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Abstract
Matrix reasoning tasks are among the most widely used measures of cognitive ability in the behavioral sciences, but the
lack of matrix reasoning tests in the public domain complicates their use. Here, we present an extensive investigation and
psychometric validation of the matrix reasoning item bank (MaRs-IB), an open-access set of matrix reasoning items. In a
first study, we calibrate the psychometric functioning of the items in the MaRs-IB in a large sample of adult participants (N
= 1501). Using additive multilevel item structure models, we establish that the MaRs-IB has many desirable psychometric
properties: its items span a wide range of difficulty, possess medium-to-large levels of discrimination, and exhibit robust
associations between item complexity and difficulty. However, we also find that item clones are not always psychometrically
equivalent and cannot be assumed to be exchangeable. In a second study, we demonstrate how experimenters can use the
estimated item parameters to design new matrix reasoning tests using optimal item assembly. Specifically, we design and
validate two new sets of test forms in an independent sample of adults (N = 600). We find these new tests possess good
reliability and convergent validity with an established measure of matrix reasoning. We hope that the materials and results
made available here will encourage experimenters to use the MaRs-IB in their research.

Keywords Item response theory · Matrix reasoning · Progressive matrices · Speed-accuracy trade-off

Introduction

Matrix reasoning tasks are among the most widely
used measures of cognitive ability in the behavioral
sciences. Much of their popularity undoubtedly reflects their
versatility of use. Matrix reasoning tasks are strong (albeit
impure) indicators of general intelligence (Gignac, 2015)
and working memory capacity (Kane et al., 2004; Unsworth
& Engle, 2005). They are predictive of important real-world
outcomes such as childhood academic achievement (Roth
et al., 2015) and performance on college entrance exams
(Frey & Detterman, 2004; Koenig, Frey, & Detterman,
2008). In low-stakes testing settings (i.e., where participants
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incur little or no cost for poor performance), matrix
reasoning tasks can additionally function as measures of
motivation, willingness to expend mental effort, and other
facets of personality (Duckworth, Quinn, Lynam, Loeber, &
Stouthamer-Loeber, 2011; Gignac, Bartulovich, & Salleo,
2019). In studies of psychiatric populations, performance
on matrix reasoning tasks have also been used to control
for general disruptions to cognitive ability when specific
domains of cognition are of primary interest (Gillan,
Kosinski, Whelan, Phelps, & Daw, 2016; Rouault, Seow,
Gillan, & Fleming, 2018; Moutoussis et al., 2021).

Unfortunately, there are a number of obstacles to using
matrix reasoning tasks as part of behavioral research. One
challenge is the problem of copyright. Many of the most
prominent matrix reasoning tasks, such as the WAIS and
WASI matrix reasoning subtests (Wechsler, 1999; 2008),
are not free to use and have legal restrictions against
digitization. A second challenge is that across all of the
matrix reasoning tests in the public domain, there are
relatively few unique items available. The Hagen matrices
test (Heydasch, 2014) and ICAR matrix reasoning test
(Condon & Revelle, 2014), for example, have only 20 and
16 items, respectively. The availability of only a limited
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number of items raises the possibility of repeat exposure
effects, which threaten the validity of these measures (Ng,
1974; Bors & Vigneau, 2003). This problem is exacerbated
in the current era of online experiments, where multiple
groups of researchers may be inadvertently administering
the same test to the same participants recruited from the
same online labor platforms.

Noting these challenges, Knoll, Fuhrmann, Sakhardande,
Stamp, Speekenbrink & Blakemore (2016) / Chierchia,
Fuhrmann, Knoll, Pi-Sunyer, Sakhardande & Blakemore,
(2019) developed and made publicly available the matrix
reasoning item bank (MaRs-IB), a collection of 80 matrix
reasoning puzzles. Each puzzle in the MaRs-IB consists
of a 3x3 matrix containing geometric shapes in eight out
of nine cells (Fig. 1). Across cells, some or all of these
shapes change according to a number of abstract rules.
Based on these patterns, participants must deduce which

of four response options correctly completes the matrix.
The puzzles in the MaRs-IB vary in their complexity, both
in the number of elements per cell and number of rules
determining the relations of these elements across cells
(Fig. 1a, b). Further increasing the reusability of the MaRs-
IB, each puzzle (hereafter referred to as an item template)
has six clones. An item’s clones are equally complex (i.e.,
possess the same number of elements and rules) but may
vary in their distractors (two unique sets per template) or
perceptual features (three unique shape sets per template;
Fig. 1c, d). Thus, the MaRs-IB addresses the copyright and
limited reuse issues associated with other matrix reasoning
tests.

Chierchia et al. (2019) conducted an initial study of
the psychometric properties of the MaRs-IB in which a
sample of 659 adult, adolescent, and child participants
had 8 min to complete as many MaRs-IB items as

Fig. 1 Example items from the MaRs-IB. (A) A simple item containing one element per cell and two rules (i.e., a change of shape and position).
(B) A harder item containing three elements and six rules (i.e., three position changes, two color changes, one shape change). (C)/(D) Alternate
versions of Items A and B, respectively, matched on complexity (i.e., number of elements and rules). In all panels, the first option is the correct
response
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possible. Of note, items were presented in the same order
to all participants. The authors found that measures of
performance on this task had good split-half and test–retest
reliability. Moreover, they found that participants’ ability
to solve MaRs-IB puzzles was moderately predictive of
their performance on a working memory task and the ICAR
matrix reasoning test, indicating satisfactory convergent
validity. At the conclusion of this study, Chierchia et al.
(2019) made publicly available a summary of the difficulty
(i.e., proportion correct responses) of every item template
and clone in the MaRs-IB so that other researchers could
construct their own test measures of custom difficulty and
duration.

Two important limitations of the experiment conducted
by Chierchia et al. (2019) undermine the utility of these
summary statistics and, consequently, impede the design
of new matrix reasoning tests using the MaRs-IB. The
first is that, given the fixed-order experiment design, there
were relatively few responses collected for the majority
of the items. Indeed, only 42 of 80 item templates were
completed by 100 or more participants. As such, one cannot
be confident about the true difficulty of a majority of
the items (an issue that is exacerbated when considering
that each item template has six clones). A second issue is
participants were able to choose for themselves whether
to prioritize accuracy (number of correct responses) or
productivity (number of items reached). As a consequence,
response data for items that came later in the fixed-
order task are increasingly likely to have been produced
by participants sacrificing accuracy for speed, thereby
biasing the proportion correct measure for these items (see
the Supplementary Materials for evidence of this effect).
Therefore, additional investigation of the functioning and
psychometric properties of the MaRs-IB is warranted.

Here, we provide a more extensive study and psychome-
tric validation of the MaRs-IB. The most important contri-
bution of the current work is the characterization of (almost)
every item in the MaRs-IB using item response theory (IRT;
Embretson & Reise, 2013; De Ayala, 2013). IRT models
confer several important advantages for the purposes of psy-
chometric validation. First, they provide an estimate of the
difficulty and discrimination of each item, where the latter is
an index of the reliability of an item. Using these quantities,
IRT models in turn allow experimenters to compute the test
information function (TIF), which quantifies the reliability
of a test for measuring performance given a level of ability.
Finally, IRT models make possible optimal test assembly
(Van der Linden, 1998), or the design of new tests with max-
imal reliability given researcher-specified constraints (e.g.,
test duration or difficulty).

A second contribution provided here is an analysis of
how item properties shape the psychometric functioning
(i.e., difficulty, discrimination) of items in the MaRs-IB.

Using explanatory item response modeling (De Boeck &
Wilson, 2004; Wilson, De Boeck, & Carstensen, 2008),
we specifically investigate how item complexity, i.e., the
number of elements and number of rules, determine item
functioning. We studied these two item attributes because
they have been previously identified as among the strongest
predictors of item difficulty in matrix reasoning tasks
(Embretson, 1998; Primi, 2001). This explanatory analysis
provides another means by which to validate the design of
the MaRs-IB; that is, to determine whether the MaRs-IB
exhibits the same associations between item properties and
functioning as found in other established matrix reasoning
tests. As a secondary benefit, explanatory IRT models yield
more precise estimates of item parameters (Neuhaus &
McCulloch, 2006), which in turn help to ensure that any new
MaRs-IB tests designed based on those estimates function
as expected.

A third contribution is an investigation of the exchange-
ability of item clones in the MaRs-IB, or if clones are
(approximately) psychometrically equivalent. Establishing
whether the MaRs-IB possesses this property is critical for
the design of new matrix reasoning tasks using these items.
If item clones are exchangeable, then new parallel test forms
of equivalent difficulty and reliability can be generated sim-
ply by substituting an item clone from one shape set for
another. To test for exchangeability, we use additive multi-
level item structure (AMIS) models (Geerlings, Glas, & Van
Der Linden, 2011; Cho, De Boeck, Embretson, & Rabe-
Hesketh, 2014; Lathrop & Cheng, 2017). These models
enable us to quantify the variability in item difficulty and
discrimination across clones, by distractor type and shape
set, which must be negligible if clones are to be treated as
exchangeable.

The remainder of the paper proceeds as follows. First,
we report a calibration study in which a large sample of
adult participants completed a number of items from the
MaRs-IB. Using their response data, we fitted a series of
multilevel item structure models in order to estimate item
parameters for each item (and their clones). Using these
same models, we also interrogate the relationship between
item attributes and item functioning. We conclude by
reporting a second validation study, in which an independent
sample of participants (N = 600) completed one of five
novel MaRs-IB test forms. These tests—designed using
optimal test assembly and the item parameter estimates
from the first study—were found to have good psychometric
properties and convergent validity with an established
measure of matrix reasoning ability. This second study
provides a blueprint for how researchers can construct new
MaRs-IB test measures based on the results of our first
study.

All data, code, model outputs (including the estimated
item parameters), and tutorials are publicly available at:



Behavior Research Methods

https://github.com/ndawlab/mars-irt. The MaRs-IB stimuli
are publicly available at: https://osf.io/g96f4/.

Calibration study

Objectives

The purpose of the first study was to calibrate the
items in the MaRs-IB using response data collected from
a large number of adult participants from the general
population. In particular, we sought to accomplish the
following three aims: (1) to quantify the psychometric
properties (i.e., difficulty, discrimination) of the items
in the MaRs-IB using item response models; (2) to
measure the associations between item complexity and
functioning; and (3) to determine whether item clones
in the MaRs-IB are psychometrically equivalent and
exchangeable.

Methods

Participants

A total of N = 1584 participants were recruited from
the Prolific Academic platform (https://www.prolific.co)
to participate in an online experiment between July
and August, 2021. Participants were eligible if they
were 18 years or older and lived in the United States.
Total study duration was approximately 6.4 min (sd
= 2.4) per participant. Participants received monetary
compensation for their time (rate: $10 USD/hr), plus a
performance-based bonus up to $0.50 USD. On average,
participants earned a total of $1.30 USD (sd = $0.10). We
offered performance bonuses as they have been found to
motivate performance in low-stakes testing environments
(Duckworth et al., 2011; Gignac, 2018). This study was
approved by the Institutional Review Board of Princeton
University (#7392), and all participants provided informed
consent.

To ensure data quality, the data frommultiple participants
were excluded prior to analysis (see Exclusion Criteria
below) leaving the data from N = 1501 participants for
analysis. In these participants, the majority identified as
women (men: N = 670; women: N = 811; non-binary or
other: N = 13; rather not say: N = 2) and the average age
was 28.7 years old (sd = 9.9; range, 18–74). The sample was
relatively well educated with the majority having completed
a bachelor’s degree (N = 507) or master’s degree or higher
(N = 322). Comparatively fewer participants completed only
some college (N = 471), only a high school degree (N =
199), or preferred not to say (N = 2).

Procedure

After providing consent, participants completed 16 items
from the MaRs-IB. The design of the MaRs-IB items have
been described previously (Chierchia et al., 2019). Briefly,
each MaRs-IB item consists of a 3x3 matrix. Eight of the
nine cells contain abstract shapes, while one cell on the
bottom right-hand side of the matrix is empty. Participants
were instructed to “complete the matrix” by identifying the
missing shape from among four possible alternatives.

The presentation of each item was preceded by a fixation
cross, which lasted for 1200 ms. Upon presentation of the
item, participants were given up to 30 s to solve the puzzle.
After 25 s elapsed, a clock appeared to count down the
remaining 5 s. A trial ended when participants responded,
or after 30 s had elapsed without response. Before the trials
began, participants reviewed instructions and were made to
correctly complete three practice items. Participants were
instructed to respond carefully, but to guess if they could
not solve the puzzle before the timer ran out. The format
of the experiment and instructions were adapted from code
publicly released as part of the original study (https://app.
gorilla.sc/openmaterials/36164). The task was programmed
in jsPsych (De Leeuw, 2015) and distributed to participants
via the web using custom software (available at https://
github.com/nivlab/nivturk).

In order to ensure sufficient sampling of every item
template and clone in the MaRs-IB, participants were
administered a pseudorandomly-selected set of 16 out of
64 total items.1 Item sets were constructed as follows: We
subdivided the 64 items into 16 sets of four based on their
dimensionality (a measure of item complexity, defined in
Chierchia et al., 2019). Participants were randomly assigned
one item from each of the 16 sets. As such, all participants
received test forms of roughly equal difficulty.

Importantly we also counterbalanced the assignment
of item clones across participants, such that we had
an approximately uniform number of responses available
for each clone by shape set (1, 2, or 3) and distractor
type (minimal difference, MD, or paired difference, PD).
Distractor type refers to the two strategies used to generate
the distractor response options in the MaRs-IB. The MD
strategy produces distractors that are variations of the target
response. The MD strategy has the advantage of preventing
pop-out effects (where the correct response “pops out”
among the possible responses), but has the disadvantage
of theoretically allowing participants to solve an item by
looking at the response options only. In contrast, the PD

1We did not collect new data for the 16 easiest items in the MaRs-IB
(items 1, 2, 3, 4, 5, 7, 8, 9, 32, 33, 38, 41, 43, 48, 57, 68) because
performance on these items was at or near ceiling.

https://github.com/ndawlab/mars-irt
https://osf.io/g96f4/
https://www.prolific.co
https://app.gorilla.sc/openmaterials/36164
https://app.gorilla.sc/openmaterials/36164
https://github.com/nivlab/nivturk
https://github.com/nivlab/nivturk
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strategy produces distractors that are have at least one
feature in common with the target response. The PD strategy
prevents participants from solving items by looking at the
response options alone, but can potentially induce pop-
out effects. We note that, for complex items with many
elements, it is not possible to prevent both at the same
time.

Exclusion criteria

The data from multiple participants who completed the
experiment were excluded prior to analysis for one or
more of the following reasons: rapid guessing (responding
in less than 3 s)2 on four or more trials (N = 70);
failing to respond on four or more trials (N = 8); or
minimizing the browser window to a dimension smaller
than the minimal requirements (N = 7). In total, 83 of
1584 (5.2%) participants were excluded leaving the data
from N = 1501 participants available for analysis. Across
these participants, each item (64 total) was administered
approximately 375 times (sd = 12) and each item clone
(384 total) was administered approximately 62 times
(sd = 7).

Response time analysis

We investigated the relationship between accuracy and
response time using a mixed effects (random intercepts) lin-
ear regression model. Trial-wise (log-transformed) response
times were predicted as a function of trial accuracy, rest
score (participants’ observed scores on all other items), and
item difficulty (one minus the proportion correct for that
item). The mixed-effects model was estimated using the
statsmodels python package (v0.12.2; Seabold & Perktold,
2010).

Item response models

We employed item response models to characterize the
psychometric properties of each item. Specifically, we
used additive multilevel item structure (AMIS) models
(Geerlings et al., 2011; Cho et al., 2014; Lathrop & Cheng,
2017). In AMIS models, item parameters are defined
according to a hierarchical structure in which item clones
are nested in item templates. The foundation of all the
models used here is the three-parameter logistic (3PL) item
response model, where the probability of a correct response
(yijk = 1) for person i on item clone k belonging to item
template j is:

2A threshold of 3 s was decided on based on pilot data. See
the Supplementary Materials for details.

p(yijk = 1) = γjk + (1−γjk) · logit−1 (
αjk · θi − βjk

)
(1)

where θi is the latent ability for person i, and βjk ,
αjk , and γjk are the difficulty, discrimination, and guessing
parameters for item clone k of item family j . Because
estimates of guessing parameters are often unreliable in
the absence of very large amounts of response data (Han,
2012), we fixed the guessing parameter for every item to the
nominal guessing rate (γjk = 0.25).

The difficulty and discrimination parameters were
estimated following an additive multilevel item structure.
Concretely, the difficulty of item clone k belonging to item
template j was expressed as:

βjk = μβ +
N∑

n=1

Qjnδβn + εβj +
M∑

m=1

Rkmδβm + εβk (2)

To elaborate, item difficulty parameter was modeled as
an intercept (μβ ), reflecting the average difficulty across all
items, and four additional components:

1.
∑N

n=1 Qjnδβn: the effect of item template (level 1)
attributes (described below) on difficulty, where Qjn is
the value of attribute n for item template j , and δβn is
the effect of attribute n. This component is the fixed
effects contribution to item template difficulty.

2. εβj : the template (level 1) residual, or the residual
variability in difficulty of the item template unexplained
by its attributes. This component is the random effects
contribution to item template difficulty.

3.
∑M

m=1 Rkmδβm: the effect of item clone (level 2)
attributes on difficulty, where Rkm is the value of
attribute m for item clone k, and δβm is the effect
of attribute m. This component is the fixed effects
contribution to item clone difficulty.

4. εβk: the clone (level 2) residual, or residual variability in
difficulty of the item clone unexplained by its attributes.
This component is the random effects contribution to
item clone difficulty.

So too, item discrimination parameters were expressed as
the sum of an equivalent set of components:

αjk = μα +
N∑

n=1

Qjnδαn + εαj +
M∑

m=1

Rkmδαm + εαk (3)

where the interpretation of each component is the same
as for item difficulty.

In our analyses, we considered two template (level 1)
attributes: element number and rule number. These have
previously been identified as key determinants of item
difficulty in matrix reasoning tasks (Embretson, 1998;
Primi, 2001). Element number refers to the number of
geometric shapes in each cell of a matrix, whereas rule
number refers to the number of relationships that govern
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the changes among these shapes across cells. In the MaRs-
IB, there are four principal rule types: size change, color
change, position change, and shape change. Across item
templates, element number ranges from one to four (median
= 2) and rule number ranges from one to six (median =
3). Element and rule number are uncorrelated across item
templates (Spearman’s ρ = 0.176), and were determined for
each item via manual annotation.

At the clone level (level 2), we modeled an additional
two attributes: distractor type and mean response time.
Distractor type refers to whether a clone uses MD-type
versus PD-type distractors, whereas mean response time
refers to the average time participants spent deliberating
on that item clone. We note that, in contrast to the other
modeled attributes, average response time is not an intrinsic
property of an item. We elected to include it in our
models, however, because including response time as a
covariate has previously been shown to improve parameter
estimation (Bertling & Weeks, 2018).3 To preclude any
collinearity between the attributes, mean response time
was orthogonalized with respect to the three other item
attributes; as such, any effects of response time reflects
residual structure after accounting for all other item
attributes.

We deliberately chose not to incorporate shape set (i.e.,
1, 2, or 3) as a clone-level attribute. The allocation of
geometric shapes to item clones in the MaRs-IB is complex,
such that not all clones of the same shape set share the same
perceptual elements (see the Supplementary Materials for a
full discussion). In other words, shape set does not constitute
an interpretable categorical variable and was therefore
not included in the model. Instead, the contribution of
perceptual elements to item functioning is captured by the
clone-level residual variability terms of the item structure
models.

We fit a series of nested AMIS models in order to identify
the model that best predicted participants’ response data.
The models varied in how item parameters were specified,
with each successive model allowing for greater flexibility
in item parameter estimation. We fit the models in two
waves. In the first, item discrimination was fixed (α = 1)4

in order to identify the best structure for the item difficulty
independent of item discrimination. In the first wave, we fit
three models:

• Model 1: Item difficulty is a function of item template
attributes (level 1) and item clone attributes (level 2). In

3Removing mean response time as a clone-level attribute did not
appreciably change the estimated item parameters; see Fig. S1.
4These models still included a fixed guessing parameter (γ = 0.25).
We also estimated models with no guessing parameter (i.e., one-
parameter logistic or Rasch models), but model comparison indicated
these models provided worse fits to the data (Table S1).

this model, item difficulty is predicted solely by item
attributes (i.e., element number, rule number, distractor
type, response time).

• Model 2: Item difficulty is a function of all item
attributes (level 1/2) and level 1 residuals. The inclusion
of the level 1 residual serves to quantify the magnitude
of residual variability in item difficulty, across item
templates, unexplained by the level 1 attributes (i.e.,
element number, rule number).

• Model 3: Item difficulty is a function of all item
attributes (level 1/2) and level 1/2 residuals. The
inclusion of the level 2 residual serves to quantify
the magnitude of residual variability in item difficulty,
across item clones, unexplained by the level 2 attributes
(i.e., distractor type, mean response time).

In the second wave of model fitting, item discrimination
was specified as a free parameter to be estimated. Moreover,
in the second set of models, the structure of the item
difficulty parameters were specified according to the best-
fitting model from the first wave. In the second wave, we fit
an additional three models:

• Model 4: Item discrimination is a function of item
template attributes (level 1) and item clone attributes
(level 2). In this model, item discrimination is predicted
solely by item attributes (i.e., element number, rule
number, distractor type, response time).

• Model 5: Item discrimination is a function of all item
attributes (level 1/2) and level 1 residuals. The inclusion
of the level 1 residual serves to quantify the magnitude
of residual variability in item discrimination, across
item templates, unexplained by the level 1 attributes
(i.e., element number, rule number).

• Model 6: Item discrimination is a function of all
item attributes (level 1/2) and level 1/2 residuals. The
inclusion of the level 2 residual serves to quantify the
magnitude of residual variability in item discrimination,
across item clones, unexplained by the level 2 attributes
(i.e., distractor type, mean response time).

The AMIS modeling framework provides a natural
means of accomplishing the three objectives of the
calibration study. Via all of the models above, we obtain
estimates of the psychometric properties (i.e., difficulty,
discrimination) of every item template and clone in the
MaRs-IB (Aim 1). Through the level 1 fixed effects, we are
able to test for associations between item complexity (i.e.,
element and rule number) and item functioning (Aim 2). We
predicted that both attributes would be positively associated
with item difficulty; that is, all else equal, items with either
a greater number of elements and rules would be more
difficult. In contrast, we had no hypotheses regarding the
association between these attributes on item discrimination.
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Finally, through both the level 2 fixed and random
effects, we can determine whether item clones in the
MaRs-IB are exchangeable (Aim 3). For example, a
credible association between distractor type and either item
difficulty or discrimination would entail that clones are not
psychometrically equivalent. Moreover, if we found any
level 2 residual variance term were substantial, that would
similarly indicate that not all item clones are equivalent due
to unmodeled attributes (e.g., perceptual features).

Person-level effects

In each of the six models described above, we incorporated
person-level attributes as predictors of latent ability (θi)
following an explanatory item response modeling approach
(Wilson et al., 2008):

θi =
P∑

p=1

Xipρp + εi (4)

whereXip is the value of attribute p for person i, ρp is the
partial correlation of person attribute p, and εi is variance in
ability unexplained by the person-level attributes.

We estimated person-level abilities as a function of
four covariates: age, gender, mean response time, and 	

response time. This last term reflects the degree of change
in a participant’s response time as a function of item
difficulty (defined as one minus the proportion of correct
responses for that item), and was included because of
its relationship to participants’ performance (see Results).
Mean response time and 	 response time were calculated
for each participant simultaneously via linear regression,
where a given participant’s (log-transformed) response
times were regressed against an intercept and item difficulty.
All covariates were standard-scored prior to analysis with
the exception of gender, which was binary coded (male =
-0.5, female = 0.5).

Model fitting

All models were estimated within a Bayesian framework
using Hamiltonian Monte Carlo as implemented in Stan
(v2.22; Carpenter et al., 2017). For all models, four separate
chains with randomized start values each took 7500 samples
from the posterior. The first 5000 samples from each chain
were discarded. As such, 10,000 post-warmup samples
from the joint posterior were retained. The R̂ values for
all parameters were less than 1.01, indicating acceptable
convergence between chains, and there were no divergent
transitions in any chain.

During estimation, the item discrimination parameters
were restricted to be in the range αjk ∈ [0, 5]. To
ensure the identifiability of all models, person abilities were

constrained to have a mean of zero and a variance of
1.0. Specifically, the residual variance of latent ability was
specified as V (ε) = 1 − ∑

ρ2
p. The specification of the

model priors are detailed in the supplement.

Model comparison

The goodness of fit of the models was compared using
Bayesian leave-one out cross-validation (Vehtari, Gelman,
& Gabry, 2017), which has been found to perform better
than more traditional information criteria for comparing
item response models (Luo & Al-Harbi, 2017). We
computed the conditional leave-one-cluster out (LOCO)
cross-validation (Merkle, Furr, & Rabe-Hesketh, 2019),
which measures a model’s ability to generalize to held-
out items (rather than held-out responses or held-out
participants)—i.e., for inferring generalization to additional
items constructed using the same features rather than to
additional participants sampled from the same population.

Goodness-of-fit

The fit of the best-fitting model to the data was evaluated
using posterior predictive model checking (Gelman, Meng,
& Stern, 1996; Levy & Mislevy, 2017). A sample of
predicted responses was generated for each sample of
simulated parameters and a posterior predictive p (PPP)
value was computed based on two discrepancy statistics: a chi-
square

(
χ2

NC

)
discrepancy measure based on the observed

score distribution (Sinharay, Johnson, & Stern, 2006) and
the standardized generalized dimensionality discrepancy
measure (SGDDM; Levy, Xu, Yel, & Svetina, 2015).

The χ2
NC discrepancy statistic is a measure of item

fit based on the comparison of observed and expected
proportions of participants at each score level (we ignore
scores ≤ 1, achieved by only seven participants). A global
measure of fit at the test level is obtained by summing
the discrepancy values over the groups. In turn, SGDDM
measures the mean absolute conditional correlation between
all pairs of items; that is, the SGDDM is an index of
residual inter-item correlations unexplained by the model.
The SGDDM is important in this context because it tests for
local dependence across items, the presence of which might
otherwise lower the efficiency of future test forms via the
inclusion of nonindependent or redundant items. For both
discrepancy statistics, the PPP value is the proportion of
draws in which the posterior predictive discrepancy is equal
to or higher than the realized discrepancy. A poor model fit
to the data is indicated when the PPP values are extreme
(PPP ≤ 0.05).

As a final validation of the best-fitting model, we
also performed a parameter recovery analysis. In this
analysis, we generated 100 artificial datasets with sampling
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and statistical properties matched to what we observed
empirically. That is, we generated datasets with 1500
participants and 384 item clones (nested in 64 item
templates), where the item parameters were randomly
generated and matched to the observed distribution of
item parameters. We then fit the best-fitting model to
each artificial dataset, and quantified the consistency
between the ground-truth and recovered model parameters.
The complete details of this procedure can be found in
the Supplementary Materials.

Results

Descriptive statistics

On average, participants completed 9.6 of 16 items correctly
(sd = 3.1, IQR = 8.0–12.0; Fig. 2a). Timing out occurred
on only 1.8% of trials (these were subsequently coded
as incorrect responses). A total of 43 participants (2.9%)
performed below chance (i.e., fewer than four items
correct), while only 11 participants (0.7%) solved all 16 of
their items. Thus, over 95% of observed scores were in a
reasonable range. These results corroborate those reported
by Chierchia et al. (2019) in that there were no obvious
ceiling or floor effects in performance, and that the majority
of participants were sufficiently motivated to participate in
spite of the low-stakes testing environment.

Across all 384 item clones, the average proportion correct
was 0.60 (sd = 0.19, IQR = 0.45–0.74; Fig. 2b). A total of
12 item clones (3.1%) exhibited performance levels beneath
chance, and only 22 item clones (5.7%) had performance
levels near ceiling (≥ 90%). Across items, the proportion
of correct responses was negatively correlated with rule
number (ρ = -0.482, p < 0.001). These results further

corroborate those reported by Chierchia et al. (2019) in that
most items in the MaRs-IB exhibited good functioning, with
performance at ceiling or floor for only a few item clones.

Response time analysis

The results of the linear mixed-effects model of response
times are summarized in Table 1. On average, participants
spent 15.9 s (sd = 7.2 s) per item. There were significant
main effects of accuracy (β = 0.067, t = 9.84, p < 0.001),
rest score (β = 0.125, t = 16.95, p < 0.001), and
item difficulty (β = 0.137, t = 44.33, p < 0.001). In
other words, response times were slower on average for
correct responses, better- performing participants, and more
difficult items. The positive association between response
time and accuracy is consistent with a speed–accuracy
trade-off in participants’ performance. This interpretation
is corroborated by the main effect of rest score, where
better-performing participants were slower overall.

There were also a significant accuracy by difficulty
interaction (β = 0.097, t = 14.34, p < 0.001) and
accuracy by rest score interaction (β = −0.064, t = −8.76,
p < 0.001). Correct responses were even slower for more
difficult items, but faster for better-performing participants.
There was also a significant difficulty by score interaction
(β = 0.032, t = 6.55, p < 0.001), such that better-
performing participants exhibited even slower responses for
more difficult items. This pattern of response time results is
visible in Fig. 2c. The three-way interaction term was not
significant.

In sum, we found evidence of a speed–accuracy
trade-off in performance in the calibration sample. Both
correct responses and better-performing participants were
slower overall. Notably, better-performing participants

Fig. 2 Summary of performance on theMaRs-IB items. (A) The distribu-
tion of total scores across all 1501 participants. (B) The distribution of
proportion correct responses across all 384 items. (C) The distribution
of participants’ median response times across items broken down by

participants’ total scores and item difficulty (one minus proportion
correct responses). Error bars indicate bootstrapped 95% confidence
intervals around the mean
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Table 1 Summary of the mixed effects linear regression model predicting log-transformed response time as a function of trial accuracy, participant
rest score (total correct on all other items), and item difficulty (one minus the proportion correct for an item)

Predictor Coef. (se) Z-score (p value) 95% CI

Accuracy 0.039 (0.007) 5.367 (<0.001) 0.025–0.053

Score 0.167 (0.009) 19.204 (<0.001) 0.150–0.184

Difficulty 0.073 (0.005) 13.292 (<0.001) 0.062–0.083

Accuracy x Score -0.064 (0.007) -8.764 (<0.001) -0.078−-0.050

Accuracy x Difficulty 0.097 (0.007) 14.351 (<0.001) 0.084–0.110

Score x Difficulty 0.032 (0.005) 6.549 (<0.001) 0.023–0.042

Accuracy x Score x Difficulty 0.012 (0.006) 1.955 (0.051) -0.000–0.025

lme4 syntax: log(RT) ∼ accuracy * score * difficulty + (1 | subject)

demonstrated adjustments to their response times as
function of item difficulty; whereas the lowest scoring
participants maintained an equivalent work rate regardless
of item difficulty, the highest scoring participants showed
the largest slowing in responding as items became more
challenging. We return to these results in the General
discussion.

Item response models

The results of the model comparison is summarized in
Table 2. Of the first-wave models, which varied only in their
specification of item difficulty, Model 3 exhibited the best
fit to the data. Indeed, Model 3 demonstrated a considerable
improvement in fit over Model 1 (	 LOCO = 1155.8, se =
60.1) and Model 2 (	 LOCO = 376.5, se = 34.5). This result
indicates the presence of non-negligible residual variance in
item difficulty across both item templates and clones. As the
best-fitting model in the first wave, Model 3 served as the
starting point in the second wave of model fitting.

Of the second-wave models, which varied only in their
specification of item discrimination, Model 5 demonstrated
the best fit to the data. In contrast, Model 5 yielded smaller

improvements in fit over Model 4 (	 LOCO = 5.12, se =
4.07) and Model 6 (	 LOCO = 3.29, se = 1.84). This result
suggests the presence of non-negligible residual variance in
item discrimination across item templates but not clones.
It must be noted these differences in LOCO values from
each model to the next were each within two standard errors
of the mean, indicating only weak predictive improvement
of Model 5 over the others (Vehtari, 2022). As such, we
will select Model 5 as the best-fitting model overall, but
proceed in discussing it with caution. We also note that all
second-wave models exhibited better fits to the data than
the first-wave models, supporting the estimation of item
discrimination parameters.

Aim 1: Quantify the psychometric properties of items
in the MaRs-IB

Across all items, the average item difficulty was μβ =
0.177 (95% HDI = 0.118–0.238). There was considerable
variability in item difficulty across items (sd = 1.431, 95%
HDI = 1.370–1.492), with the smallest and largest item
difficulty parameters spanning a wide range (βmin = -3.704,
95% HDI = -4.687 – -2.775; βmax = 3.497, 95% HDI =

Table 2 Comparison of item response models fit to the MaRs-IB response data

Difficulty Discrimination LOO-CV

Model FE-1/2 RE-1 RE-2 FE-1/2 RE-1 RE-2 psis-loco 	 psis-loco (se)

1 X 27741.4 1326.87 (62.88)

2 X X 26962.1 547.56 (37.79)

3 X X X 26585.5 171.05 (12.65)

4 X X X X 26419.6 5.12 (4.07)

5 X X X X X 26414.5 –

6 X X X X X X 26417.8 3.29 (1.84)

The columns under difficulty and discrimination indicate the specification of those parameters for each model (i.e., the presence of level 1/2 fixed
effects, level 1 random effects, and level 2 random effects). LOO-CV values are presented in deviance scale (i.e., smaller values indicate better
fit). Abbreviations: PSIS = Pareto-smoothed importance sampling; LOCO = leave-one-cluster-out
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2.481–4.635). For an average ability participant (θi = 0),
these parameter estimates translate to an expected average
accuracy of 58.4% across all items, and ceiling (chance
level) performance for the least (most) difficult item.

In turn, the average item discrimination was μα =
1.298 (95% HDI = 1.212–1.385). Variability in item
discrimination was modest by comparison (sd = 0.221, 95%
HDI = 0.121–0.322). Item difficulty and discrimination
were uncorrelated across items (ρ = -0.060, 95% HDI =
-0.379– 0.250). Following convention (Baker &Kim, 2017),
the items in theMaRs-IB exhibited medium (α ∈ 0.65–1.34)
to high (α ∈ 1.35–1.69) levels of discrimination and are thus
suitable for measuring matrix reasoning ability.

Aim 2: Measuring the association between item complexity
and functioning

Next, we inspected the associations between item com-
plexty (i.e., number of elements and number of rules) and
item functioning. As predicted, a one-unit change in element
number was associated with an increase in item difficulty
(δβ1 = 0.579, 95% HDI = 0.389–0.770), or an approximate
10.6% reduction in accuracy for a participant of average
ability. Similarly, a one-unit change in rule number was
also associated with an increase in item difficulty (δβ2 =
0.514, 95% HDI = 0.378–0.663), or a 9.5% reduction in
accuracy. The difference in coefficients was not credibly
different than zero (δβ1 − δβ2 = 0.065, 95% HDI = -0.189
to 0.319), indicating that both attributes exert approximately
equal impact on item difficulty.

Together, element number and rule number explained
approximately 67.6% of the variance in difficulty across the
64 templates. That is, the majority of variability in difficulty
across templates can be attributed to their complexity.
Individually the number of elements and number of rules
respectively explain 29.5% and 40.6% of the variance in
item template difficulty. Across all 384 clones, these two
attributes explain 38.6% of the variance in difficulty.

Only the number of rules was associated with item discrim-
ination: a one-unit change in rule number was associated
with a marginal increase in discrimination (δα2 = 0.020, 95%
HDI = 0.003–0.037). There was not a credible association
between the number of elements and discrimination (δα1 =
-0.015, 95% HDI = -0.036 to 0.008). These two attributes
explained 31.9% of the variance in discrimination across tem-
plates. Critically, these results must evaluated in light of our
parameter recovery analyses (see Goodness-of-fit below).

Aim 3: Investigating the exchangeability of item clones

Contrary to the assumption that item clones are exchange-
able, we found an association between distractor type and
item difficulty (δβ3 = 1.105, 95% HDI = 0.940–1.269).

Items with MD distractors were associated with an esti-
mated 19.9% reduction in accuracy compared to their equiv-
alent items with PD distractors. Together element number,
rule number, and distractor type explained slightly over half
(52.0%) of the variance in difficulty across item clones.
Regardless, the results of the model comparison demon-
strated that an item response model which included a clone-
level residual variance term for item difficulty was preferred
to one without. Together, these two results clearly indicate
that not all item clones are equally difficult and, therefore,
item clones cannot be assumed to be exchangeable.

To make clear the residual variance in item difficulty
across clones, the estimated item difficulty per clone is
presented in Fig. 3. The relative increase in difficulty
for items with MD-type distractors compared to PD-type
distractors is easily seen (Fig. 3a). In contrast the pattern
of residual difficulty across clones, after accounting for all
modeled sources of variance, is more complicated (Fig. 3b).
The magnitude of the clone-level residual variance is εβk

= 0.620 (95% HDI = 0.538–0.701), or 35.1% of the total
variance in difficulty across item clones. This corresponds
to a mean absolute difference in difficulty of 0.705 (95%
HDI = 0.612–0.786) across clones per item and distractor
type, or roughly two-thirds as large as the effect of distractor
type. Thus, the residual variability in item difficulty across
clones is large, complex, and likely reflects the idiosyncratic
contributions of perceptual features.

Turning to item discrimination, we did not find a credible
association between discrimination and distractor type (δα3

= -0.029, 95% HDI = -0.065–0.005). Moreover, a model
that included a clone-level random effects term for item
discrimination was not preferred to amodel without. As such,
there is not sufficient evidence to reject the assumption that
item clones are equivalently discriminating. We note this
result should be interpreted with caution given the relatively
weak predictive improvement of the best-fitting model
compared to a model with a clone-level random effects term.

Finally, we inspected the relationship between mean
response time and item functioning. As expected, there was
a positive association between mean response time and item
difficulty (δβ4 = 0.541, 95% HDI = 0.414–0.671) indicating
response times were slower for more difficult items. There
were not a credible association between item discrimination
and average response time (δα4 = -0.010, 95% HDI =
-0.030– 0.009).

Person-level effects

In the best-fitting model, there were several credible
associations between person-level attributes and ability.
There was a negative association between age and ability
(ρ1 = -0.299, 95% HDI = -0.353–0.246). There was also a
small association between gender and ability (ρ2 = 0.128,
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Fig. 3 The estimated item difficulty parameters for the items in the MaRs-IB. Each dot represents one item clone. (A) Item difficulty color-coded
by minimal difference (MD)-type (blue) and paired difference (PD)-type (grey) distractors. (B) Residual item difficulty across item clones, after
accounting for all other modeled sources of variance, color-coded by shape set

95% HDI = 0.078–0.182), such that women performed
marginally better than men. Average response time was
positively associated with ability (ρ3 = 0.427, 95% HDI =
0.374–0.478), as was 	 response time (ρ4 = 0.368, 95%
HDI = 0.313–0.424). In other words participants with higher
levels of ability spent more time on each item on average,
and even longer for more difficult items. Together, these four
person attributes explained 50.3% of the variance in ability.
These results are consistent with a speed–accuracy trade-
off in performance. That is, higher levels of ability in this
sample reflect, in part, a tendency to slow down and respond
more carefully (especially for the most challenging items).

Goodness-of-fit

We next evaluated the fit of the best-fitting model to the data
using two posterior predictive model checking measures.
The PPP value for chi-square discrepancy statistic did not
exceed the critical threshold (χ2

NC = 15.904, PPP value

= 0.297), indicating that the model was sufficiently able
to reproduce the distribution of observed scores. The PPP
value for the SGDDM statistic did exceed the critical
threshold (PPP value = 0.019). However, the mean of the
realized SGDDM values (SGDDMr = 0.0180) was only
marginally larger than the mean of the posterior predicted
SGDDM values (SGDDMp = 0.0175). This means that the
residual inter-item correlations in the data were small on
average and only slightly larger than what we would expect
to observe by chance. As such, there is little evidence for
local dependence in the data. Overall then, we can conclude
the best-fitting model provides an adequate fit to the data.

Finally, we inspected the results of the parameter
recovery analysis (the complete results are reported in
the Supplementary Materials). Briefly, we found we were
able to recover item difficulty parameters with excellent
precision. Conversely, we observed only adequate recovery
of the item discrimination parameters. The results may in
turn explain why we detected only one credible association
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between item attributes and item discrimination. Although
we were adequately-powered to detect large associations
between item attributes and discrimination (i.e., explaining
14% or more variance in the latter), we are poorly powered
to detect smaller associations. This was not true for
item difficulty, where we were well-powered to detect
associations of the magnitude reported above. Importantly,
we found through follow-up analyses that the less-
than-perfect recovery of item discrimination parameters
yielded only negligible effects on the reliability of test
forms produced using optimal test assembly procedures.
Therefore, our analyses were sufficiently powered for the
primary objectives of this study.

Discussion

In this first study, we recruited a large sample of adults
to complete items from the MaRs-IB, making sure that
each item template and clone were completed by a sizable
number of participants. Using multilevel item structure
models, we then estimated the psychometric properties (i.e.,
difficulty and discrimination) of each item. Corroborating
the results of an initial investigation of the MaRs-IB
(Chierchia et al., 2019), we found that the items in the
MaRs-IB vary greatly in their difficulty—a prerequisite
for measuring nonverbal reasoning across the spectrum
of ability. We also found that the items in the MaRs-IB
exhibited medium-to-large levels of discrimination, similar
to what has been found in investigations of other matrix
reasoning tasks (Chiesi, Ciancaleoni, Galli, & Primi, 2012;
Chiesi, Ciancaleoni, Galli, Morsanyi, & Primi, 2012; Elst
et al., 2013).

We also investigated how item complexity shapes
item functioning. We found that element number and
rule number were both positively associated with item
difficulty, the effects of which were of approximately
equal magnitude (i.e., a one-unit change in either was
independently associated with a roughly 10% reduction
in performance). This finding is interesting in light of
previous investigations of nonverbal reasoning tasks, which
have found a greater influence on item difficulty from
either the number of elements (Bethell-Fox, Lohman, &
Snow, 1984) or number of rules (Mulholland, Pellegrino,
& Glaser, 1980). One possible reason for this discrepancy
is that these two attributes are largely uncorrelated across
items in the MaRs-IB, which allows for unconfounded
estimates of their effects. Together element number and
rule number explained 67.6% of the variance in difficulty
across templates (and 38.6% of the variance across item
clones), which is in line with previous investigations of
matrix reasoning tasks (Carpenter, Just, & Shell, 1990;
Matzen, Van Der Molen, & Dudink, 1994). These findings

further validate the design of the MaRs-IB insofar that
item complexity is a primary determinant of item difficulty.
Finally, we found that rule number, but not element number,
was associated with item discrimination. However, this
finding must be interpreted with caution as our parameter
recovery analysis revealed that our sample size was
adequately powered to detect only larger effects (attributes
explaining 14% or more variance in item discrimination).
Future studies with larger samples will be required to
more thoroughly investigate the relationship between item
complexity and discrimination.

Finally, we investigated whether the item clones in the
MaRs-IB are psychometrically equivalent and exchange-
able. Crucially, we found evidence that item clones are not
equally difficult. Unexpectedly, and contrary to the results
of Chierchia et al. (2019), distractor type emerged as a
robust predictor of item difficulty (i.e., items with MD-type
distractors are associated with a 19.9% reduction in accu-
racy compared to the same items with PD-type distractors).
This discrepancy in findings between studies may reflect
the much larger number of responses available per clone in
our study. We also found non-negligible residual variability
in item difficulty across clones that was difficult to charac-
terize and likely reflects the effects of low-level perceptual
features. Together, our results clearly indicate that item
clones in the MaRs-IB cannot be assumed to be psychomet-
rically equivalent and should not be treated as exchangeable.

In summary, the results of the calibration study confirm
the MaRs-IB to be a useful and psychometrically valid
resource for measuring matrix reasoning ability. The items
vary greatly in their difficulty, and possess medium-to-
large levels of discrimination, thereby making the MaRs-IB
suitable for measuring matrix reasoning across a wide range
of ability. That item clones are not equivalently difficult,
and therefore should not be treated as exchangeable, does
not invalidate this conclusion. The item parameter estimates
derived as part of this study are therefore suitable for use in
designing newMaRs-IB measures with both good reliability
and potential for reuse, as we demonstrate in the next
study.

Validation study

Objectives

The purpose of the second study was to provide a
demonstration of how to use the item parameter estimates,
derived in the previous study, to design new MaRs-
IB measures. Specifically, we use optimal test assembly
(Van der Linden, 1998) to design test forms that maximize
test reliability given researcher-defined constraints.
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Optimal test assembly

Given the starting point of 64 item templates with six
clones each, there is a vast number of possible MaRs-IB
test forms we could construct. Returning to our motivating
problem—the availability of matrix reasoning measures
with the potential for reuse—we decided to construct two
new sets of test forms: a set of three short-form measures
and a set of two long-form measures.

To design the test measures, we used mixed integer
programming (Van der Linden, 2005) in order to maximize
the test information function (TIF) of each test subject to the
following constraints:

1. Each short- and long-form test was required to contain
12 and 24 items, respectively. This was chosen to
minimize the administration time of a given form while
achieving a minimal score reliability ≥ 0.7 and ≥ 0.8.

2. Within each test set, the difference in TIFs between
tests should be minimized. This constraint was adopted
to ensure that each test form had approximately equal
psychometric properties (i.e., equivalent reliability
across ability levels).

3. For a given test, clones selected for inclusion could
either use MD-type or PD-type distractors, but not both.
This constraint was adopted in order to prevent item
redundancy (i.e., including the same puzzle twice in one
test form).

4. All three short-form tests (but not the long-form tests)
were required to be made up of clones from the same
items. This constraint was adopted in order to maximize
the similarity of the short forms.

For both assembly procedures, the TIF was maximized
at five ability levels (θ = -1.0, -0.5, 0.0, 0.5, 1.0), which
previous simulation studies have shown to be generally
sufficient (Van der Linden, 2005). Solutions to the mixed
integer programming problem were found using the mip
python package (v1.13.0; Santos & Toffolo, 2020).

The results of the test assembly are presented in
Fig. 4. As expected, the MIP solver selected for items
that were more discriminating on average (Fig. 4, left
column). Though this was not an explicit constraint, the
test characteristic curves (TCCs) for each test form, within
a set, were markedly similar (Fig. 4, middle column).
Based on the TCCs, the expected average score was 7.7

Fig. 4 Results from the test assembly of three parallel MaRs-IB short
form (SF) measures. (A) The psychometric properties of the items
selected for each form, compared to all remaining items. Points rep-
resent the posterior means of the item difficulty and discrimination
parameters. (B) The test characteristic curves (TCCs) for each short

form. The degree of overlap highlights the similarity of expected
scores for each test form. (C) The test information functions (TIFs)
for each short form. The degree of overlap highlights the similarity of
reliability for each test form
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out of 12 items for the short-form measures and 14.4
out of 24 items for the long-form measures. (Note that,
because the lowest ability participants are expected to guess
an item correctly 25% of time, the lower asymptote of
the TCCs is one quarter of the maximum possible score.)
Finally, the TIFs for each test form within a set are nearly
identical (Fig. 4, right column), as would be expected given
the last assembly constraint. We should therefore expect
each test form within a set to have approximately equal
reliability in measuring matrix reasoning ability. Indeed, the
IRT test score reliability coefficients (Kim & Feldt, 2010;
Nicewander, 2018) for each short form were similar (short
form 1: ρ = 0.706; short form 2: ρ = 0.709; short form
3: ρ = 0.705), as were the coefficients for each long form
(long form 1: ρ = 0.821; long form 2: ρ = 0.821).

Next, we proceeded to administer each test form to
a second sample of participants. Our aim was to verify
that observed scores on each test form conformed to our
expectations based on the TCCs and TIFs. Doing so would
provide evidence that we were successful in calibrating the
functioning of the items in the MaRs-IB in the previous
study. We also sought to demonstrate convergent validity
by correlating participants’ total scores on the MaRs-IB test
forms with their total scores on an abbreviated version of
the Raven’s progressive matrices (Bilker et al., 2012).

Methods

Participants

Two samples of participants (N1 = 347, N2 = 360) were
recruited from the Prolific Academic platform to participate
in an online behavioral experiment in November, 2021 and
September, 2022. Participants were eligible if they currently
resided in the United States and had not participated in
the calibration study. Study duration was on average 10.8
minutes (sd = 4.6) for sample 1 and 14.3 minutes (sd = 4.9)
for sample 2. Participants received monetary compensation
for their time (rate USD $10/hr) plus a bonus up to $0.75
(sample 1) or $1.50 (sample 2) based on task performance.
Sample 1 earned on average $2.10 USD (sd = $0.18) and
sample 2 earned on average $3.17 USD (sd = $0.30). This
study was approved by the Institutional Review Board of
Princeton University (#7392), and all participants provided
informed consent.

To ensure data quality, the data frommultiple participants
were excluded prior to analysis (see Exclusion Criteria below)
leaving the data from a total of 600 participants (N1 = 300,
N2 = 300) for analysis. Across samples, the majority of
participants identified as women (men: N = 281; women:
N = 281; non-binary or other: N = 25; rather not say: N =
2). Participants were on average 36.6 years old (sd = 13.1;
range, 18–76). The combined sample was relatively well

educated, with the majority having completed a bachelor’s
degree (N = 227) or master’s degree or higher (N = 76). By
comparison, fewer participants endorsed having completed
only some college (N = 142), only a high school degree or
lower (N = 98), or preferred not to say (N = 1).

Procedure

The study was divided into three parts. After providing
consent, participants first completed three short surveys:
the 10-item need for cognition survey (Chiesi, Morsanyi,
Donati, & Primi, 2018), the 8-item PROMIS Cognitive
Function-Short Form (8a) (Iverson, Marsh, Connors, &
Terry, 2021), and the 8-item subject numeracy scale
(Fagerlin et al., 2007). These measures were included as
part of exploratory analyses to measure the associations
between personality and matrix reasoning ability (these
correlations are reported in Table S2 of the supplementary
materials). Afterwards participants completed either one of
the three 12-item MaRs-IB short forms (sample 1) or one
of the two 24-item MaRs-IB long forms (sample 2). The
administration procedure of the test forms was identical to
that in the previous study. Finally, all participants completed
the 9-item abbreviated Raven’s progressive matrices (RPM
form A; Bilker et al., 2012). To maximize consistency in
administration, the presentation format and instructions for
the RPM task were the same as for the MaRs-IB test forms.

Exclusion criteria

To ensure data quality, the data from multiple participants
were excluded prior to analysis for one or more of the
following reasons: failing to complete all three sections
of the experiment (N = 27); failing one or more attention
checks (Zorowitz, Niv, & Bennett, 2021) embedded in
the self-report measures (N = 49); experiencing technical
difficulties during the experiment (N = 24); rapid guessing
on four or more items (N = 24); or failing to respond on
four or more items (N = 2). In total, 107 of 707 (15.1%)
participants were excluded leaving the data from N = 600
participants for analysis.

Analysis

We calculated descriptive statistics to summarize the
distribution of participants’ total scores on the MaRs-
IB short forms, MaRs-IB long forms, and abbreviated
RPM. The convergent validity between the MaRs-IB and
RPM measures was estimated by calculating the Pearson
correlation between participants’ total scores on those
measures (collapsing across MaRs-IB test form). These
calculations were performed separately for the MaRs-IB
short-form and long-form measures.
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To quantify the agreement between the observed
and expected MaRs-IB scores, we relied on posterior
predictive model checking. Specifically, we calculated a
χ2

NC discrepancy measure (Sinharay et al., 2006), which
compares the observed and model-predicted proportion of
participants at each total score level. The model-predicted
scores were obtained via a two-step procedure. First, we
estimated for all participants a posterior distribution of
latent ability parameters under the 3PL model, given their
observed item responses and the item parameters estimated
during the calibration study. Second, using the distribution
of ability estimates, we generated a sample of predicted
responses. We computed a posterior predictive p (PPP)
value based on the discrepancy statistic, where a poor fit to
the data is indicated when the PPP value is extreme (PPP ≤
0.05). This procedure was also repeated for the abbreviated
RPM measure, but the item difficulty and discrimination
parameters were jointly estimated alongside the person
ability parameters under the 3PL model. The item guessing
parameters were held fixed to their nominal guessing rates.

The latent ability and RPM item parameters were
estimated within a Bayesian framework using Hamiltonian
Monte Carlo as implemented in Stan (v2.22) (Carpenter
et al., 2017). Four separate chains with randomized start
values each took 7500 samples from the posterior. The first
5,000 samples from each chain were discarded. As such,
10,000 post-warmup samples from the joint posterior were
retained. The R̂ values for all parameters were less than
1.01, indicating acceptable convergence between chains,
and there were no divergent transitions in any chain. The
prior for the latent ability parameters was Normal(0,1). For
the RPM response model, the prior on the item difficulty
and discrimination parameters were Normal(0.0, 2.5) and
Lognormal(1.0, 1.0), respectively.

Results

Performance on the MaRs-IB test forms is summarized in
Table 3. On average, participants completed the short-form

measures in 174 s (sd = 54.0 s) out of a possible 360 s
total and correctly solved 8.0 of 12 items (sd = 2.5). In turn,
participants completed the long-form measures in 349 s (sd
= 97.9 s) out of a possible 720 s total and correctly solved
15.7 of 24 items (sd = 5.1). A one-way ANOVA comparing
the total scores across the three short forms was not
statistically significant (F(2,297) = 0.253, p = 0.777); so
too, the distributions of total across the two long forms
were not significantly different (F(1,298) = 0.219, p =
0.640). Crucially, none of the posterior predictive p values
corresponding to the χ2

NC discrepancy measure exceeded
the critical value, indicating that the previously estimated
item parameters were sufficiently able to predict the
observed distribution of total scores for each test form. In
other words, performance on each new MaRs-IB test form
conformed to expectations, indicating that item functioning
was well calibrated in the previous study (Table 2).

Performance on the abbreviated RPM measure is also
summarized in Table 3. On average, participants completed
the measure in 127 s (sd = 39.6 s) and responded correctly
on 4.5 of 9 items (sd = 2.0). The proportion of correct
responses on the RPM was significantly lower than that
observed for the MaRs-IB short forms (t = 13.028, p <

0.001) and long forms (t = 12.812, p < 0.001), indicating
that the RPM is more difficult. Notably, the calculated
IRT test reliability for the abbreviated RPM measure was
smaller than that for both the MaRs-IB short- and long-form
measures. The average correlation between scores on the
RPM and MaRs-IB short-form measures was r = 0.470
(p < 0.001); between the RPM and long-form measures,
the correlation was r = 0.598 (p < 0.001; Fig. 5). These
results indicate satisfactory convergent validity between the
two families of matrix reasoning measures.

To summarize, we used the estimated item parameters
and optimal test assembly procedures to construct two
new sets of MaRs-IB test forms. These new measures
were quick to administer, produced score distributions
consistent with model predictions, possess adequate-to-
good test score reliability, and demonstrated convergent

Table 3 Summary of performance on the MaRs-IB 12-item short forms (SF), MaRs-IB 24-item long forms (LF), and Raven’s progressive matrices
(RPM) 9-item short form (SF) measures

Measure # Sample Task time (sd) Mean score (sd) IQR χ2
NC (ppp) Reliability

MaRs-IB SF 1 N = 103 174.9 s (53.3) 7.9 (2.4) 7 - 10 13.6 (0.284) 0.706

2 N = 98 169.0 s (53.0) 8.2 (2.6) 7 - 10 6.6 (0.811) 0.709

3 N = 99 178.5 s (55.7) 7.9 (2.7) 6 - 10 7.1 (0.778) 0.705

MaRs-IB LF 1 N = 153 351.7 s (92.6) 15.9 (4.9) 13 - 20 12.5 (0.910) 0.821

2 N = 147 346.8 s (103.4) 15.6 (5.4) 11 - 20 29.7 (0.120) 0.821

RPM SF A N = 600 126.7 s (39.6) 4.5 (2.0) 3 - 6 10.3 (0.359) 0.613

Reliability reflects the IRT test score reliability coefficient. Abbreviations: IQR = interquartile range
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validity with an established measure of matrix reasoning
ability. Furthermore, all of these new test forms were
more reliable than an abbreviated version of the Raven’s
progressive matrices. Together, these results demonstrate
our success in calibrating the functioning of MaRs-IB items
and also the feasibility of constructing new reliable tests of
matrix reasoning with the MaRs-IB.

General discussion

Here we have provided a comprehensive investigation
of the MaRs-IB. Using item structure models fit to
data collected from a large sample of adult participants,
we found that the MaRs-IB possesses many desirable
psychometric properties. The items in the MaRs-IB span
a considerable range of difficulty and exhibit medium-to-
high levels of discrimination. The MaRs-IB is therefore
suitable for measuring matrix reasoning across the ability
spectrum in the general adult population. We also verified
that the design of the MaRs-IB was, at least in part,
successful. Item complexity (i.e., element number and rule
number) was positively associated with, and explained the
majority of variance of, item difficulty. In contrast, we
also uncovered some undesirable properties of the MaRs-
IB. Namely, we observed substantial variability in item
difficulty (both systematic and unsystematic) across item
clones. As a consequence, item clones in the MaRs-IB
cannot be assumed to be psychometrically equivalent and
should not be treated as exchangeable.

Using the item parameters estimates, we then constructed
two new sets of MaRs-IB test forms using optimal test
assembly methods. These test measures were designed
to be maximally reliable under differing constraints (e.g.,

administration times of 2–4 min vs. 4–8 min). In a second
sample of participants, we found that the total scores
from each test form was consistent with model predictions
and predictive of performance on a second, established
measure of matrix reasoning ability. Collectively, these
results highlight the success of the item calibration study
in producing accurate estimates of item functioning for the
items in the MaRs-IB.

Of additional note are the associations we found
between accuracy and response time. We found that correct
responses and better-performing participants were slower
on average, consistent with a speed–accuracy trade-offs in
performance (Heitz, 2014). Interestingly, we also found an
interaction between participant ability and item difficulty:
whereas the worst-performing participants maintained the
same work rate irrespective of item difficulty, the best-
performing participants spent more time deliberating as
items became more challenging. These results are consistent
with a persistence interpretation of ability, wherein good
task performance in part reflects a willingness to invest
time in the solution process and poor task performance
reflects a tendency to give up sooner (Ranger, Kuhn, & Pohl,
2021). As such, the MaRs-IB may be suitable not only for
measuring matrix reasoning ability but also mental effort
costs (Kool & Botvinick, 2018), opportunity costs (Payne,
Bettman, & Luce, 1996), or other motivational factors
(Duckworth et al., 2011) related to people’s tendency to
exert effort or give up. The use of more sophisticated models
(e.g., Ranger & Kuhn, 2014) may help to disentangle the
relative contributions of latent ability and persistence to
performance on the MaRs-IB.

The current investigation of the MaRs-IB is not without
its own limitations. One notable limitation is our sample.
Here we analyzed response data collected from an online

Fig. 5 The joint distribution of total scores on the abbreviated Raven’s progressive matrices (RPM) and the MaRs-IB test forms. (A) Scores from
the MaRs-IB 12-item short forms (SF). (B) Scores from the MaRs-IB 24-item long forms (LF). The distribution of observed scores for each
measure are plotted in the margins
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adult sample which was relatively young and well-educated.
We cannot guarantee that the psychometric properties of the
MaRs-IB reported here will generalize to other populations
or testing contexts. Future researchers should consider
replicating the current study in other populations of interest
(e.g., children, clinical samples). By using item response
models in this study, however, we make possible the
opportunity for future IRT “linking” studies. IRT linking
describes a set of methods to establish the comparability of
item and ability parameters estimated from response data
collected from two or more groups that differ in ability (Lee
& Lee, 2018). Future studies might exploit these methods
to provide new insights, not only in how the functioning
of the MaRs-IB may differ in across populations, but also
in how matrix reasoning ability changes across populations.
Future studies involving larger samples could also provide
populations norms for MaRs-IB test scores, which would
enable researchers to compare the outcomes of specific
individuals or groups (e.g., clinical groups) against the
performance of the general population (of a particular
country or region).

A second limitation of the present analyses is our
relatively narrow investigation of the sources of variance
in item functioning in the MaRs-IB. Previous psychometric
investigations of the Raven’s progressive matrices, for
example, have highlighted the impact of not only the
number of rules but also the types of rules on item difficulty
(Carpenter et al., 1990; Embretson, 1998). So too, it is
possible that the four rules in the MaRs-IB are not equally
difficult or discriminating (e.g., color changes may be easier
to process than position changes) and may explain part
of the residual variance in item functioning across item
templates. Other studies of matrix reasoning tasks have
identified large contributions of perceptual features to item
difficulty (Primi, 2001; 2014), effects which were not
explicitly considered here. Future studies should consider
investigating these and other sources of variance in item
functioning—a possibility made easier by the public release
of all the data collected as part of the current studies.

In conclusion we have provided the most comprehensive
psychometric validation of the MaRs-IB, the current largest
available bank of open access matrix reasoning items,
finding that it is suitable for measuring matrix reasoning
ability in the general adult population. We hope that
the results and materials presented here will encourage
researchers to design their own matrix reasoning tests,
tailored to their needs, using the MaRs-IB. In support of
this, we have made all of our data, code, and model outputs
available at: https://github.com/ndawlab/mars-irt.

Supplementary Information The online version contains supple-
mentary material available at https://doi.org/10.3758/s13428-023-020
67-8.
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