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The purpose of this article is to get mathematicians
interested in studying a number of partial
differential equations (PDEs) that naturally arise
in macroeconomics. These PDEs come from models
designed to study some of the most important
questions in economics. At the same time, they are
highly interesting for mathematicians because their
structure is often quite difficult. We present a number
of examples of such PDEs, discuss what is known
about their properties, and list some open questions
for future research.

1. Introduction
Macroeconomics is the study of large economic systems.
Most commonly, this system is the economy of a
country. But, it may also be a more complex system
such as the world as a whole, comprising a large
number of interacting smaller geographical regions.
Macroeconomics is concerned with some of the most
important questions in economics, for example: what
causes recessions and what should be done about them?
Why are some countries so much poorer than others?

Traditionally, macroeconomic theory has focused on
studying systems of difference equations or ordinary
differential equations describing the evolution of a
relatively small number of macroeconomic aggregates.
These systems are typically derived from the optimal
control problem of a ‘representative agent’. In the
past 30 years, however, macroeconomics has seen
the development of theories that explicitly model the

2014 The Author(s) Published by the Royal Society. All rights reserved.
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equilibrium interaction of heterogeneous agents, e.g. heterogeneous consumers, workers and
firms (see, in particular, the early contributions of Bewley [1], Aiyagari [2], Huggett [3] and
Hopenhayn [4]).

The development of these theories opens up the study of a number of important questions:
why are income and wealth so unequally distributed? How is inequality affected by aggregate
economic conditions? Is there a trade-off between inequality and economic growth? What are the
forces that lead to the concentration of economic activity in a few very large firms? And why do
instabilities in the financial sector seem to matter so much for the macroeconomy?

Heterogeneous agent models are usually set in discrete time. While they are workhorses of
modern macroeconomics, relatively little is known about their theoretical properties and they
often prove difficult to compute. To make progress, some recent papers have therefore studied
continuous time versions of such models. Our paper reviews this literature. Macroeconomic
models with heterogeneous agents share a common mathematical structure which, in continuous
time, can be summarized by a system of coupled nonlinear partial differential equations (PDEs):
(i) a Hamilton–Jacobi–Bellman (HJB) equation describing the optimal control problem of a single
atomistic individual and (ii) an equation describing the evolution of the distribution of a vector
of individual state variables in the population (such as a Fokker–Planck equation, Fisher–KPP
equation or Boltzmann equation).1 While plenty is known about the properties of each type of
equation individually, our understanding of the coupled system is much more limited. Lasry &
Lions [5–7] and Lions [8] have termed such a system a ‘mean field game’ and obtained some
theoretical characterizations for special cases, but many open questions remain. For useful
reference on mean field games, one can see for example Bardi [9], Guéant [10], Guéant et al.
[11], Gomes et al. [12] and Cardaliaguet [13]. The purpose of this article is to present important
examples of these systems of PDEs that arise naturally in macroeconomics, to discuss what is
known about their properties, and to highlight some directions for future research.

In §2, we present a model describing an economy consisting of a continuum of heterogeneous
individuals that face income shocks and can trade a risk-free bond that is in zero net supply. This
is the simplest model to illustrate the basic structure of heterogeneous agent frameworks used in
macroeconomics, and it is the building block of many models studying the interaction between
macroeconomic aggregates and the distribution of income and wealth. In §3, we review PDEs
that have been used to describe the distribution of the many economic variables that obey power
laws, for example, city and firm size, wealth and executive compensation. One building block of
all of these models is the Fokker–Planck equation for a geometric Brownian motion. This equation
is then combined with a model of exit and entry, for instance taking the form of a variational
inequality of the obstacle type, derived from an optimal stopping time problem. In §4, we
present a class of models describing processes of economic growth owing to experimentation and
knowledge diffusion, or alternatively the percolation of information in financial markets. These
models generate richer, more non-local dynamics, that give rise to Fisher–KPP- or Boltzmann-type
equations.

In §5, we introduce a class of models that is substantially more complicated than those
in the preceding sections: models with ‘aggregate shocks’ designed to study business cycle
fluctuations. These theories have the property that macroeconomic aggregates, including the
distribution of individual states, are stochastic variables rather than just varying deterministically
as in the models studied thus far. This creates the difficulty that the distribution—an infinite-
dimensional object—has to be included in the state space of the individual optimal control
problem. The resulting optimal control problem is no longer a standard HJB equation but instead
an ‘HJB equation in the space of density functions’, a very challenging object mathematically. We
present the most canonical version of such a theory: the model in §2 but now with aggregate
income shocks. But, in principle, any of the theories in the preceding sections could be enriched

1Heterogeneous agent models used in macroeconomics typically make the assumption that individuals have identical
preferences (even though they are heterogeneous in other dimensions). It is for this reason that only two equations are
sufficient for summarizing such economies. Models with heterogeneous preferences can be considered but they involve
more equations.
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by introducing such aggregate shocks. Finally, in §6, we note that also models with a finite
number of agents, rather than a continuum as in the preceding sections, are of interest in certain
macroeconomic applications. We present a model of firm dynamics in an oligopolistic industry
which takes the form of a differential game.

Space limitations have forced us to leave out other important areas of macroeconomics and
economics more broadly where PDEs, and continuous time methods in general, have played
an important role in recent years. A good example is the large literature studying the design
of optimal dynamic contracts and policies. See for example the recent work by Sannikov [14],
Williams [15] and Farhi & Werning [16]. Another area is given by models of the labour market.
See for example the recent contribution by Alvarez & Shimer [17] and the review by Lentz &
Mortensen [18]. Finally, throughout this paper, we focus on equilibrium allocations in which
individuals take as given the actions of others rather than coordinating with them. As a result,
these equilibrium allocations are in general suboptimal from the point of view of society as a
whole.2 Optimal allocations in heterogeneous agent models can be analysed along the lines of
Nuño [19] and Lucas & Moll [20].

2. Income and wealth distribution
The discrete time model of Aiyagari [2], Bewley [1] and Huggett [3] is one of the workhorses of
modern macroeconomics. This model captures in a relatively parsimonious way the evolution of
the income and wealth distribution and its effect on macroeconomic aggregates. It is a natural
framework to study the effect of various policies and institutions on inequality. A huge number
of problems in macroeconomics have a similar structure and so this is a particularly useful
starting point. The simplest formulation of the model is due to Huggett [3] and we here present a
continuous time formulation of Huggett’s model presented in Achdou et al. [21].3

There is a continuum of infinitely lived households that are heterogeneous in their wealth a
and their income z. Households solve the following optimization problem:

max
{ct}

E0

∫∞

0
e−ρtu(ct) dt s.t.

dat = (zt + r(t)at − ct) dt

dzt =μ(zt) dt + σ (zt) dWt

at ≥ a.

Households have utility functions u(c) over consumption c that are strictly increasing and strictly
concave (e.g. u(c) = c1−γ /(1 − γ ), γ > 0) and they maximize the present discounted value of
utility from consumption, discounted at rate ρ. Households can borrow and save at an interest
rate r(t) which is determined in equilibrium and they optimally choose how to split their total
income zt + r(t)at between consumption and saving. Their income evolves exogenously according
to a diffusion process dzt =μ(zt) dt + σ (zt) dWt in a closed interval [z, z̄] (it is reflected at the
boundaries if it ever reaches them). Importantly, there is a state constraint a ≥ a for some scalar
−∞< a ≤ 0. This state constraint has the economic interpretation of a borrowing constraint, e.g. if
a = 0 households can only save and cannot borrow at all.

The interest rate r(t) must be such that the following equilibrium condition is satisfied:∫
ag(a, z, t) da dz = 0,

where g(a, z, t) denotes the cross-sectional distribution of households with wealth a and income
z at time t. The interpretation of this equilibrium condition is as follows: wealth a here takes the
form of bonds, and the equilibrium interest rate r is such that bonds are in zero net supply. That is,
for every dollar borrowed, there is someone else who saves a dollar.

2In the sense of the ‘Pareto optimality’ criterion typically used in economics: there exists an alternative allocation such that
all individuals in the economy are weakly better off.
3Also see Bayer & Waelde [22,23] who explore a similar model.
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The equilibrium can be characterized in terms of an HJB equation for the value function v

and a Fokker–Planck equation for the density of households g. In a stationary equilibrium, the
unknown functions v and g and the unknown scalar r satisfy the following system of coupled
PDEs (stationary mean field game) on (a, ∞) × (z, z̄):

1
2
σ 2(z)∂zzv + μ(z)∂zv + (z + ra)∂av + H(∂av) − ρv = 0, (2.1)

− 1
2
∂zz(σ 2(z)g) + ∂z(μ(z)g) + ∂a((z + ra)g) + ∂a(∂pH(∂av)g) = 0, (2.2)

∫
g(a, z) da dz = 1, g ≥ 0 (2.3)

and
∫

ag(a, z) da dz = 0, (2.4)

where the Hamiltonian H is given by

H(p) = max
c≥0

(−pc + u(c)). (2.5)

The function v satisfies a state constraint boundary condition at a = a and Neumann boundary
conditions at z = z and z = z̄.

In general, the boundary value problem including the Bellman equation (2.1) and the boundary
condition has to be understood in the sense of viscosity (see Bardi & Capuzzo [24], Crandall et al.
[25], Barles [26]), whereas the boundary problem with the Fokker–Planck equation (2.3) is set in
the sense of distributions. An important issue is to check that (2.1) actually yields an optimal
control (verification theorem): this is a direct application of Itô’s formula if v is smooth enough;
for general viscosity solutions, one may apply the results of Bouchard & Touzi [27] and Touzi [28]
(this has not been done yet).

With well chosen initial and terminal conditions, solutions to the HJB equation (2.1) are
expected to be smooth and we therefore look for such smooth solutions. If v is indeed smooth, the
state constraint boundary condition can be shown to imply

(z + ra)λ+ H(λ) ≥ (w + ra)∂av(a, z) + H(∂av(a, z)) ∀λ≥ ∂av(a, z)

or equivalently

z + ra + ∂pH(∂av) ≥ 0, a = a (2.6)

so that the trajectory of a points towards the interior of the state space. Finally, note that the interest
rate r—which is determined by the equilibrium condition (2.4)—is the only variable through
which the distribution g enters the HJB equation (2.1).

The time-dependent analogue of (2.1)–(2.4) is also of interest. In the time-dependent
equilibrium, the unknown functions v and g satisfy the following system of coupled PDEs
(time-dependent mean field game) on (a, ∞) × (z, z̄) × (0, T):

∂tv + 1
2
σ 2(z)∂zzv + μ(z)∂zv + (z + r(t)a)∂av + H(∂av) − ρv = 0, (2.7)

∂tg − 1
2
∂zz(σ 2(z)g) + ∂z(μ(z)g) + ∂a((z + r(t)a)g) + ∂a(∂pH(∂av)g) = 0, (2.8)

∫
g(a, z, t) da dz = 1, g ≥ 0 (2.9)

and
∫

ag(a, z, t) da dz = 0, (2.10)

where the Hamiltonian H is given by (2.5). The density g satisfies the initial condition g(a, z, 0) =
g0(a, z). For the terminal condition for the value function v, we generally take T large and impose
v(a, z, T) = v∞(a, z), where v∞ is the stationary value function, i.e. the solution to the stationary
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problem (2.1)–(2.4).4 The function v also still satisfies the state constraint boundary condition
(2.6) and Neumann boundary conditions at z = z and z = z̄.

(a) Theoretical results
Achdou et al. [21] have analysed some theoretical properties of both the time-varying and
stationary problems. We here briefly review the (rather incomplete) theoretical knowledge of
these problems, followed by a list of open questions regarding in particular the well-posedness
of the problems. Achdou et al. [21] first analyse the stationary problem (2.1)–(2.4) under the
additional assumption that the state constraint satisfies a>−z/r. They show that under this
assumption the state constraint (2.6) binds for low enough income z, that is, the borrowing
constraint is ‘tight’. Intuitively, individuals with low income z would like to borrow but cannot if
their wealth is already at a. Of particular interest is the stationary saving policy function

s(a, z) = z + ra + ∂pH(∂av(a, z)),

that is the optimally chosen drift of wealth a, and the behaviour of the implied stationary
distribution g. Importantly, one can show that the expansion of the function s around a satisfies
the following property: there exists z∗ with z< z∗ < z̄ such that

s(a, z) ∼ −s̄z
√

a − a, s̄z > 0, z ≤ z ≤ z∗, (2.11)

meaning that in particular the derivative ∂as becomes unbounded when we let a go to a. It then
follows from this property that the stationary distribution g is unbounded and has a Dirac mass
at a = a for z ≤ z∗. The existence of a Dirac mass in the stationary version of (2.7)–(2.10) of course
complicates the mathematics substantially. At the same time, it is also one of the economically
most interesting predictions of the model. What fraction of individuals in an economy such as
that of the USA are borrowing constrained and how we would expect this to change when various
features of the environment (say the stochastic process for z) change is an important question with
wide-reaching policy implications. That interesting economics and challenging mathematics go
hand in hand is one of the main themes of this paper.

Achdou et al. [21] prove the existence of a solution to (2.1)–(2.4), i.e. of a stationary equilibrium.
The key step in the proof is to analyse solutions v and g to (2.1)–(2.3) for given r and to show that the
corresponding first moment of g, m(r) = ∫

ag(a, z) da dz, goes to a as r → −∞ and that it becomes
unbounded as we take r to ρ−. It follows from this that there exists an r such that (2.4) holds.
Currently, open theoretical questions are

1. Uniqueness of a solution to (2.1)–(2.4), i.e. of a stationary equilibrium.
2. Existence of a solution to (2.7)–(2.10), i.e. of a time-dependent equilibrium.
3. Uniqueness of a solution to (2.7)–(2.10), i.e. of a time-dependent equilibrium.

The main difficulty in the first question, uniqueness of a stationary solution, lies in showing that
(or finding conditions under which) the first moment of g, m(r), is monotone as a function of
r. It should also be noted that non-uniqueness is a very real possibility in many equilibrium
models arising in economics, and that a better understanding of the conditions under which
non-uniqueness can arise is equally interesting to economists as proving uniqueness.

(b) Numerical methods
Achdou et al. [21] have also developed numerical methods for solving both the stationary
and time-dependent problems, based on Achdou & Capuzzo-Dolcetta [29] and Achdou [30].
Figure 1 plots the optimal stationary saving policy function s and the implied distribution

4In principle, the stationary mean-field game (2.1)–(2.4) may not have a unique solution, and hence v∞ may not be uniquely
defined. As we discuss in more detail below, we have not found any examples of such non-uniqueness in our numerical
simulations.
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Figure 1. Numerical solution to stationary equilibrium (2.7)–(2.10). (a) Saving as function of income and wealth.
(b) Distribution of income and wealth. (Online version in colour.)

g. These are computed under the assumption that u in (2.5) is given by u(c) = c1−γ /(1 − γ )
with γ = 2. In figure 1, one can see that s satisfies (2.11) and g has a Dirac mass for low
z (the numerical method computes discretized versions of the equations, so the Dirac mass
corresponds to a finite density). Time-dependent solutions can be computed in a similar
fashion and the evolution of the distribution over time can be visualized as ‘movies’ (e.g.
http://www.princeton.edu/∼moll/aiyagari.mov).

An interesting exercise is to ‘calibrate’ this model and to compare the resulting distribution
of wealth illustrated in figure 1 with that in empirical data for developed countries. In the
data, wealth is extremely unequally distributed. For example, in the USA, the top 1% richest
individuals own around 35% of aggregate wealth [31,32]. In contrast, it turns out that the degree
of wealth inequality generated by this model is substantially smaller than the one observed
in the data. This observation was first made by Aiyagari [2]. This has motivated the study of
richer models of individual heterogeneity and wealth accumulation. Examples include models in
which individuals have access to different returns to their savings [31,33], for instance because
they run private enterprises in a world with imperfect capital markets [34–36], and models in
which individuals have different preferences for current and future consumption [37]. A close
interplay between numerical solutions of calibrated models and data is a central theme in the
macroeconomic literature reviewed in this paper (and which we do not discuss in more detail
due to space limitations).

3. Models of power laws
One of the most ubiquitous regularities in empirical work in economics and finance is that the
empirical distribution of many variables can well be approximated by a power law. Examples
are the distributions of income and wealth, of the size of cities and firms, stock market returns,
trading volume and executive pay. See Gabaix [38], who reviewed the theoretical and empirical
literature on power laws.

Gabaix [39] has proposed a simple explanation of power law phenomena that naturally leads
to PDEs: many variables follow geometric Brownian motions, combined with a ‘small friction’
such as a minimum size in the form of a reflecting barrier or small ‘death shocks’. The following
material is based on Gabaix [38]. Consider a stochastic process

dzt

zt
= μ̄dt + σ̄ dWt, (3.1)

where μ̄ < 0 and σ̄ > 0 are scalars. For sake of concreteness, consider the case where z represents
the size or productivity of a firm, and we are interested in the firm size distribution. But of course
z could be city size or any other variable as well. Further assume that there is a minimum firm
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size zmin in the form of a reflecting barrier (other mechanisms are possible as well and we explore
some below). The stationary firm size distribution f satisfies the Fokker–Planck equation

1
2∂zz(σ̄ 2z2f ) − ∂z(μ̄zf ) = 0 (3.2)

and ∫
f (z) dz = 1, f ≥ 0, (3.3)

on (zmin, ∞), with boundary condition

1
2∂z(σ̄ 2z2f ) − μ̄zf = 0, z = zmin.

It is easy to see that the solution to (3.2) is

f (z) = ζzζminz−ζ−1, ζ = 1 − 2μ̄
σ̄ 2 , (3.4)

that is, a power law with exponent ζ > 1. This basic idea can be generalized in a number of
ways and applied in a number of different contexts and we here review some of these other
applications.

(a) Entry, exit and firm size distribution
An important paper by Luttmer [40] has applied the same logic to the question why the size
distribution of firms follows a power law. We here review a simplified version of Luttmer’s model.
The problem also corresponds to a continuous time formulation of that originally studied by
Hopenhayn [4]. Each firm has a profit function π (z, m[f ]) which is strictly increasing in its own
productivity z, and strictly decreasing in a geometric average of all other firms’ productivities5

m[f ] =
(∫

zθ f (z) dz
)1/θ

, θ > 0.

The value of a firm is the present discounted value of profits, discounted at rate ρ. Firms’
productivity and hence profits evolve according to the stochastic process dzt =μ(zt) dt +
σ (zt) dWt which we later specialize to (3.1), following Luttmer [40]. Firms have only one choice:
whether to remain active or whether to exit the industry. If a firm exits the industry, it obtains
a scrap value ψ , but it can never re-enter the industry. When firms exit, they mechanically get
replaced by a group of entrants of equal mass whose initial productivity is given by some finite
and positive z0.

Firms therefore solve a stopping time problem

v(z0) = max
τ

E0

[∫ τ
0

e−ρtπ (zt, m[f ])
]

dt + e−ρτψ ,

dzt =μ(zt) dt + σ (zt) dWt.

5This dependence is motivated as follows. Firms face demand functions (p(z)/P)−γ , γ > 1 where p(z) is the price of firm z and
P is a ‘price index’ P = (

∫
p(z)1−γ f (z) dz)1/(1−γ ). This specification of the demand function is standard in economics (so-called

isoelastic demand obtained from Spence–Dixit–Stiglitz preferences). Each firm’s profit function is given by

π = max
p

p
( p

P

)−γ
− 1

z

( p
P

)−γ
= (p̄ − 1)zγ−1p̄−γ Pγ , p̄ = γ

γ − 1

and the optimal price is p(z) = p̄/z, so that P = p̄(
∫

zγ−1f (z) dz)1/(1−γ ) and hence π(z, m[f ]) = (p̄ − 1)zγ−1(m[f ])−γ with θ = γ − 1.
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The value function v(z) can be characterized by a variational inequality of the obstacle type [24,41].
As before the density of firms f satisfies a Fokker–Planck equation. In the stationary version of
this problem, the unknown functions v and f satisfy

min
{
ρv − 1

2
σ 2(z)∂zzv − μ(z)∂zv − π (z, m[f ]), v − ψ

}
= 0, (3.5)

1
2
∂zz(σ 2(z)f ) − ∂z(μ(z)f ) = 0, (3.6)

∫
f (z) dz = 1, f ≥ 0 (3.7)

and m[f ] =
(∫

zθ f (z) dz
)1/θ

(3.8)

on R
+.6 The variational inequality (3.5) now determines an endogenous threshold zmin at which

firms exit. Because firms exit immediately when their productivity reaches zmin, f satisfies
the boundary condition f (zmin) = 0. Luttmer [40] shows that under the assumption that μ(z) =
μ̄z, σ (z) = σz with μ̄ < 0 and σ̄ > 0 (i.e. zt follows (3.1)) and some other appropriately chosen
assumption (e.g. that π is a power function with appropriately chosen exponents), the system
can be solved explicitly. He further shows that, for z> z0, the stationary distribution satisfies
f (z) = cz−ζ−1 for some constant c> 0 and with ζ given by the same formula as in (3.4). The model
of firm dynamics considered here therefore generates the empirical regularity that the right tail of
the firm size distribution follows a power law.

While the case in which zt follows a geometric Brownian motion (3.1) is very well understood, a
natural question is what the exit decision and the firm size distribution look like for more general
stochastic processes and perhaps also more general interdependencies between firms m[f ]. For
this more general set-up, open questions are

1. Existence and uniqueness of a stationary equilibrium, i.e. solutions to (3.5)–(3.8).
2. Existence and uniqueness of the time-dependent counterpart.
3. Development of numerical methods for solving both stationary and time-dependent

equilibria.

Stokey [42] discusses other examples of stopping time problems in economics, many of them
describing richer versions of the model of firm dynamics introduced in this section. This includes
the problem of firms that set their price subjected to an adjustment cost. These models are
important in macroeconomics, because the existence of frictions to the adjustment of prices is
the main motivation for the use of monetary policy to stabilize business cycle fluctuations. Recent
examples are given by Golosov & Lucas [43] and Alvarez & Lippi [44].

(b) Other applications of theories of power laws
The ideas presented in the preceding two sections have been used to understand the emergence of
power laws in a number of different contexts. For example, Benhabib et al. [31] and in particular
Benhabib et al. [33] develop models of the wealth distribution whose mathematical structure is
quite similar to the one presented here. Similarly, Jones [45] applies the same insights into the
question why the top of the income distribution (the infamous ‘one percent’) can be well described
by a power law.

6Equation (3.5) can also be written somewhat more intuitively as

0 =
{
ρv − 1

2 σ
2(z)∂zzv − μ(z)∂zv − π(z, m[f ]), v − ψ ≥ 0

v − ψ , ρv − 1
2 σ

2(z)∂zzv − μ(z)∂zv − π(z, m[f ]) ≥ 0.
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4. Knowledge diffusion and growth
We now present some models of knowledge diffusion that have recently been used in
macroeconomics, international trade and finance. These differ from the classic mean field games
presented in §§2 and 3 in that the law of motion of the distribution no longer takes the form of
a Fokker–Planck equation describing a local diffusion process. Instead, this law of motion takes
the form of equations describing richer more ‘non-local’ dynamics, for example Fisher–KPP- or
Bolztmann-type equations. They also differ in that the long-run behaviour of the systems they
describe is not stationary. Instead, these models are designed to feature sustained growth. As
such they can be used to try to answer some of the most important questions in economics, for
example: what generates long-run growth? What is the relation between growth and inequality?
In §4a, we first present some problems that are purely ‘mechanical’ in the sense that they do not
feature an optimal control problem. We then add such a control problem in §4b.

(a) Diffusion and experimentation as an engine of growth
The following is based on Alvarez et al. [46], Lucas [47] and in particular Luttmer [48]. Consider an
economy populated by a continuum of individuals indexed by their productivity or knowledge
z ∈ R

+. The economy is described by its distribution of knowledge with cdf G(z, t). The evolution
of G is modelled as a process of individuals meeting others from the same economy, comparing
ideas, improving their own productivity. Meetings happen at Poisson intensity α, and from the
point of view of an individual, a meeting is simply a random draw from the distribution G. When
a meeting occurs, a person z compares his or her productivity with the person he or she meets and
leaves the meeting with the best of the two productivities max{z, z′}. Individual productivities also
fluctuate in the absence of a meeting. In particular individuals ‘experiment’ and their productivity
may either increase or decrease according to the process d log zt = σ dWt, σ > 0. Given this
structure, it is convenient to work with x = log z and the corresponding distribution F, and one
can show that this distribution satisfies

∂tF − σ 2

2
∂xxF = −αF(1 − F), (4.1)

on R × R
+, and with boundary conditions

lim
x→−∞ F(x, t) = 0, lim

x→∞ F(x, t) = 1, F(x, 0) = F0(x), (4.2)

where F0(x) is the initial productivity distribution. As Luttmer [48] points out, this is a Fisher–
KPP-type equation [49,50] whose theoretical properties are well understood [51]. In particular,
one can show that (4.1) admits ‘travelling wave’ solutions, i.e. solutions of the form

F(x, t) =Φ(x − γ t). (4.3)

One can further show that if the initial distribution is a Dirac point mass, the limiting distribution
is a travelling wave with γ = σ

√
2α. If the distribution F is a travelling wave (4.3), productivity

z = ex is on average growing at the constant rate γ and hence one can say that the economy is on a
‘balanced growth path’ with growth rate γ . The interpretation of the formula for the growth rate
γ = σ

√
2α is also very natural: it says that it is the combination of ‘experimentation’ parametrized

by σ and ‘diffusion’ parametrized by α that is the engine of growth in this economy. Either force
in isolation would lead to stagnation, but the two together create sustained growth. Similarly,
applying some results from the literature studying (4.1), Luttmer [48] shows that the distribution
Φ on this balanced growth path satisfies (1 −Φ(x))/e−ζx → c as x → ∞ with ζ = √

2α/σ meaning
that the distribution of z = ex follows an asymptotic power law with parameter ζ with a low ζ
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indicating a fat tail, i.e. a high degree of inequality. Summarizing, on a balanced growth path,
the model generates the following predictions for the growth rate and inequality in the tail of the
income distribution:

growth = γ = σ
√

2α, inequality = 1
ζ

= σ√
2α

. (4.4)

The theory presented in this section therefore has some non-trivial implications for one of the
big questions raised in the introduction of this paper: is there a trade-off between inequality and
growth? In particular, varying the parameter σ which parametrizes the degree of uncertainty
at the individual level, one can see that there is indeed such a trade-off: a rise in σ leads not
only to higher growth, but also higher inequality. Interestingly, however, the same is not true for
variations in the parameter α measuring how much knowledge diffusion takes place: a rise in
α leads to both higher growth and lower inequality. Now, to make things more interesting, the
reader should imagine an extension of the model presented here where α and σ are outcomes
of choices and/or can be affected by economic policy. We pursue one such extension in §4b. In
such an environment, policies that increase the amount of knowledge diffusion α have the twin
benefits of stimulating growth while at the same time reducing inequality.

Economists have studied various versions of the Fisher–KPP equation (4.1). Lucas [47] and
Alvarez et al. [46] study the version of (4.1) with σ = 0:

∂tF = −αF(1 − F), (4.5)

on R × R
+. To generate sustained growth, they assume that the initial distribution satisfies

(1 − F0(x))/e−ζx → c as x → ∞ for some constants c, ζ > 0, meaning that the initial distribution
for z = ex is asymptotically a power law as in (3.4).7 Luttmer [52] studies the equation

∂tF − σ 2

2
∂xxF = −αmin{F, 1 − F}

on R × R
+ which can be solved explicitly.

(b) Knowledge diffusion and search
While the models in the previous section are interesting in that they describe environments in
which there is sustained growth, they are somewhat less interesting than those in §§2 and 3 in
that individuals in the economy did not make any choices, i.e. solve optimal control problems.
Lucas & Moll [20] extend the set-up in the previous section to feature such an optimal choice. In
this extension, one can then ask questions such as: is the equilibrium growth rate of the economy
optimal or should policy makers intervene to boost (or perhaps depress) economic growth?

In Lucas & Moll [20], individuals have one unit of time and they can split it between producing
with the knowledge they already have, or they can search for productivity enhancing ideas.
Search increases the likelihood of meeting other individuals. In particular, the Poisson meeting
rate of an individual who searches a fraction s of their time is α(s) which is strictly increasing
and concave. Conditional on a meeting the knowledge diffusion process is exactly as described
in the previous section. The cost of search is that it interferes with production. In particular, the
output of an individual with productivity z = ex who searches a fraction s of their time is (1 − s)ex.
Individuals maximize the present discounted value of future output

v(x, 0) = max
st∈[0,1]

E0

∫∞

0
e−ρt(1 − st)ext dt

dxt = σ dWt + dJt,

7As shown by Luttmer [48], the travelling wave solution obtained in the case (4.1) with σ > 0 satisfies this property and hence
this is a relatively innocuous assumption.
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where Jt is a Poisson process with intensity α(st) that jumps when individuals learn something
useful. The equilibrium of this economy can be described in terms of a system of two integro-PDEs
for the value function v and the density of the productivity distribution f :

∂tv + σ 2

2
∂xxv + max

s∈[0,1]

{
(1 − s)ex + α(s)

∫∞

x
(v(y, t) − v(x, t))f (y, t) dy

}
− ρv = 0, (4.6)

∂tf − σ 2

2
∂xxf + α(s∗(x, t))f (x, t)

∫∞

x
f (y, t) dy − f (x, t)

∫ x

−∞
α(s∗(y, t))f (y, t) dy = 0 (4.7)

and
∫

f (z, t) dz = 1, f ≥ 0, (4.8)

on R × R
+ and where s∗ is the maximand of (4.6). There is also an initial condition f (x, 0) = f0(x). It

can be seen that (4.1) is the special case of (4.7) in which the optimal control s∗ and hence also α are
constant across x-types, and written in terms of the cdf F(x, t) = ∫x

0 f (x, t) dx. However, in general,
it will not be true that s∗ is constant for all x. Instead, s∗ is usually decreasing in x. Lucas & Moll
[20] study the special case of (4.6)–(4.8) with σ = 0. They show that the system admits solutions
of the travelling wave type, that is

v(x, t) = w(x − γ t), f (x, t) = φ(x − γ t),

and they develop numerical methods for computing such solutions numerically, and in particular
to find the growth rate γ of the system. However, there remain many open questions, among
which are

1. Existence and uniqueness of a solution to (4.6)–(4.8).
2. Asymptotic behaviour of f for different initial conditions f0, in particular the one where f0

is a Dirac point mass. Does the solution converge to a travelling wave f (x, t) = φ(x − γ t)?
If so, what does this limiting distribution look like? And what is the growth rate γ and
the degree of inequality?

3. Development of numerical methods for solving the time-dependent problem (4.6)–(4.8).

Regarding the second question, a natural conjecture would be that the limiting distribution is a
travelling wave with growth rate and tail inequality

γ = σ

√
2

∫∞

−∞
α(s∗(x))φ(x) dx,

1
ζ

= σ

(√
2

∫∞

−∞
α(s∗(x))φ(x) dx

)−1

.

These are the natural generalizations of the formulae (4.4) in §4a to the case where s∗ varies across
productivity types. If this conjecture turns out to be correct, one prediction of the model would
be that policies that increase s∗ for part of the population have the benefit of simultaneously
stimulating growth and reducing inequality.

Ideas similar to those presented in this section in the context of search and knowledge diffusion
have been applied to different contexts. For example, Duffie et al. [53] and Lagos & Rocheteau
[54] and others use search theory to model the trading frictions that are characteristic of over-the-
counter markets, and to examine the effects of these frictions on asset prices and trading volumes.
A mathematical analysis of a similar model is provided by Gomes & Ribeiro [55].

(c) Diffusion and international trade
An alternative route to enrich the model of knowledge diffusion is to consider explicit
mechanisms mediating the interactions among individuals. One possible avenue is explored
by Alvarez et al. [56], who consider a multi-country model in which knowledge is transmitted
through the interaction with the sellers of goods to a country. In their theory, barriers to
trade affect the composition of sellers to a country, and therefore they impact the diffusion of
knowledge. The higher the trade costs are, the more likely it is that sellers in a country are given
by relatively inefficient local producers.
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The central object in their theory is the distribution of productivities across potential producers
of different goods G(z, t), denoting the fraction of goods that can be produced with productivity
less than z. Similar to the previous models, an individual producer meets other producers at the
constant Poisson rate α. The main difference is that now draws come from the distribution of
sellers, which depends on the distribution of productivities of producers from all countries in
the world, and trade costs 1/κ , κ ∈ [0, 1]. As before, it is convenient to work with x = log(z) and
the corresponding distribution F, and define δ = log(κ). For the case of a world with n symmetric
countries, the evolution of the distribution F(x, t) solves the following non-local Fisher–KPP-type
equation:8

∂tF = −α(1 − M)F (4.9)

on R × R
+ where

M(x, t) =
∫ x

−∞
(F(y − δ, t)n−1 + (n − 1)F(y + δ, t)F(y, t)n−2)∂xF(y, t) dy (4.10)

is the distribution of productivity of sellers to a country. The boundary conditions are given by
(4.2). For κ = 1 (δ = 0) and n = 1, this equation simplifies to the one analysed in §4a, but more
generally only the behaviour of the solution for large x is fully understood. One can show that
this equation admits solutions of the travelling wave type

F(x, t) =Φ(x − γ t), (4.11)

provided that (1 − F0(x))/e−ζx → c as x → ∞ for some constants c, ζ > 0, that is the initial
distribution of productivity z = ex follows an asymptotic power law. It can also be shown that the
growth rate is γ = nα/ζ . That is, in the present model, there are growth benefits from openness to
international trade: the higher is the number of trading partners of a country n, the higher is its
growth rate. This is in contrast to most standard trade models in which trade only confers static
benefits, that is trade typically leads to a higher level of a country’s gross domestic product (GDP)
but not a higher growth rate.

Natural open questions are

1. Existence and uniqueness of a solution to (4.9) and (4.10).
2. Development of numerical methods for computing both stationary and time-dependent

solutions.

Another interesting extension could be the addition of noise in the form of a geometric Brownian
motion to (4.9) along the lines of equation (4.1).

(d) Information percolation in finance
A related class of models arises when studying the distribution of information across individuals
in an economy, e.g. beliefs about the value of a particular financial asset. These models are useful
to understand the dynamics of asset prices and how these are affected when market participants
do not share common beliefs about the ‘intrinsic’ value of a financial asset. A simple example
is provided by Duffie & Manso [58], who consider the beliefs about the realization of a binary
random variable. Individuals are initially endowed with a prior about this realization. Over
time, individuals randomly meet at a constant Poisson rate α. Upon a meeting, individuals
exchange their information and update their beliefs. In their example, they show that beliefs
are characterized by a distribution over a sufficient statistic x, and the updating of beliefs after

8Related equations have been studied by Berestycki et al. [57].
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a meeting with an individual of belief x′ is simply given by the sum of x and x′. The evolution of
the distribution of the sufficient statistic F(x, t) is given by the PDE

∂tf (x, t) = −αf (x, t) + α

∫+∞

−∞
f (y, t)f (x − y, t) dy.

This equation can be solved explicitly using Fourier transforms. A natural extension is to
endogenize the search effort α, similar to §4b. This is pursued in Duffie et al. [59]. Other recent
contributions in this area include Amador & Weill [60] and Golosov et al. [61].

5. Business cycles: models with aggregate shocks
Some of the most important questions in macroeconomics are concerned with business cycle
fluctuations, that is the fluctuations of macroeconomic aggregates like GDP, aggregate investment
and asset prices such as the interest rate. The models presented so far are not well suited
to address these questions, because all of them featured macroeconomic aggregates that are
deterministic. Instead, we want theories in which these aggregates are stochastic. Denhaan [62,63]
and Krusell & Smith [37] have extended theories with heterogeneity at the individual level to
feature aggregate risk. We here present a continuous time formulation from Achdou et al. [64].

To introduce these ideas in the simplest possible way, consider the model of §2 but assume that
income is ztAt, where zt is an idiosyncratic income process as before but now income also has an
aggregate component At. That is, if At falls by 10%, it means that the income of everyone in the
economy falls by 10%. For the sake of simplicity, assume that At ∈ {A1, A2} is a two-state Poisson
process. The process jumps from state 1 to state 2 with intensity φ1 and vice versa with intensity
φ2. The introduction of aggregate shocks creates a major difficulty: in contrast to the case without
aggregate uncertainty studied in §2, it becomes necessary to include the entire distribution of
income and wealth g as a state variable in the optimal control problem of individuals. This
distribution is now itself a random variable and hence calendar time t is no longer a sufficient
statistic to describe the behaviour of the system.

The aggregate state is (Ai, g), i = 1, 2 and the individual state is (a, z), so that the value function
of an individual is vi(a, z, g). This value function satisfies the equation

0 = 1
2
σ 2(z)∂zzvi + μ(z)∂zvi + (Aiz + ri(g)a)∂avi

+ φi(vj − vi) +
∫

T[g, ∂avi](a, z)
δvi

δg(a, z)
da dz

+ H(∂avi) − ρvi (5.1)

and
T[g, ∂avi] = 1

2∂zz(σ 2(z)g) − ∂z(μ(z)g) − ∂a((zAi + ra)g) − ∂a(∂pH(∂avi)g) (5.2)

for i = 1, 2, j �= i. The domain of this equation is (a, ∞) × (z, z̄) × S, where S is the space of density
functions. The Hamiltonian H is defined in (2.5), and there is again a state constraint at a = a.
δvi/δg(a, z) denotes the functional derivative of Vi with respect to g at point (a, z) and T defined
in (5.2) is the ‘Fokker–Planck’ operator that maps functions g and ∂avi to the time derivative of g.
Note that (5.1) is not an ordinary HJB equation because of the presence of g in the state space. The
difficulty, of course, is that g is an infinite-dimensional object.

If the functions vi(a, z, g) were known, the value function corresponding to a given path (At)
would then be found by solving a Fokker–Planck equation for gt and plugging gt into the
functions vi. However, (5.1) is a PDE with a variable lying in an infinite dimensional space.
Therefore, its numerical approximation is very difficult.

For this reason, instead of using the infinite-dimensional Bellman equation (5.1) coupled with
a stochastic Fokker–Planck equation, Achdou et al. [64] consider a situation in which aggregate
shocks occur only finitely many times and at finite time intervals of length �, that is at times
τn = n�, n = 1, . . . , N, N = 1/�. There is therefore only a finite (but possibly large) number of
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paths (vt, gt). For each path, (vt, gt) solve a system of forward–backward PDEs between the
aggregate shocks and satisfy suitable transmission conditions at the shocks. It is crucial that the
variables of the PDEs are (t, a, z), therefore lie in a finite dimensional space. Hence, a situation with,
for example, 10 shocks leads to 210 = 1024 paths and can be simulated numerically. The hope is
that the model with a finite number of shocks approximates the model when At is a two-state
Poisson process, as �→ 0.

To see why economists find it useful to have a model like the present one that generates
predictions about the consumption and saving behaviour of individuals over the business cycle
and at different points in the wealth distribution, let us come back to one of the questions raised in
the introduction: what should be done if the economy is hit by a recession? A policy that is often
advocated is fiscal stimulus, that is a one-time transfer from government to households with the
aim of increasing their disposable income (in practice, this is achieved, for example, by sending
households tax rebate cheques). The crucial question is usually whether such fiscal stimulus
will be effective and in particular whether households will actually increase their spending. The
critical object one would like to know is the marginal propensity to consume (MPC) out of income
which, in the model, is MPCi(a, z, g) = ∂zci(a, z, g), where ci = −∂pH(∂avi) is optimal consumption.
This object answers the question: if a household receives an unexpected increase in income z,
what fraction of it will it consume and what fraction will it save? Again, the presence of the
state constraint is important here. For the same reasons discussed in §2, individuals with wealth
equal to a and low enough income z will have ci(a, z, g) = zAi + ra, i.e. they consume their entire
income rather than saving it, and hence have a high MPC. However, similar to the model in
§2, it turns out that calibrated versions of the model do not generate high enough average MPCs
when compared with the data, mainly because not enough individuals are borrowing constrained
for reasonable parameter values. This has motivated the development of alternative models,
for example models with more than one asset (e.g. Kaplan & Violante [65], who argue for the
importance of distinguishing between liquid and illiquid assets).

Models with aggregate shocks such as (5.1) are by far the most challenging in terms of the
mathematics, and many open questions remain. Among these are

1. Existence and uniqueness of solutions to (5.1).
2. A theoretical understanding of the behaviour of g. For example, given a stationary process

for At (such as the two-state Poisson process), does there exist a ‘stationary equilibrium’
for g? Similarly, are there certain regions of the space of density functions S in which g
lives ‘most of the time’?

3. Development of efficient and robust approximation schemes to (5.1) and results regarding
their convergence.

Regarding the first question, it should again be noted that non-uniqueness is quite possible and
understanding non-uniqueness is equally interesting to economists as proving uniqueness. One
approach to obtaining more tractable formulations of models with aggregate shocks has been to
simplify the heterogeneity at the individual level. For example, Brunnermeier & Sannikov [66],
He & Krishnamurthy [67,68], Adrian & Boyarchenko [69] and Di Tella [70] all study business
cycles in models of financial intermediation with frictions and argue that these frictions give rise
to interesting nonlinear behaviour of macroeconomic aggregates. For example, GDP may have a
bimodal stationary distribution even if the driving stochastic process is unimodal. These papers
all make the assumption that there are only two (or three) types of agents, so that the wealth
distribution can be summarized by the share of wealth of one of the two types. The big advantage
of these two approaches is that this is a one-dimensional rather than an infinite-dimensional
object. Related, business cycle fluctuations can also be generated from theories without aggregate
shocks. An important early paper by Scheinkman & Weiss [71] demonstrates that in a model with
only a finite number of agents (two in their framework) idiosyncratic shocks (in combination with
missing insurance markets) can lead to aggregate fluctuations. See Conze et al. [72] and Lippi
et al. [73] for other applications of their framework. These authors again make assumptions that
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avoid dealing with an infinite-dimensional problem. However, for many interesting economic
questions, it may be necessary to consider richer forms of heterogeneity. Our hope is therefore
that some progress can be made on infinite dimensional problems such as (5.1).

6. Models with finite number of agents
In this paper, we have mostly focused on models with a continuum of individuals (mean
field games). While these frameworks are useful to study a very large class of macroeconomic
phenomena, their applicability to other important macro questions is limited. In some industries,
production is concentrated in a very small number of producers, who act strategically when
making their production, innovation and pricing decisions. The strategic nature of their decision
could have important aggregate implications. For example, Atkeson & Burstein [74] consider a
model with a continuum of sectors and a finite number of firms in each sector to explain why there
are large and systematic deviations of the law of one price across countries. Aghion et al. [75] study
a model of innovation in duopolist industries to analyse the relationship between competition
and innovation.

In this section, we introduce a continuous time version of the canonical model of firm
dynamics in an oligopolistic industry introduced by Ericson & Pakes [76], and recently studied by
Weintraub et al. [77] and Doraszelski & Judd [78], among many others. We show that this model
takes the form of a differential game.

There are two firms i = 1, 2 that compete with each other. Firm i has profits π (zi, qi, qj), where
j �= i. Profits π are increasing in productivity zi and own quantity qj, but decreasing in the quantity
of the other firm qj. The quantity choice also affects the evolution of the firm’s productivity which
evolves as dzit =μ(zit, qit) dt + σ (zit) dWit. We assume that there is ‘learning-by-doing’, so that
μ is increasing in qit (of course, other assumptions also are possible). We assume that the two
firms play a Nash equilibrium, that is their choices of qit are best responses to each other. Given
the symmetry of the problem, we look for a symmetric Nash equilibrium. To this end denote by
z a firm’s own productivity and by x the productivity of the other firm. In a symmetric Nash
equilibrium, the value function v(z, x) of a firm satisfies

σ 2(z)
2

∂zzv + σ 2(x)
2

∂xxv + μ(x, q∗(x, z, ∂xv, ∂zv))∂xv + H(z, x, ∂zv, ∂xv) − ρv = 0 (6.1)

on R
+ × R

+, and where the Hamiltonians H and optimal choice q∗ jointly satisfy

H(z, x, pz, px) = max
q

(π (z, q, q∗(x, z, px, pz)) + μ(z, q)pz)

q∗(z, x, pz, px) = arg max
q

(π (z, q, q∗(x, z, px, pz)) + μ(z, q)pz).

There are many possible extensions of this simple framework. Naturally, the model can be
generalized to n> 2. One can also consider versions of the model with entry and exit of firms,
along the lines of the analysis in §3a. One way to model this process is to consider a maximum
number of potential firms n̄. In this case, the relevant ‘aggregate’ state is given by the vector of
characteristics of all the active and potential firms, for example, their respective z. An alternative
route, which is the one that is typically followed in the literature, is to assume that the state
describing an individual firm takes only a finite set of values. In this case, one can describe the
aggregate state with the distribution of firms over these (finite) characteristics. The first route
leads naturally to PDE methods. We are not aware of a general characterization of these problems.
As in the previous examples, the open questions are

1. Existence and uniqueness of a solution to (6.1).
2. Development of numerical methods for computing both stationary and time-dependent

solutions when the state variable is continuous.
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7. Conclusion
We have surveyed a large literature in macroeconomics that studies theories that explicitly
model the equilibrium interaction of heterogeneous agents. These theories share a common
mathematical structure which can be summarize by a system of coupled nonlinear PDEs or mean
field game. Some of our examples are well-understood problems in the theory of PDEs, whereas
others present new and challenging mathematical problems. The development of numerical
methods for actually solving these in practice is equally important. We view this to be a very
promising area for future research, or, as economists like to say, we see large ‘gains from trade’
between macroeconomists and mathematicians working on PDEs.
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