Table 1- Typical 2D NMR experiments used for molecular structure determination (*)

Experiment	Typical quantity (mg)	Exp. Time*	What kind of information is obtained?
COSY	5 mg	5 to 30 min	Establishes correlation between spins with scalar coupling (J) but does not determine coupling constants.
Long-range COSY	5 mg	5 to 30 min	Emphasize correlation with small Js.
COSY-45	5 mg	5 to 30 min	Decreases the intensity of the diagonal peaks with respect to the correlation peaks, thus identifying correlation between strongly coupled spins.
DQ-COSY	5 mg	10 to 60 min	Establishes correlation between spins with scalar coupling (J); can be used to measure Js. Singlets are removed (CH ₃ signals, for example) and solvent (H ₂ O) by means of filtration of the correlation signals with a double quantum filter.
Relayed-COSY or RELAY	5 mg	5 to 30 min	Magnetization transfer to 1 or 2 chemical bonds beyond those of the COSY transfer to determine coupled spin systems (only via J).
TOCSY	5 mg	5 to 30 min	Show correlation among all the spins that have a common coupling partner, e.g., $A \to B \to C$, where J_{AB} , $J_{BC} \neq 0$, BUT $J_{AC} = 0$.
NOESY	10 mg	1 to 2 hours	Stereochemical information via <u>dipolar coupling</u> using cross-relaxation (longitudinal); determination of <u>chemical exchange</u> processes.
ROESY	10 mg	1 to 2 hours	Stereochemical information via <u>dipolar coupling</u> using cross-relaxation (transversal); adequate for molecules with average MW in the range of 1000-3000 and/or when $\omega \tau_c \sim 1.12$ (where ω is the spectrometer frequency and τ_c the correlation time).
HETCOR (1-bond)	20 mg	1 to 2 hours	Heteronuclear assignment
HMQC/HSQC (1 bond)	10 mg	0.5 to 2 hours	Heteronuclear assignment <u>using inverse detection</u> , i.e., using ¹ Hs to detect heteronuclear frequencies (more often) or using a nucleus with larger (to detect a low-(nucleus (e.g. use of ¹⁹ F to detect ¹³ C frequencies).
HETCOR (n-bond)	20 mg	4 to 12 hours	H-X long range heteronuclear assignment (via 2 J _{XH} and 3 J _{XH}).
HMBC (n-bond)	10 mg	2 to 12 hours	H-X long range heteronuclear assignment (via $^2J_{XH}$ and $^3J_{XH}$) <u>using inverse detection.</u>
HMQC-TOCSY	10 mg	0.5 to 2 hours	H-X long range heteronuclear assignment (via $^2J_{XH}$ e $^3J_{XH}$) <u>using inverse detection</u> and <u>protonated Xs</u>
INADEQUATE	100 mg	24-72 hours	Establishes ¹³ C- ¹³ C connectivities. For structural elucidation of organic molecules, it is the most powerful experiment, but with the lowest sensitivity.

^(*) The acquisition times and quantities mentioned above are <u>for phase-cycled</u> 2D experiments, i.e., experiments that require a minimum number of transients in F_2 to eliminate axial peaks and make quadrature detection. The experiments with pulsed field gradients tend to be faster than the phase-cycled ones.