Index
Index

Acme-Cleveland, 285
Adult Education Participation Survey, 231
Allen-Bradley, 281, 286, 287
American Assembly of Collegiate Schools of Business, 239
American National Standards Institute, 88
American Society for Testing Materials, 88
American Society for Training and Development, 222, 231
Applicon, 275
Apollo, 278
Arthur D. Little, 269
ASEA Robot Co., 118, 287, 289, 294, 298, 299
A. T. Kearney, 302
Australia, 296, 298
Automated Manufacturing Research Facility (AMRF), 307, 320, 322, 326
Automatix, 236, 243, 292, 295
Autoplace, 287

background, 25-26
Battelle Memorial Institute, 302
Belgium, 298
Bendix, 285, 286
Black & Decker, 291
Boeing Commercial Airplane Co., 46, 271
Boeing Computer Services, 233, 240
Booz-Allen and Hamilton, 302
Brigham Young University, 238, 240, 241, 245, 248
British Machine Tool Trades Association, 197
Buick, 277, 296
Bulgaria, 334
Bureau of Census, 19, 164

Calma, 275, 301
Camax Systems, Inc., 277
Canada, 14, 255, 285, 337, 360
Carnegie-Mellon University, 85, 145, 147, 316, 328
Caterpillar Tractor, 301
Census of Manufactures, 278
Center for Occupational Research and Development, 236
Chasen, S. H., Lockheed Georgia, 43
China, 298
Chrysler, 197, 275, 276
Cincinnati Milacron, 120, 235, 236, 270, 283, 285, 287, 289, 292, 296, 327
Clark Equipment, 299
Computer-Aided Manufacturing International (CAM-I), 314, 329
ComputerVision, 272, 273, 276, 277
Congress:
Congressional Budget Office, 377
Congressional Research Service, 377
House Committee on Science and Technology, 388
congressional interest and policy, 29-30

Coniglaro, Laura, 289
Connecticut, 37, 39, 59
Control Data, 274, 275, 276, 277
Coordinating Committee on Research on Intelligent Robotics Systems, 321
Copperweld Robotics, 287, 291
Corporation for Educational Training, 251
Cross & Trecker, 283, 284, 285, 286
Current Population Survey, 136
Czechoslovakia, 334

Daiwa Securities American, Inc., 294
Dallas Independent School District, 241
Dassault, 276
Data General, 274, 275
Data Resources, Inc., 137
Danly Machine Corp. 277
Deere & Co., 67, 68
Department of Agriculture, 325
Department of Commerce, 284, 312, 319, 320
Air Force Materials Laboratory, 80
Defense Advanced Research Projects Agency (DARPA), 13, 316, 317, 318, 319
Electronics Computer-Aided Manufacturing (ECAM), 315, 319
Industrial Modernization Incentives Program (IMIP), 316
Integrated Computer-Aided Manufacturing (ICAM), 315, 319
Intelligent Task Automation (ITA), 316
Manufacturing Technology Program (ManTech), 13, 314, 315, 316, 318, 319
Naval Surface Weapons Center, 318
Office of Naval Research, 13, 317, 318, 319
R&D funding, 314
Strategic Computing project, 86, 87
Technology Modernization (TECHMod) program, 316
Department of Energy, 325
Department of Labor, 19, 20, 205, 252, 254, 386, 389
Department of Transportation, 325
DeVilbiss, 287, 289
Digital Equipment Corp., 85, 118, 274, 275

Eastfield Community College, 242, 244
East Germany, 334
education, training, and retraining issues, 219-265
case studies: selected instructional programs, 241-255
career guidance and programmable automation, 249
job counseling, outplacement, and retraining for displaced workers, 252
needs, problems, and trends, 244
roles, functions, and capacities of programs, 241
challenges facing the U.S. instructional system, 234
instructional requirements for programmable automation, 234
engineers, 238
managers, 239
changing context, 220-221
current trends in instruction, 226-234
changes in emphasis, 232
changes in enrollment, 226
education and training in Europe and Japan, 255-260
effects of programmable automation and other technologies, 222-226
categories of instruction, 225
roles for instruction in a changing society, 223
U.S. instructional system, 260
effects of programmable automation on employment, 101-175
contextual factors, 162-176
Japanese mechanisms of adjustment, 169
labour supply, 164
minority employment patterns, 170
jobs, 105-112
task creation, 109
task displacement, 107
occupational employment, 119-144
derclerical workers, 140-142
engineers, 119-124
managers, 142-144
production and related workers, 127
sales/service, 144
technicians, 124-127
shift in skills and occupational mix, 144-162
compensation patterns, 153
transient skill requirements, 151-153
qualification trends, 152
white collar/salaried employment, 144-151
intercompany patterns, 151
overall effects, 146
PA producer employment mix, 148
skills, 110-112
user industry, 112
geographic incidence, 115
unemployment rates by State, 117
effects of programmable automation on the work environment, 179-215
European and Japanese Experiences, 209-213
Japan, 209
Norway and Sweden, 210
West Germany, 212
OTA work environment case studies, 183-190, 213-215
agricultural equipment, 186, 214
auto company, 188, 215
commercial aircraft, 187, 214
small metalworking shops, 185, 213
work environment impacts, 191-208
changing skill levels, 194
labor-management relations, 204
occupational safety and health, 196
organization, 191
training, 195
Electronic Industries Association, 88, 123
Emhart Corp., Beverly, Mass., 55, 69, 204, 238, 246, 299, 328
Evans, 276
Ex-Cell-O, 285
Federal policy, implications of, 15-22
policy strategies, 15
specific policy options, 16
education, training, and retraining, 20
employment, 18
technology development and diffusion, 16
work environment, 19
Ford Motor Co., 197, 275, 287
France, 270, 272, 284, 295, 307, 330, 331, 337
programmable automation
Filiere Electronique, 354
Filiere Robotique, 353
Franklin Research Laboratories, Inc., 294
GCA, 291, 292, 295, 296, 301
General Electric, 74, 83, 86, 140, 164, 275, 281, 286, 291, 294, 295, 301, 327, 328, 334
General Motors, 67, 140, 162, 197, 235, 247, 271, 277, 295, 296, 327
Georgia Institute of Technology, 328
Georgia Tech, 321
Gerber Scientific, 274
Giddings & Lewis Machine Tool Co., 283
Glendale Community College, 236, 241, 242
GMF Robotics, 295, 296
Goodyear Tire & Rubber Co., 254
Grade, 276
Barrington, Joseph, 71
Harris, 275
Henry Ford Community College, Detroit, 236, 242
Hewlett Packard, 275, 291
Hitachi Seiki, 284, 294, 298, 299, 334
Honeywell, 255
IBM, 67, 74, 108, 240
Industrial Modernization Incentives Program (IMIP), 316
Industrial Science and Technological Innovation Division, 323
Ingersoll Milling Co., 283, 284
Initial Graphics Exchange Standards (IGES), 320
Insight Technology, 277
International Association of Machinists, 390
International Monetary Fund (IMF), 342
international support for programmable automation, 337-363
Canada, 360
France, 352
Italy, 362
Index

Japan, 340
Netherlands, 362
Norway, 359
Sweden, 350
United Kingdom, 356
West Germany, 346
International Trade Commission, 285, 289, 290, 294
Intersil, 301
Intergraph, 273, 276
Integrated Computer-Aided Manufacturing (ICAM), 315, 319, 320, 334
Integrated Programs for Aerospace Vehicle Design (IPAD), 325, 334
International Association of Machinists and Aerospace Workers’ Bill of Rights, 206
International Brotherhood of Electrical Workers, 236
International Skills Olympics, 258
Italy, 270, 283, 286, 289, 294, 298, 299, 331, 338, 362
displaced labor, 8
education and training, 255, 258
Fanuc Ltd., 65
"Fifth Generation" computer project, 86
Japan Industrial Robot Association, 48, 343
Japan Robot Learning co., 343
mechanisms of adjustment, 169
Ministry of Education, 258, 259
Ministry of International Trade and Industry, 14, 340, 344
Ministry of Labor, 259
Nissen Motor Co., 210, 259
programmable automation, 340-346
government concern, 342
government mechanisms, 342
government support to industry, 343
machine tool industry, 343
research & development, 343
robot industry, 343
Kawasaki, 289
Keenan & Trecker, 283
Kentucky, 284
Kulicke & Soff, 291
Lardner, James, 72
Le Blond-Makino, 284
legislation: Act on Employee Participation in Decisionmaking, 1977, Sweden, 211
Airline Deregulation Act of 1978, 380
Comprehensive Employment and Training Act (CETA), 255, 392
Education Consolidation and Improvement Act of 1981, 391
Elementary and Secondary Education Act, 233
Employment Act of 1946, 378
Fair Labor Standards Act of 1938, 378
Full Employment Act of 1978, 378
Higher Education Act of 1968, 391
Job Training Partnership Act, 21, 254, 391, 392
Manpower Development and Training Act, 391
Manufacturing Sciences and Technology Research and Development Act of 1983, 380
National Defense Education Act, 232
National Labor Relations Act, 386
National Rail Reorganization Act of 1978
Occupational Safety and Health Act, 387
Omnibus Budget Reconciliation Act, 380
Rail Passenger Services Act of 1970, 380
Redwoods Act of 1978, 380
Social Security Act of 1935, 377
Targeted Jobs Tax Credit, 379
Tax Equity and Fiscal Responsibility Act of 1982, 379
Trade Act of 1974, 254
Trade Expansion Act of 1962, 379
Vocational Education Act of 1963, 391
Vocational Education Act of 1983, 391
Wagner-Peyser Act of 1933, 254, 377
Work Environment Act, 1978, Sweden, 211
Working Environment Act, 1977, Norway, 211
Lehigh University, 240
Litton Office Product Center, 142
Lockheed-Georgia, 70, 275
Lupton, Tom, University of Manchester, 239
Manufacturing Technology Advisory Group (MTAG), 315, 316, 319
Martin Marietta, 316
Massachusetts Institute of Technology, 43, 151, 328, 333
Magak Machinery Co., 283, 284
Microelectronics and Computer Corp. (MCC), 329
Modular Systems, 301
Monarch Machine Tool, 285
McAuto, 277, 278
McDonnell Douglas, 276
MacNeal-Schwander Corp., 275
National Aeronautics and Space Administration, 13, 77, 307, 312, 319, 323, 325, 326, 349
National Association of Temporary Services, 172
National Bureau of Standards, 13, 16, 18, 81, 307, 312, 320, 321, 325, 332, 334
Automated Manufacturing Research Facility, 13, 82, 87
Center for Manufacturing Engineering, 319
Initial Graphics Exchange Standard, 77
National Engineering Laboratory, 77
National Center for Education Statistics, 226, 255
National Center for Urban and Ethnic Affairs, 251
National Institute for Occupational Safety and Health, 20, 197
National Machine Tool Builders Association, 281
National Research Council Symposium on Labor-Market Conditions for Engineers, 123
National Science Foundation, 13, 16, 123, 307, 312, 319, 321, 323, 326
Production Research Program, 13
Netherlands, 14, 255, 276, 362
New York University, 104, 148
Niigata Engineering Co., 333
Nordson Corp., 291
North Carolina State University, 317
Northrop, 276
Norway, 10, 14, 20, 82, 210, 255, 270, 272, 287, 289, 294, 337, 359
Norwegian Ministry of Local Government and Labor, 360
Occupational Safety and Health Administration, 20, 386
Octek Corp., 92
Ontario Board of Industrial Leadership and Development, 361
Organization for Economic Cooperation and Development (OECD), 342
Organization for Industrial Research, 277
Pentel, 289
Perkins-Elmer, 275
Poland, 334
policy issues and options, 367-397
existing Federal policy and options for new initiatives, 373-397
adjustment assistance, 384
diffusion, 375
education, training and retraining policy, 391
employment, 376
options for employment policy, 381
recent legislative proposals, 373
research and development, 374
standards, 374
technology development and use, 373
work environment policies, 386
Federal role, reasons for, 369
new policy, challenges of, 370
Federal policy strategies, 371
stakeholders, 368
Prab Conveyors, 287
Prab Robots, 287, 292, 294
Predicasts, Inc., 271
Prime, 274, 275, 276, 277
principle findings, 4-14
education, training, and retraining issues, 11
employment effects, 5
programmable automation industries, 12
research and development, 12
the technologies, 4
work environment, 8
Productivity Systems, Inc., 294
programmable automation industries, 269-304
computer-integrated manufacturing: potential market developments, 300
conclusions, 302
evolution and outlook, 271-300
CAD, 271-278
numerical control and flexible manufacturing systems, 278-287
robots, 287-299
programmable automation technologies, 33-98
computer-aided manufacturing (CAM) technologies, 48, 68
automated materials handling systems, 66-68
flexible manufacturing systems, 60-66
numerically controlled machine tools, 57-60
robots, 48-56
discrete manufacturing, 35
functional descriptions, 43
computer-aided design (CAD), 43
future of the technologies, 93-98
introduction, 34
manufacturing management, 69-73
computer-aided planning, 70
computer-integrated manufacturing, 71
management information systems, trends and barriers, 74-93
artificial intelligence, 83-87
computer-aided design, 74-77
computer-integrated manufacturing, 82-83
flexible manufacturing systems, 81-82
numerically controlled machine tools, 80-82
robots, 77-80
standards and interfaces, 82
Prototype and Plastic Mold Corp., Middletown, Conn., 47
Purdue University, 82, 317, 328
Remote Manipulator System, 323, 324
Remote Orbital Servicing System, 323
Renault, 295
research and development (R&D), 307-334
funding and performers, 309-330
civilian agency programs, 319
federal funding, 314
industry funding, 326
national expenditures, 310
selected agencies, 311
international comparisons, 330-334
other sources of funding, 330
Tholen, Thomas P., University of California, 258
Robotic Industries Association (RIA), 48, 148
Robotics Assembly Institute, 294
Robotics International, 260
Rockwell International, 316
Roth, Bernard, Stanford University, 72
Sanders, 274
Schlumberger, 85, 275
Scientific Applications, Inc., 294
Seiko, 289
selected case studies, 401-463
 Brigham Young University, 408-425
 CADAM Inc., 426-435
 CAD/CAM Operator Training Program, 447-463
 Oakland County Vocational Educational Centers, 403-407
 programmable controller training program, 436-446
 Semiconductor Research Corp., 329
 Shope Data, 276
 Sharpe Manufacturing Co., 284
 Singer Librascope, 247
 Society for Manufacturing Engineers, 119, 241, 260, 271
 South Bend Lathe, 285
 Spain, 284, 298
 Sperry Univac, 275
 Stanford University, 317, 328, 333
 study approach, organization, and methodology, 27-28
 Sun Microsystems workstations, 273
 Sutherland, 276
 Swanson Analysis, 275
 Sweden, 10, 14, 20, 210-211, 255, 270, 272, 289, 294, 298, 299, 307, 330, 331, 334, 337
 Board for Technical Development, 352
 Commission on Computers and Electronics, 351
 programmable automation, 350
 government role, 350
 government support to industry, 350
 Swedish Work Environment Fund, 334
 Switzerland, 283
 Taiwan, 283
 Texas A&M University, 242, 244
 Texas Instruments, 238, 289
 Textron/Bridgeport, 283
 Trade Adjustment Assistance Program, 252
 Trade Readjustment Assistance Program, 254
 Trafila, 287, 289
 Tyoda Machine Works, 284, 285
 UAW-Ford Employee Involvement Program, 205
 UCLA, 240
 Unemployment Insurance System, 21
 United Automobile Workers Union, 162, 205
 Unigraphics, 276
 Unimation, 270, 287, 289, 290, 292, 301, 327
 United Kingdom, 14, 255, 270, 276, 293, 284, 289, 290, 294, 298, 331, 307, 333, 337
 Department of Trade and Industry, 357
 programmable automation, 356
 government role, 356
 government support to industry, 357
 University of Edinburgh, Scotland, 333
 University of Florida, 328
 University of Hawaii, 330
 University of Manchester, England, 193, 239
 University of Maryland, 317, 319, 328
 University of Michigan, 239, 242, 244
 University of Pennsylvania, 240
 University of Rhode Island, 321, 328, 330
 University of Utah, 76
 Upjohn Institute, 121, 136, 143, 145, 149
 U.S. Employment Service, 254, 377
 U.S. Patent and Trademark Office, 331
 U. S. S. R., 284, 287, 334
 Versatram, 287
 VLSI Technology, 301
 Vocational Education Data System, 229
 Vocational Industrial Clubs of America, Inc., 258
 Volkswagon Werk, 294
 Wall Street Journal, 339
 Weisel, Walt, Prab Robots, 148
 Western Electric, 291
 West Germany, 10, 13, 82, 152, 153, 212, 255, 270, 272, 276, 287, 289, 294, 298, 337
 DWFG, 347
 German Engineers Association, 348
 German-Norwegian Collaboration, 349
 Messuschmitt-Bolkow-Blohm, 65
 Ministry of Research and Technology (BMFT), 348
 programmable automation, 346
 government concern, 347
 government role, 346
 government support to industry, 348
 research and development, 348
 R&D, 307, 309, 330, 331, 334
 Technical University of Berlin, 77
 Westinghouse, 164, 238, 270, 286, 292, 301, 327
 White-Sundstrund, 283
 Wickes Machine Tool Group, Inc., 284
 Wider Opportunities for Women, Inc., 251
 Worcester Polytechnic Institute, 205, 238, 242, 328
 World Bank, 24, 44, 105, 119, 267, 305
 Operational Manual for Project Analysis, 248
 Yamazaki, 284
 Yaskawa, 294, 298