumption 2 holds with N1/N → p for some 0 < p < 1. Then

N · (VINC − VU (Z))
p−→ 0, and N · VINC

p−→ c

p · (1− p)
.

Proof of Lemma 4: We will first show that the second claim in the Lemma holds,

N · VINC
p−→ c

p · (1− p)
, (A.3)

and then show that

N · VU
p−→ c

p · (1− p)
, (A.4)

which together prove the first claim in the Lemma.
Consider (A.3). By the conditions in the Lemma, α̂ols and β̂ols are consistent for α and β,
and therefore the probability limit of σ̂2 is the probability limit of

∑N
i=1

∑N
i=1 ε

2
i /N which

is the probability limit of trace(Ω(Z)/N). Then

plim (N · VINC) = plim

(
1

N

N∑
i=1

ε2i ·
N2

N0 ·N − 1

)

= plim

(
trace(Ω(Z))

N
· N2

N0 ·N1

)
=

c

p · (1− p)
.

Now consider (A.4). By the conditions in the Lemma,

N · VU =

(
1

N − 2
trace(Ω(Z))− 1

N · (N − 2)
ι′NΩ(Z)ιN

)
· N2

N0 ·N1

=
N

N − 2
· 1

N
trace(Ω(Z)) · N2

N0 ·N1
− N

N − 2
· 1

N2
ι′NΩ(Z)ιN ·

N2

N0 ·N1

p→ c

p · (1− p)
.
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Proof of Lemma 5: To show the first part of the Lemma, observe that under constant
cluster size,

β̂ols =

∑M
m=1(Ỹm −

¯̃Y )2(W̃m − ¯̃W )∑
m(W̃m − ¯̃W )2

where Ỹm = (N/M)−1
∑

i : Cim=1 Yi, and ¯̃Y = M−1
∑

m Ỹm = Ȳ , and ¯̃W = W̄ . Therefore,

we can apply Lemma 2, treating cluster averages (Ỹm, W̃m, ε̃m) as a unit of observation,
which yields the result.
To show the second part, again by Lemma 2, β̂ols is unbiased, so that by the Law of Iterated
Expectations, and the first part of the Lemma,

VU (Z) = V
(
E
[
β̂ols | Y(0),Y(1),Z

]
| Z,M1

)
+ E

[
V
(
β̂ols

∣∣∣Y(0),Y(1),Z
)
| Z,M1

]
= E

[
V
(
β̂ols

∣∣∣Y(0),Y(1),Z
)
| Z,M1

]
= E

[
M

(M − 2) ·M0 ·M1

M∑
m=1

(
ε̃m − ε̃

)2 | Z,M1

]
Hence, it suffices to show that

E

[
M∑
s=1

(
ε̃s − ε̃

)2∣∣∣∣∣Z,M1

]
=

(
M2

N2
· trace

(
C′Ω(Z)C

)
− M

N2
ι′Ω(Z)ι

)
.

Note that in general CιM = ιN , and under Assumption 4, it follows that C′C = (N/M)·IM .
We can write

ε̃m =
(
C′C

)−1
C′ε =

M

N
C′ε, and ε̃ =

1

M
ι′M
(
C′C

)−1
C′ε =

1

N
ι′Nε,

so that

M∑
m=1

(
ε̃m − ε̃

)2
=

(
M

N
C′ε− 1

M
ιM ι

′
Nε

)′(M
N

C′ε− 1

M
ιM ι

′
Nε

)

=

((
M

N
C′ − 1

N
ιM ι

′
N

)
ε

)′((M
N

C′ − 1

N
ιM ι

′
N

)
ε

)
.

= ε′
(
M

N
C− 1

N
ιN ι
′
M

)′(M
N

C′ − 1

N
ιM ι

′
N

)
ε.

Thus

E

[
M∑
m=1

(
ε̃s − ε̃

)2∣∣∣∣∣Z,M1

]
= E

[
ε′
(
M

N
C− 1

N
ιN ι
′
M

)′(M
N

C′ − 1

N
ιM ι

′
N

)
ε

∣∣∣∣Z,M1

]

= trace

(
E
[(

M

N
C− 1

N
ιN ι
′
M

)′(M
N

C′ − 1

N
ιM ι

′
N

)
εε′
∣∣∣∣Z,M1

])
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= trace

((
M

N
C− 1

N
ιN ι
′
M

)′(M
N

C′ − 1

N
ιM ι

′
N

)
Ω(Z)

)
= trace

((
M

N
C′ − 1

N
ιM ι

′
N

)
Ω(Z)

(
M

N
C− 1

N
ιN ι
′
M

)′)
=
M2

N2
· trace

(
C′Ω(Z)C

)
− M

N2
· ι′NΩ(Z)ιN .

Proof of Theorem 1: We show

N · VU
p−→ c

N2
m · p · (1− p)

,

and

N · VINC,CR
p−→ c

N2
m · p · (1− p)

,

which together imply the two claims in the Theorem. First consider the first claim. The
normalized variance is

N · VU (Z) =
M2 ·N

M0 ·M1 · (M − 2) ·N2
·
(
M · trace

(
C′Ω(Z)C

)
− ι′Ω(Z)ι

)
=

M2 ·N
M0 ·M1 · (M − 2)

·
(
M

N
· trace (C′Ω(Z)C)

N
− ι′Ω(Z)ι

N2

)
.

By the conditions in the Theorem the probability limit of this expression is

plim

(
M2 ·N

M0 ·M1 · (M − 2)
·
(
M

N
· trace (C′Ω(Z)C)

N
− ι′Ω(Z)ι

N2

))

= plim

(
M2 ·N

M0 ·M1 · (M − 2)

)
·
(

plim

(
M

N
· trace (C′Ω(Z)C)

N

)
− plim

(
ι′Ω(Z)ι

N2

))
=

c

N2
m · p · (1− p)

.

Next, consider the second claim. Now the probability limit of the model-based variance is

plim (N · VINC,CR(Z)) =

plim

(
M2 ·N

M0 ·M1 · (M − 2) ·N2
·
(
M · trace

(
C′Ω(Z, σ̃ε, σ̃

2
S)C

)
− ι′Ω(Z, σ̃ε, σ̃

2
S)ι
))

= plim

(
M2 ·N

M0 ·M1 · (M − 2)
·

(
M

N
·

trace
(
C′Ω(Z, σ̃ε, σ̃

2
S)C

)
N

−
ι′Ω(Z, σ̃ε, σ̃

2
S)ι

N2

))

=
1

Nm · p · (1− p)
·

(
plim

(
M

N
·

trace
(
C′Ω(Z, σ̃ε, σ̃

2
S)C

)
N

)
− plim

(
ι′Ω(Z, σ̃ε, σ̃

2
S)ι

N2

))

=
1

N2
m · p · (1− p)

· plim

(
trace

(
C′Ω(Z, σ̃ε, σ̃

2
S)C

)
N

)
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Hence, in order to prove the second claim it suffices to show that trace(C′Ω(Z)C) =
trace(C′Ω(Z, (σ̃ε, σ̃

2
S))C). The log likelihood function based on the specification (A.1) is

L(σ2ε , σ
2
S |Y,Z) = −1

2
· ln
(
Ω
(
Z, σ2ε , σ

2
S

))
− 1

2
·Y′Ω(σ2ε , σ

2
S)−1Y.

The expected value of the log likelihood function is

E
[
L(σ2ε , σ

2
S |Y,Z)

∣∣Z] = −1

2
ln
(
Ω
(
Z, σ2ε , σ

2
S

))
− 1

2
· E
[
Y′Ω(Z, σ2ε , σ

2
C)−1Y

]
= −1

2
· ln
(
Ω
(
Z, σ2ε , σ

2
S

))
− 1

2
· trace

(
E
[
Ω
(
Z, σ2ε , σ

2
S

)−1
YY′

)]
= −1

2
· ln
(
Ω
(
Z, σ2ε , σ

2
S

))
− 1

2
· trace

(
Ω
(
Z, σ2ε , σ

2
S

)−1
Ω(Z)

)
.

Using Lemma A.3, this is equal to

E
[
L(σ2ε , σ

2
S |Y,Z)

∣∣Z] = −N
2
· ln(σ2ε)−

M

2
· ln
(
1 +N/M · σ2S/σ2ε

)
− 1

2 · σ2ε
· trace(Ω(Z)) +

σ2S
2 · σ2ε · (σ2ε + σ2S ·N/M)

· trace
(
C′Ω(Z)C

)
.

The first derivative of the expected log likelihood function with respect to σ2S is

∂

∂σ2S
E
[
L(σ2ε , σ

2
S |Y,Z)

∣∣Z] = − N

2 · (σ2ε +N/M · σ2S)
+

trace (C′Ω(Z)C)

(σ2ε + σ2S · (N/M))2

Hence the first order condition for σ̃2S implies that

trace
(
C′Ω(Z)C

)
= N · (σ̃2ε + σ̃2S · (N/M)).

For the misspecified error-covariance matrix Ω(Z, γ̃) we have

trace
(
C′Ω(Z, γ̃)C

)
=

M∑
m=1

(
N2
m · σ̃2S +Nm · σ̃2ε

)
.

By equality of the cluster sizes this simplifies to

trace
(
C′Ω(Z, γ̃)C

)
= N ·

(
σ̃2ε + σ̃2S · (N/M)

)
= trace

(
C′Ω(Z)C

)
.
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Figure 1: Covariance of demeaned log earnings of individuals as function of distance
(in miles). Bandwidth h = 50 miles.

(a)
Within
State

(b)
Be-
tween
States

Table 1: Summary statistics for census data (N = 2, 590, 190)

Average log earnings 10.17

Standard deviation of log earnings 0.97

Number of pumas in the sample 2,057

Average number of observations per puma 1,259

Standard deviation of number of observations per puma 409

Number of states (incl DC, excl AK, HA, PR) in the sample 49

Average number of observations per state 52,861

Standard deviation of number of observations per state 58,069

Number of divisions in the sample 9

Average number of observations per division 287,798

Standard deviation of number of observations per division 134,912
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Table 2: Estimates for clustering variances for demeaned log earnings. Standard
errors based on the second derivative of log-likelihood in square brackets. Log Lik
refers to the value of the log-likelihood function evaluated at the maximum likelihood
estimates. The last two columns refer to the implied standard errors if the regressor
is and indicator for high state minimum wage (MW) or and indicator for the state
being in New England or the East-North-Central Division (NE/ENC).

ŝ.e.(β̂)

σ2
ε σ2

D σ2
S σ2

P σ2
dis α Log Lik MW NE/ENC

0.931 0 0 0 0 0 −1213298 0.002 0.002

[0.001]

0.929 0 0.016 0 0 0 −1200407 0.080 0.057

[0.001] [0.002]

0.868 0 0.011 0.066 0 0 −1116976 0.068 0.049

[0.001] [0.003] [0.002]

0.929 0.006 0.011 0 0 0 −1200403 0.091 0.081

[0.001] [0.002] [0.002]

0.868 0.006 0.006 0.066 0 0 −1116972 0.081 0.076

[0.001] [0.003] [0.002] [0.002]

0.868 0.005 0.006 0.047 0.021 0.029 −1116892 0.074 0.085

[0.001] [0.005] [0.001] [0.002] [0.003] [0.005]

Table 3: p-values for Geary’s c, one-sided alternatives (10,000,000 draws)

Distance weights, 50% decline at:

Proximity Border Division Distance 500 miles 250 miles 100 miles

Minimum wage < 0.0001 0.0028 0.9960 0.0093 0.0365 0.4307

Log wage 0.0005 0.0239 0.0692 0.0276 0.0298 0.1644

NE/ENC < 0.0001 < 0.0001 0.0967 0.0877 0.0692 0.0321
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Figure 2: Spatial correlation of regressors
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Table 4: Size of t-tests (in %) using different variance estimators for models with
only state level correlations (S), and models with puma, state, and division level
correlations (PSD). 500,000 draws.

Treatment type Random Min. Wage NE/ENC

Shock type S PSD S PSD S PSD

V̂CR(Y(0),Y(1),Z) 5.6 5.6 5.6 16.2 5.6 26.3

V̂M(Ω(Z),W,Z) 5.0 5.0 5.0 5.0 5.0 5.0

V̂M(Ω(σ̂2
ε , σ̂

2
S),W,Z) 6.1 6.1 6.1 17.1 6.1 27.2

V̂M(Ω(σ̂2
ε , σ̂

2
P , σ̂

2
S, σ̂

2
D),W,Z) 6.1 6.5 5.7 9.0 5.4 13.8

Stata 7.6 7.6 8.5 18.5 7.7 30.4
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