12

SAR and Modeling

Ann M. Richard, Pauline Wagner, Richard Purdy, and Gilman Veith

ABSTRACT: SAR plays a prominent role in TSCA screening
of new chemicals and existing chemicals in commerce. SAR
models for bioavailability, ecotoxicology and health toxicol-
ogy endpoints are being used to identlify chemicals with the
greatest potential for ecological or health hazard, to set
testing priorities, and to provide scientific support for a
testing recommendation. SAR models vary considerably in
accuracy and utility for screening application depending
upon the quality of available data and level of current
knowledge for a toxicity endpoint. The main deficiency of
current SAR capabilities is inadeguate data, and lack of
knowledge of mechanisms of toxicity for many chemical
classes and toxicity endpoints of potential regulatory con-
cern. Knowledge or inference of a common mechanism of
toxic action is crucial for selecting appropriate chemical
analogues, guiding SAR model development, establishing
model plausibility, and providing the necessary scientific
rationale for model acceptance and use in prediction. This
paper discusses the present role and capabilities of SAR in
TSCA screening, general features and limitations of SAR,
current and evolving SAR technologies, and advances most
likely to lead to improvements in SAR models for use in
TSCA screening. Although SAR has the clear potential to
further reduce the need for testing or eiminate testing in
some circumstances, the promise of SAR will not be fulfilled
without proper application of these methods. This entails
clear recognition of the limitations of SAR, and appreciation
for the essential roles of research into mechanisms of toxic-
ity, and strategic testing for further SAR model development
and refinement.

A structure-activity relationship (SAR) relates
features of chemical structure to a property,
effect, or biological activity associated with that
chemical. The fundamental premise is that the
structure of a chemical determines its physical
properties and activities. The term “structure-
activity relationship” has taken on a wide range of
meaning over the years, from heuristic chemical

associations and human expert approaches that
consider primarily structural features, to formal
mathematical relationships that relate specific
chemical attributes to a quantitative measure of
the property or activity of interest, the latter being
commonly referred to as “quantitative structure-
activity relationships’ (QSARs). In both the
pharmaceutical and  chemica industries,
structure-activity considerations have long been
used to design chemicals with commercialy
desirable properties. In the environmenta
protection field, SAR is being used to predict
adverse ecological and hedth effects, with
applications ranging from the prediction of rele-
vant properties, such as chemical stability,
bioavailability and bioaccumulation, to the pre-
diction of various forms of chemical toxicity.

The focus of this workshop is testing and
screening strategies for review of the Toxic Sub-
stances Control Act (TSCA) inventory of existing
chemicals in commerce. This problem poses a
significant and immediate challenge, not only in
terms of the sheer numbers of chemicals that have
undergone little testing or review (>10,000), but
aso in terms of the multiple exposure routes and
ecological and health endpoints of potential con-
cern. The foremost god is to identify the chemi-
cals that pose the greatest potential ecological and
health risks, and to strategically alocate limited
testing resources to best characterize these risks.
SAR, coupled with exposure and use estimates,
represents the top tier in a multiple tier screening
approach for assessing chemical hazard, and
provides the primary means for setting testing
priorities.  SAR currently plays a prominent
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role in testing and screening strategies for TSCA
review of new chemicals and existing chemicals
in commerce. SAR screening is being used for
hazard identification, to set testing priorities, to
provide scientific support for a testing
recommendation, and in a relatively new U.S.
Environmental Protection Agency (EPA) initia-
tive, to aid in the design of safer chemicas by
suggesting modifications in structure predicted to
minimize toxicity. SAR has the potential to fur-
ther reduce the need for property measurements
and animal testing, generate insight into mecha
nisms of action, and achieve better environmental
protection by providing for more efficient
screening of the TSCA inventory for a wide range
of toxicity endpoints.

The following will consider some generd
characteristics of SAR, principles of application
to toxicity screening, limitations and guidelines
for use of current SAR technologies, current SAR
capabilities being applied to the TSCA screening
problem, and new technologies and advances that
will lead to improvements in SAR capabilities for
toxicity screening.

USAR FOR TOXICITY SCREENING:
GENERAL  CONSIDERATIONS

SAR approaches are extremely general with
respect to the possible representations of chemical
structure, the types of chemical or biological ac-
tivity that can be modeled, and the methods for
relating the two (figure 12-1 ). In contrast, an
SAR model is highly specific to the particular set
of chemicals, attributes, and experimenta
activities used in its derivation. An SAR model
codifies and rationalizes existing data. It follows
that the range of application, predictive accuracy,
and ultimate relevance of the SAR modd is
wholly determined by the quality and quantity of
existing data and knowledge upon which the SAR
model is based. For example, an SAR model
developed to predict mutagenicity based on
qualitative (+/- activities) experimental data for a
series of aromatic amines tested in the TA100
Samonella reversion assay is not likely to be
applicable to other chemica classes (e.g. small

haloorganics), other strains of Salmonella (e.g.
TA90), or the prediction of quantitative potencies.
An obvious corollary is that an SAR modd is
only as relevant to the ultimate health effect of
concern (e.g. carcinogenicity) as the toxicity end-
point that it purports to model (e.g. mutagenicity).

Figure 12-1: Structure-Activity Approaches
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There are two complimentary goals of an SAR
study: 1) to predict the activities of untested
chemicals and prioritize chemicals according to
relative activities; and 2) to provide a rational
scientific basis for understanding and interpreting
existing biological/chemica activity data in terms
of chemical structure and mechanism of action.
The former is the primary alure of SAR, while
the latter provides the foundation and prescription
for its success.

SAR methods are optimaly applied to the
prediction of intrinsic physical properties of a
chemica where a single “mechanism” is opera
tive and the property can be considered independ-
ent of externa interactions. A number of high
quality QSAR and computational chemistry
models have been developed and are used rou-
tinely by industry and regulatory agencies to pre-
diet chemical properties such as vapor pressures,
melting points, acid dissociation constants, spec-
tral properties, chromatographic retention times,
and octanol/water partition coefficients (com-
monly referred to as “logP’), to name but a few.



Such models have the advantages of significant
cost savings over laboratory determinations,
speed, ease of use, and no need for the availability
or handling of the chemical of concern. Modeled
properties also serve as key parameters for use in
the development of SAR models for biological
fate or effect. For example, an octanol/water
partition coefficient, a property used extensively
in QSAR studies of biological activity, approxi-
mates the ability of a chemica to transport
through biological membranes and can be mod-
eled easily and accurately by the computerized
CLOGP method (13), yielding cost savings from
$10,000 to $30,000 per chemical.

Toxicology provides a more severe SAR
modeling chalenge. In this case, the extrinsic
chemical “property” being modeled is a biologi-
cal endpoint, i.e. an activity determined by the
complex interaction of a chemical within the
biologica system. Whereas an intrinsic chemical
property relates unambiguously to a single
physical process or mode-of-action, there are
most often many possible mechanisms by which
chemicals with different structural characteristics
elicit a common biological activity or toxicity
endpoint. This complexity coupled with lack of
knowledge concerning mechanisms of toxicity
introduces greater uncertainty and imposes
greater restrictions on the application of SAR
concepts to toxicology. The key to ameliorating
these concerns is to restrict SAR models,
whenever possible, to chemicas that elicit their
effect by a common mode-of-action, and to
incorporate whatever knowledge is available
concerning the mechanism of toxicity into SAR
model development. This does not necessarily
require full, detailed knowledge of the molecular
mechanism, but a common mode-of-action must
be indirectly inferred or hypothesized to
maximize validity and reliability, and minimize
uncertainty in the SAR model. (The terms
“mechanism” and “mode-of-action” are used in-
terchangeably in the present text). This explicit
linkage between SAR and mechanism of action is
crucial to establishing the plausibility of an SAR
model and providing the necessary scientific
rationale for its acceptance and use (6).
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It follows that SAR models will be most suc-
cessful when applied to mechanistically well-de-
fined toxicity endpoints. Such endpoints are
more likely to consist of specific biochemical in-
dicators (e.g. P-450 induction, inhibition of DNA
repair), in vitro bacterial assays, tissue and organ-
specific effects, and in vivo assays where a com-
mon unifying process, transformation, or event is
central to the activity. Examples include the cen-
tral role of: logP or bioavailability in narcosis
mechanisms of acute aguatic toxicity; formation
and stability of electrophilic nitrenium ion inter-
mediates in mutagenicity of nitroaromatics, Ah
receptor binding in toxic effects of dioxin and
PCBs;, and derma penetration (logP) and acidity
(pKa) in determining skin corrosivity. The most
difficult types of toxicity endpoints to model with
SAR are termed “apical” endpoints, i.e. typicaly
whole animal in vivo assays of chronic disease or
effect that consider as much of the integrated
physica and biologica process as possible in a
single test (e.g. developmental toxicity, neurotox-
icity behavioral effects, rodent carcinogenicity).
While these assays are often considered most
relevant and useful to human health or ecologica
risk assessment, they are aso the most costly,
most controversia in terms of anima usage, least
likely to be available, and most difficult to inter-
pret mechanistically. In these cases, restriction of
the SAR to a narrowly defined chemical class is
the best assurance that a common mode-of-action
applies.

Another essential element of an SAR modd is
the data used in its development, i.e. the chemi-
cas and activities or potencies. There are two
fundamentally distinct types of SAR models for
any toxicity endpoint, those that model the
conditions for distinguishing between activity
classes, eg. “actives’ and “inactive’, and those
that model the conditions for modulating
potencies among a group of chemicals belonging
to a common activity class, i.e. “actives’ (5). The
SAR requirements for being a member of the
“active’ class may be quite distinct from those
that explain differences in potency among the
actives. In addition, data requirements differ for
the two objectives. sufficient test data on
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negative, or inactive analogues are essentia for
establishing boundaries of an SAR, while test
data on positives, or actives covering a wide
range of potencies are required for QSAR devel-
opment. Often, sufficient and appropriate nega-
tive test data for SAR model development are
lacking. Testing recommendations are driven by
concern for adverse effects and, hence, testing
resources are applied to the chemicals considered
to pose the greatest hazard, i.e. most likely to be
active in a toxicity assay. In addition, negative
test data are less likely to be published and avail-
able since they are perceived to be of less interest
to the scientific community. A legitimate role of
strategic testing, particularly in a research setting,
should be to challenge and improve the quality of
current SAR models and, in some cases, verifica
tion of a negative test prediction may be the best
use of available resources. Often the most dra-
matic structure-activity differences among ana-
logues, eg. where a minor structural change
eliminates or imparts an activity, are the most
informative and useful in SAR analysis. For ex-
ample, addition of a single methyl group in the
bay region of the PAH, benz(a)anthracene, elimi-
nates its carcinogenic activity due to steric
crowding and blocking of metabolic activation to
the ultimate carcinogen, i.e. the diol epoxide.

SAR has been most successfully applied to
classes of organic chemicals where quantitative,
reproducible activity data are available for pure
chemicals with known structures. Since SAR
requires knowledge of individual chemical struc-
tures, it cannot be applied to uncharacterized
chemical mixtures. When SAR is applied to
polymers, it generally deals with reactivity char-
acteristics of the monomeric units. Also, very
little SAR modeling has been done for inorganic
chemicals, i.e. metals or metal complexes, due to
gparsity of data on chemica analogues, and the
greater challenges in characterizing and calculat-
ing the pertinent chemical characteristics of these
species in hiological systems. Subject to these
congtraints, conditions for optimal SAR model
development and application include: restriction
of the SAR model to a well-defined toxicity
endpoint or single mode-of-action chemical class;

availability of test data for a range of chemical
structures, attributes, and potencies, use of
mechanistically relevant molecular descriptors; a
mechanism-based scientific rationale for SAR
model and predictions; and prospective validation
on test chemicals not used in SAR mode
derivation.  Optimally, some knowledge of a
possible or probable biological mechanism of
action guides parameter development, provides
the basis for determining chemica analogy,
defines the region of chemical/activity space
where the SAR model is likely to be applicable,
i.e. places limits on model extrapolation, and
provides scientific rationale for a model
prediction (17). Even in the absence of explicit
knowledge of mechanisms of toxicity, however,
an SAR model developed mindful of the above
congtraints has the potential to generate insight
into possible mechanisms of toxicity and guide
further experimentation.

Hence, there is a continuum of SAR modeling
tools, biological endpoints, and considerations
that impact on the relevance and utility of SAR
models for use in toxicity screening. The next
section will consider current SAR capabilities
being applied to TSCA screening.

UUSE OF SAR IN TSCA REVIEW OF
NEW AND EXISTING CHEMICALS

The bulk of the SAR expertise within EPA
currently being brought to bear on the TSCA
existing chemicals problem has evolved out of the
Pre-Manufacture  Notification (PMN) review
process (2). Hence, the PMN process, and its
strengths and weaknesses warrants some dis-
cussion. By law, TSCA requires companies
wishing to manufacture a chemical not on the
TSCA Inventory to submit a premanufacturing
notice (PMN) to EPA. EPA then has 90 days in
which to determine if the manufacture, processing
or use of that chemical in commerce may present
an unreasonable risk to human health or the envi-
ronment. If this is determined, EPA has the legal
authority to request further test data be submitted
for the PMN chemical. The Structure-Activity
Team (SAT) within the Office of Pollution Pre



Figure 12-2: EPA Screening Procedure
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vention and Toxics at EPA was conceived in or-
der to efficiently and systematically screen PMN
chemicals for hedth and/or ecological hazard.
The 20 or so members of the SAT represent a
wide range of chemical, ecological, and toxico-
logical disciplines. Some characteristics of the
PMN process are as follows. Since no toxicity
testing is required by law, test data accompany
fewer than 5% of the PMN chemicals submitted.
Hence, SAR frequently provides the sole means
for evaluating these chemicals. In the area of
ecotoxicology, a number of computerized, chemi-
cal classhased QSAR modegls have been deve-
oped for use in predicting physical/chemica
properties, ability to degrade and bioconcentrate,
and toxicity to fish, aguatic invertebrates, and
agae (8, 10, 23). In the health toxicology area,
models and SAR expertise vary considerably de-
pending on the state of knowledge in the particu-
lar field of toxicology and, in contrast to
ecotoxicology, most models are qualitative and
heavily reliant on chemica analogy, rules and
expert judgement.

The mandate of the SAT is primarily opera-
tional, i.e. to evaluate more than 2000 chemi-
calslyr within a 90-day deadline from the date of
each PMN submission (20). The SAT operates
under strict confidential business information
(CBI) restrictions with respect to the chemicals it
evaluates, which prohibits the sharing of chemical
structures used in SAR model development with
outside parties. Computers are used for data base

Chapter 12 SAR and Modeling 105

searching, to aid the identification and retrieval of
chemical analogues, for the calculation of chemi-
cal properties required for estimating bioavail-
ability and fate, and for the application of QSAR
models for eco-tox endpoints. Finaly, there is an
emphasis on mechanism-based approaches and
interpretations, Wwhenever possible, to reduce
uncertainty in the SAR prediction, increase
plausibility, and provide the necessary scientific
rationale to support a testing recommendation.

The PMN screening process is summarized in
figure 12-2. Upon receiving a PMN chemica
submission, the SAT reviews the literature and in-
house data bases of previoudy reviewed chemi-
cas to identify possible analogues. Anaogues
consist of chemicals with similar structures or
fictional groups to the PMN chemical, for
which test data are avalable or a previous SAT
assessment is on record. In some cases, when
very little is known about the chemical or a tox-
icity endpoint, this is the extent of the SAR, i.e
available data for the analogue are assumed to
apply to the PMN chemical. This information
could flag the PMN chemical as a potentia fish
toxicant, developmental toxicant, carcinogen, etc.
In other cases, additiona SAR considerations or
models apply to the chemica class, of which the
PMN chemical is assumed to be a member, and
are used in making a testing recommendation.
This SAR hazard assessment is considered aong
with exposure data in making the “may present an
unreasonable risk” determination, which may
trigger a testing requirement under Section 5 of
TSCA. The importance of the analogue selection
step as the top-most tier in this overall process
should be stressed. If suitable analogues are un-
available, or if inappropriate analogues are chosen
with respect to toxic mode-of-action, inappropri-
ate SAR considerations and incorrect judgement
could be applied to the PMN chemica under re-
view. Finaly, an extremely important element of
the PMN process occurs subsequent to the issu-
ance of a testing requirement. Comparison of the
toxicity test result to the SAT prediction provides
the primary mechanism for the continual valida-
tion and refinement of the SAR models and as
sumptions used in the PMN process.
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By virtue of their legal mandate, the EPA/SAT
has evolved into a unique and vauable resource
that plays a pivotal role in environmental and
health protection. Nowhere else in the world has
such a concentration and wide range of expertise
been focused solely on the task of SAR model
development and ecologica fate and toxicity
screening. The SAT is also unique in terms of its
unparaleled access to unpublished, proprietary,
and internally generated toxicity test data from a
wide range of sources and for a wide variety of
chemicals, data which are essentid for the
development and refinement of predictive SAR
models. More than 24,000 chemicals have been
screened through the PMN process since 1979,
contributing greatly to the evolution and
improvement of SAR expertise and models in
current use. In addition, the SAT has engaged in
a number of outside collaborations to further ver-
ify and improve upon existing models. An ex-
ample is a recent collaboration with their
European Community (EC) counterparts in which
the SAT blindly evaluated 144 chemicals concur-
rently undergoing toxicity testing (19). This and
other exercises have provided support for many of
the SAR models and assumptions in current use
by the EPA/SAT, while pointing to deficiencies in
others. The overal performance results of the
European Community exercise are available in
the form of a joint EPA/EC summary report from
either the European Union in Brussels, or the
EPA as Document Number EPA 743-R-94-001.
However, confidentiality restrictions required that
al of the individual chemical identities associated
with the exercise be destroyed, a loss that limits
the potential benefit of the study to both the EPA
and the outside SAR community.

The current expertise of the EPA/SAT is being
used in the development of a “Use Cluster
Scoring System” for evauation of the TSCA
existing chemicals inventory. A tiered Strategy
has been implemented, the first step involving the
identification of “use clusters’, i.e. categories of
common use chemicals, such as paints, rust
inhibitors, plasticizers, etc., that are likely to have
smilar exposure scenarios (e.g. paints -
occupational inhalation exposure). The second

stage involves prioritization of these use clusters
based on SAR, exposure, and available toxicity
data. A more complete SAR toxicity evaluation
using the models and expertise of the EPA/SAT,
is then applied within the use cluster to establish
testing priorities among the individual chemicals.
All available test data, which may include
possible occupational exposure hedth data for
existing chemicals in commerce, are considered
in the preliminary toxicity screening assessment.

The main deficiencies of the EPA/SAT ap-
proach for TSCA review of PMN chemicals or
existing chemicals in commerce, shared by the
SAR community at large, are inadequate data and
lack of knowledge of mechanisms of toxicity for
many of the chemica classes and toxicity
endpoints of potential regulatory concern. In
addition, the SAT has neither the mandate, nor
the time or resources to evaluate new technolo-
gies or to carry out research to improve existing
SAR models. Hence, a deliberate outreach effort
must be made by the SAT to communicate and
interact with industry and research groups with
the potential to impact on the process. While the
fina SAR models and expertise developed by the
EPA/SAT can and are being made available to the
public (two examples being the ECOSAR pro-
gram  for  eco-tox  screening, and the
ONCOLOGIC expert system for predicting
chemical carcinogenicity), CBI confidentiality
congtraints prohibit the release of the primary
data and chemical structures used in model devel-
opment. CBIl constraints are designed to safe-
guard the rights of industry, yet are in perpetuity
under existing law, regardless of whether the
chemica was ever produced or entered into
commerce. These constraints limit the ability of
outside parties to independently  scrutinize,
validate, and improve upon EPA/SAT models.
Access to the data used in SAR development is
valuable for defining the proper boundaries of
application of the SAR model, for developing
hypotheses concerning the structural basis for the
toxic mode-of-action, and for refining or
developing alternative SAR models.

QSAR/SAR models are aso developed and
used by industry for addressing TSCA require-



ments. However, these models tend to be tailored
and restricted to the speciaty chemicals produced
and used within a particular industry (e.g. sol-
vents, adhesives, etc.). These SAR models, and
data on which they are based, are usually consid-
ered proprietary. There tends to be more limited
SAR expertise within industry with respect to the
wide range of toxicity endpoints of potentia con-
cern under TSCA, and more limited access to data
than is available to the EPA/SAT. Particularly
when in-house expertise is lacking, there is in-
centive for industry to take advantage of the PMN
process for toxicity screening prior to large dollar
investments in research and/or development. A
PMN submission costs little and is performed
within a short time frame. Even when expertise is
available to industry, there is incentive to antici-
pate PMN toxicity estimates that would trigger a
testing requirement, rather than to develop inde-
pendent estimates. An EPA testing requirement
for a PMN chemical often provides sufficient in-
centive for industry to redirect a line of research
or abandon plans to manufacture a potentialy
toxic chemical, providing an effective means for
serving the interests of environmental protection.
For the review of existing chemicals in com-
merce, the economic incentive to avoid possible
regulatory action is much greater since consider-
able investment in the chemical has already taken
place. In this case, industry is more inclined to
challenge testing requirements by independent
SAR estimates.

UCURRENT SAR APPROACHES AND
EMERGING  TECHNOLOGIES

The most widely used paradigm for QSAR
study is the linear free-energy relationship
(LFER) or Hammett equation approach, based on
statistical linear regression fit of steric, electronic,
and hydrophobicity terms to biological potency.
This is a chemical class-based approach, designed
to be applied to a range of structurally similar, or
“congeneric” chemicals that are assumed to have
a common mechanism of action. LFER equations
are the basis of the ECOSAR compilation of
QSARs for ecotoxicology used by the SAT, and
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the maority of published QSARs for biological
endpoints. Within the QSAR paradigm, further
incremental  advances will come from better
mechanism-based chemical classifications, gen-
eration of additional test data, and development of
more mechanigtically relevant molecular parame-
ters and descriptors. For example, while it is now
possible to predict with reasonable accuracy the
acute toxicity of “unreactive” (i.e. narcosis
mechanism) chemicals to many aquatic species,
models are less reliable for chemicals acting by
aternate mechanisms of action. In particular,
there is movement in the QSAR field towards
incorporation of more rigorous quantum me-
chanical properties related to potential reactivity
and energy characteristics of molecules derived
from their three-dimensional structure.

Each individua LFER QSAR equation is as
sociated with a relatively narrow range of chemi-
cals and a specific biological endpoint and, thus,
has limited applicability to other toxicity predic-
tion problems. An approach being advocated by
Corwin Hansch, one of the pioneers of the QSAR
field, is to process larger units of existing infor-
mation than individua QSARs in order to gener-
ate insight into unifying features of biological
processes (12). Over the past severa years,
Hansch and coworkers have compiled over 3000
existing QSARs from the literature into a com-
puterized data base, CQSAR (9), for easy access,
comparison, and study. The CQSAR data base is
also being used as a vadidation tool, to judge in-
dividua QSARs in a larger biological context by
lateral examination of related, or overlapping
QSARs, i.e. QSARs for similar chemi-
calgdifferent endpoints, QSARs for similar end-
points/different chemicals, or QSARs for
different chemicalg/different endpoints having a
similar functional form. For example, a very
genera feature of the CQSAR data base is that
>85% of the QSARs contain a major contribution
from a hydrophobicity term (logPo/w), and the
coefficient of this term is amost adways in the
range of 1-2. This argues that QSARs without a
logP term, or with a logP coefficient significantly
deviating from 1-2 should be considered either
novel or suspect.

|
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Table 12-1: TOPKAT Available Models

Rat acute oral LD50 (19 submodels, 400 chemicals)
Rat chronic oral LOAEL
Mouse inhalation LC50

Developmental toxicity potential (3  submodels,
w/ and w/o maternal toxicity)

Carcinogenicity

Mutagenicity

Fathead minnow acute LD50
Daphnia EC50

Biodegradability

Skin/eye irritancy (Draize test)

An example of a commercidly available SAR
program, in use by some industry and government
groups, is the TOPKAT computer-based toxicity
prediction program (18). TOPKAT is based on
LFER concepts, but has typically been applied to
SAR modeling of large data sets of “non-conge-
neric’ chemicals, i.e. chemicas representing
many chemical classes and mechanisms of action.
TOPKAT applies traditional  statistical  ap-
proaches, such as multiple-linear regresson and
discriminant analysis, to identify SAR associa
tions between structure-derived chemical proper-
ties and activity. Indicator variables, i.e
variables that take on a value of O or 1 depending
on the presence or absence of a molecular feature,
provide an approximate means for incorporating

Figure 12-3: TOPKAT Method
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multiple chemical classes into a common SAR
model, e.g. a parameter could be “turned on” or
“turned off’ if a molecular feature such as a nitro
group were present. TOPKAT models have been
developed and are available for the endpoints
listed in table 12-1. The model development
procedure is summarized in figure 12-3 and
culminates in an SAR model for toxicity predic-
tion. The main limitations of the TOPKAT ap-
proach, shared by other statistically-based
computerized SAR programs such as CASE and
ADAPT, are: limitations in chemical descriptors;
dissociation of SAR model development from
biological mechanism considerations; and the
abandonment of the chemical class restrictions of
traditiona QSAR (16). Models have been devel-
oped for large, chemically diverse data sets asso-
ciated with complex toxicity endpoints known to
represent many possible modes-of-action and,
since little effort has been made to incorporate
mechanism considerations, models tend to be
difficult to interpret and scientificaly rationalize.
In addition, there has been a tendency towards
over-reliance on statistical indicators of model
predictive capabilities and underestimation of the
inherent uncertainty of these models due to their
biological component. For these reasons,
TOPKAT, and other dsatistically-based toxicity
prediction programs are not currently used by the
SAT for TSCA screening.

TOPKAT does, however, have some useful
features and legitimate uses. One of TOPKAT's
greatest strengths is its high quality data bases
compiled from private sources and an exhaustive
search of the literature, where each experiment
and activity call is carefully evaluated prior to
data base incorporation. TOPKAT provides
ready access to this existing data and an auto-
mated means for identifying chemical anaogues
based on structural features. TOPKAT aso em-
ploys conservative dtatistical analysis and valida
tion procedures. A TOPKAT anadysis of a non-
congeneric data set is potentially useful for
generating mechanism hypotheses when very lit-
tle prior knowledge is available for classifying
chemicals according to mechanism. TOPKAT
can aso serve as a potentially valuable supple
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Figure 12-4: Oncologic Cancer Expert System
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ment to expert rule-based approaches when the
latter are relatively undeveloped (e.g. in the de-
velopmental toxicity field), or as an approximate
preliminary screening capability when little ex-
pertise is available. Recognizing current limita-
tions of their approach, TOPKAT developers are
moving towards the goal of more “mechanistic”
models in the sense of restricting model devel-
opment to smaller, more well-defined activity
endpoints and chemical classes (1 1). (See exam-
ples in table 12-1.) These initiatives offer hope
for improving the utility of such models for tox-
icity prediction in TSCA screening.

Traditional QSAR studies attempt to discover
new, previously unknown mathematical relation-
ships for predicting activity from chemical struc-
ture. In contrast, an expert system ams to
reproduce the human expert decision process for
evauating chemical toxicity by codifying current
knowledge. An example of the latter is the
OncoLogic cancer prediction expert system (15),
being developed as a collaborative effort between

the cancer experts within the EPA/SAT and out-
side expert systems programming consultants.
OncoLogic is an artificial intelligence, rule-based
expert system that can be applied to a wide range
of non-congeneric chemicals, but that relies on a
chemical class, mechanism-based approach to
cancer prediction (22). It incorporates literally
thousands of discreet rules for characterizing each
of a variety of chemical classes based on the can-
cer expertise of the SAT. Due to the enormous
size of this undertaking, the program is currently
operational only for metals, polymers, fibers, and
a few classes of organic chemicals, with capabili-
ties for other chemical classes still under devel-
opment. OncoLogic has a hierarchical structure
as represented in figure 12-4. In the top-most
levels, structural considerations are used to ex-
clude molecules from concern on the basis of
factors such as molecular weight, volubility, and
bioavailability. A chemical is then classified ac-
cording to properties and structure features until
sufficient characterization allows application of
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Figure 12-5: Sample OncolLogic Carcinogenesis Evaluation Justification Report
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Summary: The level of caranogenicity concern from this aromatic amine is LOW - MODERATE.

Justification: In general, the level of carcinogenicityoncern of an aromatic amine is determined by
considering the number of rings, the presence or absence of heteroatoms in the rings; the number
and position of amino groups; the naturaumber and position of other nitrogen-containing “amine
generating groups”, and the type, number and position of additional sustituents.

The evaluation of this compound proceeds as if the di-akyl substituted amino group, NR1R2 [where
R1= ethyl; R2=sec-propyl] were a free amino group. The influence of the N-akyl groups on the
bioactivation of the compound is considered at the end of the evaluation.

The reduced electron conducting properties of the intercyclic linkage are expected to lower the overall
level of concern. Therefore the level of carcinogenicity is reduced to MODERATE.

the SAR rules for a specific chemical class, such
as shown for aromatic amines. A sample output
is aso shown in figure 12-5, illustrating a portion
of the lengthy, mechanism-based rationale pro-
vided to support the prediction of LOW-
MODERATE concern for this sample chemical.
The rules consider issues such as metabolism and
activation to reactive electrophiles, and accurately
reproduce and communicate the mechanism-
based rationale of the EPA/SAT cancer experts.
Since these rules are distinct program units, they
can be modified as knowledge advances. By
communicating  the detailed rationale for
EPA/SAT cancer predictions, OncoLogic alows
industry and others to identify and challenge pre-
vailing SAR assumptions by directed research.
OncoLogic aso makes the current cancer predic-
tion expertise of the SAT more accessible and
widely available within and outside EPA.

An expert system is only as good as the rules
and knowledge upon which it is based. Although
a few other expert systems are currently available
for toxicity prediction, most are based on more
limited knowledge and expertise than OncoL ogic,
and have more limited appeal for toxicity
screening. One possible exception is in the area
of metabolism prediction. Many chemicals re-
quire metabolic activation as a precondition to

toxicity. In many of these cases, modeling the
conditions for metabolic activation, or modeling
the metabolizes instead of the parent compounds,
is the key to developing a successful SAR for
toxicity prediction. OncolLogic, for example, in-
corporates numerous metabolism rules for or-
ganic chemicals. Metabolism expert systems,
such as Metabol Expert (14), provide industry and
the larger SAR community valuable access to
expertise concerning likely metabolic pathways
and products for many chemicals of concern.

As has been stressed, mechanism-based
chemical classification is one of the primary re-
quirements for successful SAR model develop-
ment, providing the scientific basis for the
chemical analogue selection step in figure 12-2.
The criteria for analogue selection is a key area of
uncertainty in many SAR modds since it is
usually based on organic chemistry principles
derived independent of the biology, and may not
reflect similarity in terms of biological
mechanisms of toxicity. The problem of
choosing appropriate analogues is illustrated by
the example of peroxisome proliferators. These
chemicals are structurally diverse, yet have highly
similar pleiotropic, toxicological responses that
strongly suggest a common receptor-mediated
mode-of-action. Hence, it is the biologica



response, not the apparent chemistry, that directs
one to group these chemicals into a common class
for the purpose of SAR model development.

A few research groups are considering biologi-
ca means for classification of chemicals for use
in SAR studies. In recent years, Bradbury and
coworkers a EPA’s Environmental Ecology
Laboratory have moved away from traditional
chemica classsbased QSARs for predicting
aquatic toxicity and towards the generation of
biological mechanism-based QSARs (7). They
first established a mode-of-action knowledge base
covering a broad range of chemicals, exposure
regimes and endpoints. Empirical assessment of
toxicity mechanism was then determined by con-
sideration of joint toxic action studies, physio-
logically-based toxic response syndromes, and
single chemical dose-response curves, yielding a
variety of toxic mode-of-action classifications
(e.g. baseline narcosis, oxidative phosphorylation
uncouplers and respiratory inhibitors). Only after
such biological classifications were determined
were efforts centered on QSAR anaysis and un-
derstanding the chemical mechanisms and struc-
tural criteria for underlying activity. Hence, in
applications, biologically-based chemical clas-
sifications would define criteria for choosing ap-
propriate chemical analogues and identify the
relevant QSAR for use in a toxicity screening
application.

A second example is provided by the Rules In-
duction Method for Predicting Chemical Carcino-
genesis developed by Bahler and Bristol in a
collaborative effort between NIH/NIEHS and
academia (3). This is an automated, decision-tree
approach where rules for use in prediction are
mathematically induced from available data,
rather than obtained by human experts. In con-
trast to TOPKAT, the rules are derived from both
chemical and biologica “attributes’. These in-
clude: Samonella mutagenicity (SAL); electro-
philic structural alerts; route of administration;
MTD; subchronic organ pathology (up to 59 or-
gan types, up to 40 morphological lesions); and
miscellaneous in vitro short term test results. As
a predictive screening tool, this approach has the
limitation that it requires subchronic pathology
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information from the rodent bioassay, and some
in vitro assay information. However, significant
cost savings would be realized in generating these
data as opposed to carrying out a fill 2-year ro-
dent carcinogenicity bioassay. This biological
information was also utilized by “human experts’
in a recent NTP-44 prospective carcinogenicity
prediction exercise where human expert predic-
tive performance was judged superior to the per-
formance of “pure’ SAR methods, i.e. methods
based on chemical structure alone (). Perhaps
because the Rules Induction Method and human
experts used much the same information in their
assessments, the Rules Induction Method per-
formed nearly as well as the human experts in the
prediction exercise. An adternative use of this
information, germane to the present discussion, is
as a means for defining biological mechanism-
based chemical classifications for subsequent
SAR anaysis, i.e. using each rule branch to de-
fine a possibly distinct mode-of-action chemical
class. Two sample rules are shown in table 12-2.
All chemicals satisfying Rule#l comprise a sub-
class of active carcinogens likely to be mechanis-
tically distinct from other active carcinogens in
terms of biological attributes. Hence, the struc-
tural features common to chemicals in this rule
class, and distinct from chemicals belonging to
the remaining actives or inactives could congtitute
an SAR model for prediction of carcinogenicity.

Table 12-2: Sample Induction Rules for
Chemical Carcinogenisis Predictor

Rule #1:
IF chemical mutates Salmonella
AND adjusted rat MTD=<750 mglkg/day,
THEN class is positive.
(Rule true for 90% of 147 chemicals in training set)

Rule #5:
IF chemical does not mutate Salmonella
AND there is no subchronic pathology in male rat
pituitary, spleen, or urinary/bladder,
AND there is no subchronic pathology in
female rat kidney
THEN class is negative
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A discussion of promising technologies for
toxicity screening aso should include mention of
major advances in computational chemistry and
3D modeling and visuaization that are yielding
greater understanding of the detailed molecular-
level interactions and changes ultimately respon-
sble for the toxicity. Such methods are
advancing in tandem with increasing computa-
tional capabilities, and increasing knowledge of
chemical reaction mechanisms, the structure and
function of biological receptors, metabolic en-
zyme activity (cytochrome P-450s, and glu-
tathione), and DNA interactions implicated in
various forms of toxicity. Computational chemis-
try studies have had a significant impact, for ex-
ample, on understanding of the structural and
electronic requirements for DNA-adduct forma-
tion and carcinogenicity of polycyclic aromatic
hydrocarbons (incorporated as rules in On-
colL.ogic).

Another example illustrating how 3D modeling
tools, more commonly employed in drug design,
can be applied to toxicity problems once a recep-
tor-based mechanism for a toxicity endpoint has
been proposed or established is provided by a re-
cently published 3D-QSAR model for endocrine
disrupters developed by Wailer and coworkers at
the Nationa Heath and Environmental Effects
Research Lab of EPA (21). The toxicity of a
class of endocrine disrupters was postulated to be
due to interaction with the steroid hormone recep-
tor. Since the structure of this receptor was un-
known, ligand requirements of the receptor were
inferred from a comparison of the three-dimen-
sional structures of known steroid receptor |i-
gands (such as estradiol). The final computerized
3D QSAR mode provides a means for predicting
the potential receptor binding affinity of any
chemical relative to endogenous steroids given
the 3D structure of the untested chemical. After
sufficient validation, such a model could serve as
a rapid screen for potential endocrine disrupters
and be used for setting testing priorities, i.e. by
identifying chemicals most likely to compete with
endogenous steroid ligands.

Major advances are being redlized in informa-
tion and computational fields that could eventu-

aly lead to improved SAR models for toxicity
prediction. Advances in neural networks, artifi-
cia intelligence, molecular visudization and
modeling al have the potential to generate previ-
ously undiscovered models from existing data
However, these models will be subject to the
same biology-imposed constraints as previously
discussed, and share many of the same limitations
as current methods. For example, the major dis-
advantage of current neural network-based SARs
for toxicity prediction is that the model cannot be
easily interpreted in terms of the origina molecu-
lar parameters and, hence, the scientific basis for
the NN model is practicaly undecipherable,
making it difficult to scientifically rationalize a
model prediction or define the bounds of applica-
tion of the model.

LUCONCLUSIONS

Improvement in current SAR models used in
TSCA chemical screening will be achieved most
effectively by close interaction and feed-back
between SAR application and toxicity prediction,
laboratory testing, validation, and research into
chemical mechanisms of toxicity. SAR is an ex-
tremely multidisciplinary field, applicable to a
wide range of problems and endpoints. Since
SAR modelers often lack expertise in toxicology,
and toxicologists tend to be unfamiliar with the
tools and assumptions of SAR modelers, there is a
need for increased interaction, collaboration, and
education between these two groups. The SAR
modeler can guide the toxicologist in choosing
experimental measures of toxicity, appropriate
chemicals for SAR model design, and, in cases
where a preliminary SAR model exists, approxi-
mate dose ranges to test for an effect. The toxi-
cologist can provide the SAR modeler with
insight into possible modes-of-action, practica
and experimental design constraints (i.e. a reality
check), and sources of uncertainty and error in the
data.

The EPA/SAT is the regulatory arm that bears
primary responsibility for the development and
application of SAR to TSCA chemical screening,
and the SAR expertise, models, and data used by



the SAT represent an extremely valuable resource
for serving the interests of health and environ-
mental protection. However, the SAT operates in
relative isolation from the larger SAR commu-
nity, and each could benefit from increased com-
munication and collaboration.  Although some
outreach efforts have been made by the SAT,
through development and dissemination of com-
puterized SAR programs such as ECOSAR and
OncoLogic, a major obstacle to increased collabo-
ration is the confidential nature of the data used in
SAR model development. Similarly, industry and
other government regulatory agencies, such as
FDA, often have large stores of toxicity data that
are considered proprietary. A recent ECVAM
workshop on “Integrated Use of Alternative Ap-
proaches for Predicting Toxic Hazard” produced
the following recommendations (4):

« “Companies should be encouraged to make
non-confidential data available to externa
groups, perhaps via an independent organi-
sation such as ECVAM. For confidentia
data, they should be encouraged to review
the need to maintain that confidentiality on a
regular (continual) basis.”

. “Regulatory agencies should be encouraged
formally to establish (Q)SARs utilising
submission data. . . . Companies should also
be encouraged to develop (Q)SARs using
their confidential data. Such (Q)SAR mod-
els should then be placed in the public do-
main, along with supporting non-confidential
data.”

While legitimate and defensible concerns of
industry regarding the need for confidentiaity of
chemical structures and processes should not be
minimized, there also should be greater acknowl-
edgment of the value of avalable toxicity data,
and recognition that more universal access to high
quality toxicity data for SAR model development
serves the best interests of the entire SAR com-
munity.

A number of issues have been identified that
impact on the accuracy and utility of current SAR
models for TSCA screening. To reiterate, the
major trends likely to lead to the greatest
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improvement in
prediction are:
« greater understanding of mechanisms of
toxicity for endpoints of potential concern;
« greater use of biologically-based chemical
classifications in SAR development;
« better ways to represent molecules and their

detailed biological interactions in  SAR
models,

+ continued use of prospective validation and
testing to validate and refine SAR models;

« greater understanding of role of metabolism
in various forms of chemical toxicity;

+ increased knowledge of role of biological re-
ceptors in toxicity and elucidation of the
structure, function, and ligand requirements
of relevant receptors,

+ testing to fill crucial data gaps for chemical
classes and toxicity endpoints of potential
concern,

« greater effort to declassify some CBI and
proprietary toxicity data that have little
commercial value for use in SAR develop-
ment;

+ improved interaction between SAR users in
industrial, academic and government re-
search, and regulatory agencies to improve
SAR models .

Screening the TSCA existing chemical inven-
tory for all manner of potentially harmful effects
in a timely manner is a huge challenge that cannot
be met by testing alone. While testing deals with
the generation of new data, SAR is above al the
study of existing data and how to make best use
of these data to predict the biological activity and
properties of chemicas for which data are
unavailable. SAR provides the only real
dternative to expensive and time consuming
laboratory testing.  Hence, reliance on SAR
methods will no doubt increase in response to
increased budgetary and societal pressures to re-
duce costs and limit the use of animals in toxicity
screening.  While these methods hold great
promise, the danger is that in response to such
pressures SAR models will be invoked prema

SAR models for toxicity
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turely for some toxicity endpoints, will be ex-
tended beyond where they are likely to be valid or
reliable, and will be used without sufficient over-
sight and testing verification. SAR offers a
means for achieving better health and environ-
mental protection by enabling a strategic and in-
telligent application of limited testing resources,
by identifying the highest priority risk chemicals,
and by attacking a much larger portion of the
problem than is currently being addressed by
testing alone. Better SAR models aso have the
clear potential to further reduce the need for test-
ing or eliminate testing in some circumstances.
SAR models will improve in tandem with in-
creased understanding and availability of data
upon which to base and refine such models.
However, fulfilling the promise of SAR requires
proper application of these methods, clear rec-
ognition of the limitations of SAR, and apprecia-
tion for the essential roles of research and
strategic testing in SAR model development and
refinement.
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