Getting Started in Frequencies, Crosstab, Factor and Regression Analysis (v. 2.0)

Oscar Torres-Reyna

otorres@princeton.edu

Case study: intro

Search here in the home page for this dataset

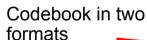
Search Results

Title Time Magazine/Abt SRBI Poll # 2008-4567: America by the Numbers

[Study# USSRBI2008-4567]

Survey Firm Abt SRBI, Inc. (Schulman, Ronca, & Bucuvalas, Inc.)

Survey Sponsor Time Magazine
Field Dates October 3-6, 2008
Sample Registered likely voters


Sample Size 1,053

Sample Notes Respondents were interviewed via landlines and cellular telephones.

Variables 136

Major Topics Covered

Voter history/intent (3); 2008 presidential election (1); Obama/Biden vs. McCain/Palin (4); rating political leaders/people (10); Sarah Palin vs. Joe Biden (5); Barack Obama vs. John McCain (3); source of news (15); George W. Bush job performance (1); direction of country (1); economy (2); social contract (2); comparing now and then (1); mortgage recovery plan (1); opinion on certain statements (10); war in Iraq (1); people in the news (5).

Metadata

Documentation Download

Study documentation files are available for free download.

PDF (186kb) Word (440kb)

RoperExpress X

Datasets, two formats: ACII and SPSS

Marginals

The following files are available only to RoperExpress Users and Members.

Data Sets

ASCII (385kb) SPSS portable (496kb)

Study File Listing and Other Notes

Text (3kb)

Data tables/Frequencies PDF (54kb) NOTE: When data is not available in Stata, you can download the SPSS portable (*.por), open it using SPSS (available at the DSS lab) and saving it as Stata.

Case study: frequencies

Distribution of electoral preferences and gender. According to the codebook 'q5' has the electoral question and 'qa' gender.

. tab q5 /*N	lo weights*/				
	Presidential e day and the car		Freq.	Percent	Cum.
John McCain a	and Joe Biden, and Sarah Palir (VOL) (ecided/Don't kr	n, the Republ Other/Neither	48° 46⁄ 2° 8°	44.06 1 1.99	45. 68 89. 74 91. 74 100. 00
		Total	1, 05	3 100.00	
. tab q5 [awe	eight=weight] /	/*With weights	*/		
	Presidential ed lay and the car		Freq.	Percent	Cum.
John McCain a	and Joe Biden, and Sarah Palir (VOL) (ecided/Don't kr	n, the Republ Other/Neither	504. 33774 449. 48754 20. 557083 78. 6176228	5 42. 69 1 1. 95	47. 90 90. 58 92. 53 100. 00
		Total	1, 05	3 100.00	
A. Gender (DO NOT	lo weights*/	Danasart	C		
ASK) Mal e	Freq. 493	Percent 	Cum. 	No woighto	
Female	560	53. 18	100.00	No weights	
Total	1, 053	100.00			
. tab qa [awe	eight=weight] /	/*With weights	*/		
A. Gender (DO NOT ASK)	Freq.	Percent	Cum.		
Male Female	500. 388396 552. 611604	47. 52 52. 48	47. 52 100. 00	Using weight	ts
Total	1, 053	100.00			

No weights

Using weights

NOTE: At this point, it is strongly recommended to <u>open a log</u> to keep a record of your work and to extract output, type:

log using mywork.log

You could also open a do-file by typing doedit and copy your commands there.

Case study: Electoral preferences by gender

. tab q5 qa [aw=weight], col row /*Electoral preferences by gender*,

Q5. If the Presidential election were held today and the candidates were Barack		er (DO NOT SK) Female	Total
Barack Obama and Joe	209. 42078	294. 91697	504. 33775
	41. 52	58. 48	100. 00
	41. 85	53. 37	47. 90
John McCain and Sarah	252. 9313	196. 55625	449. 487545
	56. 27	43. 73	100. 00
	50. 55	35. 57	42. 69
(VOL) Other/Nei ther	10. 055739	10. 5013441	20. 557083
	48. 92	51. 08	100. 00
	2. 01	1. 90	1. 95
(VOL) Undeci ded/Don't	27. 980574	50. 637048	78. 617623
	35. 59	64. 41	100. 00
	5. 59	9. 16	7. 47
Total	500. 3884	552. 6116	1, 053
	47. 52	52. 48	100. 00
	100. 00	100. 00	100. 00

Case study: Electoral preferences by age

. tab q5 f1 [aw=weight], col row /*Electoral preferences by age*/

Key

Q5. If the Presidential election were held today and the candidates were Barack	18-24	25-29	F1. W 30-34	nat is your 35-39	age? 40-44	45-54	55-64	F1. What i 65 or old	s your age? (VOL) No	Total
Barack Obama and Joe	29. 355119 5. 82 77. 57		40. 727272 8. 08 40. 92	46. 595118 9. 24 51. 51	7. 66	129. 51971 25. 68 51. 68	86. 169373 17. 09 50. 32	102. 39238 20. 30 43. 21	4. 5319886 0. 90 40. 00	504. 33775 100. 00 47. 90
John McCain and Sarah	6. 2229886 1. 38 16. 44	22. 18839 4. 94 42. 42	54. 883049 12. 21 55. 14	36. 825588 8. 19 40. 71	11. 36		69. 037199 15. 36 40. 31	104. 76215 23. 31 44. 21	4. 5295414 1. 01 39. 98	449. 487545 100. 00 42. 69
(VOL) Other/Neither	0 0. 00 0. 00	0 0. 00 0. 00	2. 1209543 10. 32 2. 13	2. 4419715 11. 88 2. 70	21. 96	3. 1358789 15. 25 1. 25	2. 7783459 13. 52 1. 62	5. 56534701 27. 07 2. 35	0 0. 00 0. 00	20. 557083 100. 00 1. 95
(VOL) Undeci ded/Don' t	2. 2672181 2. 88 5. 99	3. 6879373 4. 69 7. 05	1. 809561 2. 30 1. 82	4. 5920698 5. 84 5. 08	10. 88	17. 952531 22. 84 7. 16	13. 264407 16. 87 7. 75	24. 219596 30. 81 10. 22	2. 2672179 2. 88 20. 01	78. 617623 100. 00 7. 47
Total	37. 845325 3. 59 100. 00	52. 312241 4. 97 100. 00	99. 540836 9. 45 100. 00	90. 454747 8. 59 100. 00	9. 76	250. 600407 23. 80 100. 00	171. 24932 16. 26 100. 00	236. 93948 22. 50 100. 00	11. 328748 1. 08 100. 00	1, 053 100. 00 100. 00

Case study: Electoral preferences by educational attainment

. tab q5 f4 [aw=weight], col row /*Electoral preferences by education*/

Key

Q5. If the Presidential election were held today and the candidates were Barack	F4. W 8th grade					ou've comple Postgradu	ted? (VOL) No	Total
Barack Obama and Joe	2. 2991619 0. 46 41. 27	3. 883265 0. 77 33. 65	81. 589679 16. 18 44. 32	113. 53524 22. 51 45. 42	33. 59		3. 3983797 0. 67 60. 03	504. 33775 100. 00 47. 90
John McCain and Sarah	3. 2718681 0. 73 58. 73	6. 1159475 1. 36 53. 00	76. 7484051 17. 07 41. 69	116. 69213 2 5. 96 46. 68	37. 89	16. 48	2. 2623235 0. 50 39. 97	449. 487545 100. 00 42. 69
(VOL) Other/Nei ther	0 0.00 0.00	0 0. 00 0. 00	3. 7389017 18. 19 2. 03	3. 382658 16. 45 1. 35	48. 12	17. 24	0 0. 00 0. 00	20. 557083 100. 00 1. 95
(VOL) Undeci ded/Don' t	0 0.00 0.00	1. 5397725 1. 96 13. 34	22. 004128 27. 99 11. 95	16. 367784 20. 82 6. 55			0 0. 00 0. 00	78. 617623 100. 00 7. 47
Total	5. 57103 0. 53 100. 00	11. 538985 1. 10 100. 00	184. 08111 17. 48 100. 00	249. 97781 23. 74 100. 00			5. 6607032 0. 54 100. 00	1, 053 100. 00 100. 00

Case study: Electoral preferences by income

. tab q5 f13 [aw=weight], col row /*Electoral preferences by income*/

Key

Q5. If the Presidential election were held today and the candidates were Barack	F13. Fi Less than			fication pur \$50,000 t			family inco		Total
Barack Obama and Joe	37. 525195 7. 44 60. 42	51. 14097 10. 14 49. 40	72. 715849 14. 42 48. 59	122. 78749 24. 35 57. 51	59. 632459 11. 82 39. 05	69. 732723 13. 83 46. 16		7. 87	504. 33775 100. 00 47. 90
John McCain and Sarah	18. 630762 4. 14 30. 00	39. 764056 8. 85 38. 41	64. 4115908 14. 33 43. 04	69. 827216 15. 53 32. 71	86. 023642 1 9. 14 56. 34	68. 843117 15. 32 45. 57	12.16	10. 53	449. 487545 100. 00 42. 69
(VOL) Other/Neither	1. 5060026 7. 33 2. 42	. 88321203 4. 30 0. 85	3. 2060684 15. 60 2. 14	2. 5018142 12. 17 1. 17	2. 1243815 10. 33 1. 39	3. 0806277 14. 99 2. 04			20. 557083 100. 00 1. 95
(VOL) Undecided/Don't	4. 4480018 5. 66 7. 16	11. 739914 14. 93 11. 34	9. 3136182 11. 85 6. 22	18. 37691 23. 38 8. 61	4. 9181423 6. 26 3. 22	9. 409895 11. 97 6. 23		17.04	78. 617623 100. 00 7. 47
Total	62. 109961 5. 90 100. 00	103. 52815 9. 83 100. 00	149. 64713 14. 21 100. 00	213. 49343 20. 27 100. 00	152. 69863 14. 50 100. 00	151. 06636 14. 35 100. 00	10. 92		1, 053 100. 00 100. 00

Case study: Electoral preferences by employment status

. tab q5 f8 [aw=weight], col row /*Electoral preferences by employment status*/

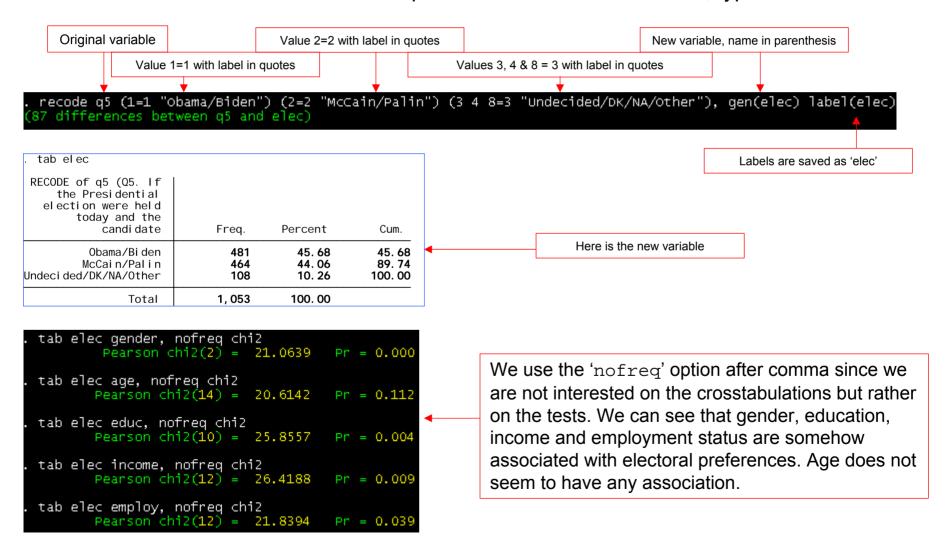
Key

O5. If the Presidential election were held today and the candidates were Barack	Employed	Employed	Laid off	f: Retired	8 Student	Homemaker	Somethi ng	(VOL) No	Total
Barack Obama and Joe	263. 30095 52. 21 47. 30		17. 692466 3. 51 67. 23	125. 50328 24. 88 46. 14	15. 486465 3. 07 82. 02	3. 30	24. 6988275 4. 90 60. 77	0. 80	504. 33775 100. 00 47. 90
John McCain and Sarah	252. 31686 56. 13 45. 33	25. 723928 5. 72 36. 19	6. 1500438 1. 37 23. 37	112. 5963 25. 05 41. 39	1. 1268505 0. 25 5. 97	8. 27	12. 123702 2. 70 29. 83	0. 50	449. 487545 100. 00 42. 69
(VOL) Other/Neither	11. 498793 55. 94 2. 07	1. 6530186 8. 04 2. 33	0 0. 00 0. 00	6. 1126834 29. 74 2. 25	0 0. 00 0. 00	0. 00	1. 2925883 6. 29 3. 18	0.00	20. 557083 100. 00 1. 95
(VOL) Undeci ded/Don' t	29. 558151 37. 60 5. 31	6. 7386098 8. 57 9. 48	2. 4747578 3. 15 9. 40	27. 814172 35. 38 10. 22	2. 2672181 2. 88 12. 01	7. 2399743 9. 21 11. 85	2. 52474 3. 21 6. 21	0 0. 00 0. 00	78. 617623 100. 00 7. 47
Total	556. 67476 52. 87 100. 00	71. 08488 6. 75 100. 00	26. 3172676 2. 50 100. 00	272. 02643 25. 83 100. 00	18. 8805338 1. 79 100. 00	5. 80	40. 639858 3. 86 100. 00	0. 60	1, 053 100. 00 100. 00

Case study: Testing for associations (preparing the data)

Before running any test we need to prepare the data by setting to missing any non-valid response (like "don't know/no answer/not sure") unless is relevant to the question. It is important to 'clean' the variables for the tests to be as accurate as possible. For demographics we will remove non-response items. Here are a series of commands per variable (columns) to prepare some variables for you to run on your own.

Description	Age	Education	Income	Employment	Gender
creating a new variable	gen age=f1	gen educ=f4	gen income=f13	gen employ=f8	gen gender=qa
exploring the new variable	tab age	tab educ	tab income	tab employ	tab gender
checking for labels from original variable	labelbook f1	labelbook f4	labelbook f13	labelbook f8	labelbook qa
assigning labels to new variable	label value age f1	label value educ f4	label value income f13	label value employ f8	label value gender qa
exploring the new variable	tab age	tab educ	tab income	tab employ	tab gender
setting no response to missing	replace age=. if age>8	replace educ=. if educ==8	replace income=. if income==8	replace employ=. if employ==8	
adding variable labels	label variable age "Age"	label variable educ "Educational attainment"	label variable income "Family income"	label variable employ "Employment status"	
exploring the new variable	tab age	tab educ	tab income	tab employ	


Case study: Testing for associations (preparing the data –cont.)

Here is an easy way to do it by using the command clonevar in Stata.

Description	Age	Education	Income	Employment	Gender
creating a new variable	clonevar age=f1	clonevar educ=f4	clonevar income=f13	clonevar employ=f8	clonevar gender=qa
exploring the new variable	tab age	tab educ	tab income	tab employ	tab gender
setting no response to missing	replace age=. if age>8	replace educ=. if educ==8	replace income=. if income==8	replace employ=. if employ==8	
exploring the new variable	tab age	tab educ	tab income	tab employ	,

Case study: testing for associations

To find whether there is some association between demographics and electoral preferences we can use chi-square but first we need to 'clean' the electoral variable (q5). Lets create a new variable 'elec' from 'q5'. We will use recode for this, type:

When you have continuous data you need to use <u>descriptive statistics</u>. To start exploring this option you can use the summarize command which provides first look at the data (number of observations, mean, standard deviation, minimum and maximum values). Lets take a look at the battery of questions in q8.

. summarize	q8a q8b q8c	q8d q8e q8f	q8g q8h q8i q8j		
variable	Obs	Mean	Std. Dev.	Min	Max
q8a q8b q8c q8d q8e	1053 1053 1053 1053 1053	69.26591 66.09497 78.26401 64.73029 72.20038	117.1873 108.8857 146.9197 124.7597 173.5736	0 0 0 0	999 999 999 999
q8f q8g q8h q8i q8j	1053 1053 1053 1053 1053	119.5973 111.4653 37.36657 73.7075 99.63723	237.9549 223.1448 60.16443 137.2898 189.1918	0 0 0	999 999 999 999

The questions ask for answers between 0 and 100. The maximum value 999 represents "Not answer/Not sure" response. The mean and standard deviation factor in the 999 therefore biasing the mean and sd. so we need to set 999 to missing so the values go from 0 to 100.

. summarize	x8a x8b x8c	x8d x8e x8f	x8g x8h x8i x8j		
variable	obs	Mean	Std. Dev.	Min	Max
x8a x8b x8c x8d x8e	1038 1040 1028 1036 1018	55.83044 54.43365 55.87257 49.39961 40.33595	35.31804 31.28831 31.18157 35.33493 24.2347	0 0 0 0	100 100 100 100 100
x8f x8g x8h x8i x8j	982 991 1050 1031 1009	56.01527 55.93845 34.61905 53.96314 60.41824	26.50595 22.22173 31.2718 23.95454 22.56533	0 0 0 0	100 100 100 100 100

Here 999 is set to missing and we have correct statistics (see the slides on 'preparing the data' to do this). For presentation purposes we won't use weights here.

To get more than the mean and sd you can use tabstat which offers several options (type help tabstat for more details). Notice we use weights here. In these series of questions '0' means 'unfavorable' and '100' favorable.

. tabstat x8a x8b x8c x8d x8e x8f x8g x8h x8i x8j, s(mean median sd var count range min max)

stats	x8a	x8b	x8c	x8d	x8e	x8f	x8g	x8h	x8i	x8j
mean p50 sd vari ance N range mi n	55. 83044 60 35. 31804 1247. 364 1038 100 0	54. 43365 55 31. 28831 978. 9581 1040 100 0	55. 87257 60 31. 18157 972. 2905 1028 100 0	49. 39961 50 35. 33493 1248. 557 1036 100 0	40. 33595 50 24. 2347 587. 3207 1018 100 0	56. 01527 60 26. 50595 702. 5655 982 100 0	55. 93845 55 22. 22173 493. 8053 991 100 0	34. 61905 30 31. 2718 977. 9253 1050 100 0	53. 96314 55 23. 95454 573. 82 1031 100 0	60. 41824 65 22. 56533 509. 194 1009 100
max	100	100	100	100	100	100	100	100	100	100

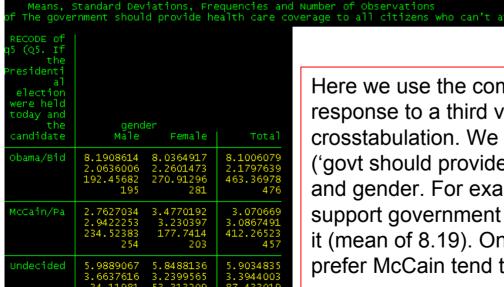
Here is a description of each variable

. describe x8*

variable name	storage type	_ ' '	val ue I abel	variable label
x8a x8b x8c x8d x8e x8f x8g x8h x8i x8i	float float float float float float float float float	%9. 0g %9. 0g		Obama McCain Biden Palin Congress Congressman Supreme court Pres. Bush State gov Local gov

Lets explore a combination of commands to get more info out of your data. We will check out the battery of questions in q25

. describe q2:	5*			
variable name	storage	display format		variable label
q25a	double	%10.0g	q25a	Q25. Favor/Oppose: A woman should be able to get an abortion if she wants one in
q25b	double	%10.0g	q25b	Q25. Favor/Oppose: Gay couples should be allowed to marry, giving them full lega
q25c	double	%10.0g	q25c	Q25. Favor/oppose: The government should provide health care coverage to all cit
q25d	double	%10.0g	q25d	Q25. Favor/Oppose: Government regulation of financial institutions should be gre
q25e	double	%10.0g	q25e	Q25. Favor/Oppose: The government should have let financial institutions that go
q25f	double	%10.0g	q25f	Q25. Favor/Oppose: The government should allow offshore drilling for oil and gas
q25g	double	%10.0g	q25g	Q25. Favor/Oppose: Congress should pass stricter laws to protect the environment
q25h	double	%10.0g	q25h	Q25. Favor/Oppose: Our troops should stay in Iraq without a timetable for withdr
q25 i	double	%10.0g	q25i	Q25. Favor/Oppose: Government should cut taxes on businesses to help the economy
q25j	double	%10.0g	q25j	Q25. Favor/oppose: The government should help people who can't afford their mort


. sum q25*					
Variable	obs	Mean	Std. Dev.	Min	Max
q25a q25b q25c q25d q25e	1053 1053 1053 1053 1053	6.907882 5.424501 7.321937 8.025641 9.676163	10.29471 10.47273 12.96045 11.76441 18.00545	0 0 0 0	99 99 99 99
q25f q25g q25h q25i q25j	1053 1053 1053 1053 1053	8.073124 7.635328 6.269706 8.096866 7.317189	9.473867 11.42399 11.7495 14.78033 14.04718	0000	99 99 99 99

The questions ask for answers between 0 and 10 (see the codebook). The maximum value 99 (below) represents "Not answer/Not sure" response.

The mean and standard deviation factor in the 99 therefore biasing the mean and sd. so we need to set 99 to missing so the values go from 0 to 10 (see the slides on 'preparing the data' to do this).

Here some descriptive statistics for q25 where a value of '0' or '1' represents 'strongly oppose' and value of '9' or '10' represents 'strongly favor'.

. tabstat > ax)	x25a x25b	x25c x25d	x25e x25f	x25g x25h	x25i x25j	[aw=weight], s(mean	median sd	var count	range min m
stats	x25a	x25b	x25c	x25d	x25e	x25f	x25g	x25h	x25i	x25j
mean p50 sd variance N range min max	5.909401 7 4.078566 16.6347 1042 10 0	4.600287 5 4.225217 17.85246 1042 10 0	5.747949 6 3.623961 13.1331 1034 10 0	6.607931 7 3.232957 10.45201 1037 10 0	6.193698 6 3.011944 9.071804 1013 10 0		7 3.129978	4.691252 5 3.698315 13.67753 1038 10 0	5.790056 5 3.007888 9.04739 1027 10 0	5.318128 5 3.107059 9.653819 1030 10 0

Total

tab elec gender [aw=weight], sum(x25c)

Here we use the combination tab/sum to explore a response to a third variable (usually continuous) in a crosstabulation. We are looking at the mean value of x25c ('govt should provide health care') by electoral preference and gender. For example, male Obama supporters tend to support government providing health care who can't afford it (mean of 8.19). On the contrary, those who are male and prefer McCain tend to disagree (with a mean score of 2.76)

Case study: dummies

The quickest way to generate dummy variables is by using a combination of tab/gen command. Here is an example

. tab gender,	gen(gender)		
gender	Freq.	Percent	Cum.
Male Female	493 560	46.82 53.18	46.82 100.00
Total	1,053	100.00	
. tab1 gender	**		
-> tabulation	of gender		
gender	Freq.	Percent	Cum.
Male Female	493 560	46.82 53.18	46.82 100.00
Total	1,053	100.00	
-> tabulation	of gender1		
gender==Mal e	Freq.	Percent	Cum.
0 1	560 493	53.18 46.82	53.18 100.00
Total	1,053	100.00	
-> tabulation	of gender2		
gender==Fem ale	Freq.	Percent	Cum.
0 1	493 560	46.82 53.18	46.82 100.00
Total	1,053	100.00	

Case study: factor analysis

Factor analysis is a data reduction technique. Question 8 has a battery of questions evaluating favorability levels for different candidates/politicians

Total variance accounted by each factor. The sum of all eigenvalues = total number of variables.

When negative, the sum of eigenvalues = total number of factors (variables) with positive eigenvalues.

Kaiser criterion suggests to retain those factors with eigenvalues equal or higher than 1.

Difference between one eigenvalue and the next.

Principal-components factoring Variables factor x8a x8b x8c x8d x8e x8f x8g x8h x8i x8i, pcf (obs=897) Factor analysis/correlation Number of obs 897 Method: principal-component factors Retained factors = Rotation: (unrotated) Number of params = Factor Ei genval ue Di fference Proporti on Cumul ative 1.89154 0.4109 0.4109 Factor1 4.10910 0.2218 Factor2 2, 21756 1.35886 0.6327 0.85870 0.12199 0.0859 0.7185 Eactor3 Factor4 0.73671 0.15331 0.0737 0.7922 Factor5 0.58340 0.05168 0.0583 0.8505 Factor6 0.53172 0.13910 0.0532 0.9037 0. 0393 0.39262 0. 11864 0.9430 Factor7 0.27398 0.11808 0.0274 0.9704 Factor8 0. 15591 0.0156 0.9860 Factor9 0.01559 0.14031 0.0140 1.0000 Factor10 LR test: independent vs. saturated: chi 2(45) = 4884.51 Prob>chi 2 = 0.0000

Factor Loadings (pattern matrix) and unique variances

Vari abl e	Factor1	Factor2	Uni queness
x8a x8b x8c x8d x8e x8f x8g x8h x8i x8j	-0. 9046 0. 8586 -0. 8531 0. 9180 -0. 4759 -0. 1691 0. 2197 0. 8225 -0. 0373 -0. 0425	0. 1045 0. 2150 0. 1799 0. 1434 0. 5533 0. 6717 0. 5555 0. 2936 0. 7252 0. 6554	0. 1709 0. 2165 0. 2399 0. 1367 0. 4674 0. 5202 0. 6432 0. 2373 0. 4728 0. 5686

Factor loadings are the weights and correlations between each variable and the factor. The higher the load the more relevant in defining the factor's conceptual meaning. A negative value indicates an inverse impact on the factor. Here, two factors are retained because both have eigenvalues over 1. It seems that 'x8b', 'x8d' and 'x8h' define factor1, and 'x8f', and 'x8i' define factor2.

Since the sum of eigenvalues = total number of variables. Proportion indicate the relative weight of each factor in the total variance. For example, 4.109/10=0.4109. The first factor explains 41% of the total variance

Cumulative shows the amount of variance explained by n+(n-1) factors. For example, factor 1 and factor 2 account for 63% of the total variance.

Uniqueness is the variance that is 'unique' to the variable and not shared with other variables. It is equal to 1 – communality (variance that is shared with other variables). For example, 64% of the variance in 'x8g' is not share with other variables in the overall factor model. On the contrary 'x8a' has low variance not accounted by other variables (17%). Notice that the greater 'uniqueness' the lower the relevance of the variable in the factor model.

Case study: factor analysis

Factor analysis is a data reduction technique. Question 8 has a battery of questions evaluating favorability levels for different candidates/politicians

By default the rotation is varimax which produces orthogonal factors. This means that factors are not correlated to each other. This setting is recommended when you want to identify variables to create indexes or new variables without inter-correlated components

Same description as in the previous slide with new composition between the two factors. Still both factors explain 63% of the total variance observed.

The pattern matrix here offers a clearer picture of the relevance of each variable in the factor.

. rotate

Factor analysis/correlation
Method: principal-component factors
Rotation: orthogonal varimax (Kaiser off)

Number of obs = 897 Retained factors = 2 Number of params = 19

Factor	Vari ance	Di fference	Proporti on	Cumul ati ve
Factor1	4. 08288	1. 83911	0. 4083	0. 4083
Factor2	2. 24377		0. 2244	0. 6327

LR test: independent vs. saturated: chi 2(45) = 4884.51 Prob>chi 2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Vari abl e	Factor1	Factor2	Uni queness
x8a	-0. 8860	0. 2103	0. 1709
x8b	0. 8780	0. 1124	0. 2165
x8c	-0. 8260	0. 2790	0. 2399
x8d	0. 9285	0. 0343	0. 1367
x8e	-0. 4075	0. 6055	0. 4674
x8f	-0. 0888	0. 6869	0. 5202
x8g	0. 2836	0. 5257	0. 6432
x8h	0. 8513	0. 1947	0. 2373
x8i	0. 0483	0. 7245	0. 4728
x8i	0. 0350	0. 6559	0. 5686

Factor rotation matrix

This is a correlation matrix between factor1 and factor2.

	Factor1	Factor2
Factor1	0. 9930	-0. 1177
Factor2	0. 1177	0. 9930

NOTE: If you want the factors to be correlated (oblique rotation) you need to use the option promax after rotate:

rotate, promax

Type help rotate for details.

Case study: factor analysis, step 3 (predict)

To create the new variables, after factor, rotate you type predict.

predict x8f1 x8f2 /*Or whatever name you prefer to identify the factors*/

. predict x8f1 x8f2
(regression scoring assumed)

Scoring coefficients (method = regression; based on varimax rotated factors)

Vari abl e	Factor1	Factor2	•			
x8a x8b x8c x8d x8e x8f x8g x8h x8i x8i	-0. 21306 0. 21892 -0. 19662 0. 22947 -0. 08565 -0. 00521 0. 08259 0. 21436 0. 02947 0. 02453	0. 07271 0. 07169 0. 10498 0. 03792 0. 26140 0. 30564 0. 24245 0. 10790 0. 32580 0. 29473		x8f1 x8f2	Scores for factor 1 Scores for factor 2	
	e are the regredividual score		ficients used to estimate e/row)	+		<u> </u>

We reduced all eight variables to two: x8f1 and x8f2. There is another way to use these results. We could create indexes out of each cluster of variables. For example, 'x8b', 'x8d' and 'x8h' define the first factor. You could aggregate these to create a new variable to measure 'Republican favorability'. The second factor is defined by 'x8e', 'x8f', x8i' and 'x8j' related to 'government institutions'. Since all variables are in the same valence (go from 0 to 100), we can create the two new variables as

```
gen repubfav = (x8b + x8d + x8h)/3
gen govinst = (x8e + x8f + x8i + x8j)/4
```

Case study: regression

We use the command regress to run a regression

regress x8a gender age educ income x25*, robust

. regress x8a gender age educ income x25*, robust

Li near regressi on

Number of obs = 857 F(14, 842) = 138.68 Prob > F = 0.0000 R-squared = 0.6114 Root MSE = 22.13

x 8a	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
gender	1. 085681	1. 524235	0. 71	0. 476	-1. 906064	4. 077427
age	0954027	. 4441548	-0. 21	0. 830	9671832	. 7763779
educ	1. 570695	. 8151773	1. 93	0. 054	0293229	3. 170713
i ncome	2996345	. 4764621	-0. 63	0. 530	-1. 234827	. 6355583
x25a	1. 101605	. 2762611	3. 99	0.000	. 5593636	1. 643846
x25b	. 6041541	. 2659564	2. 27	0. 023	. 0821388	1. 126169
x25c	2. 749842	. 3712377	7. 41	0.000	2. 021182	3. 478502
x25d	1274084	. 3054922	-0. 42	0. 677	7270241	. 4722072
x25e	2741189	. 2758408	-0. 99	0. 321	8155351	. 2672973
x25f	9597492	. 3174276	-3. 02	0.003	-1. 582792	3367069
x25g	1. 201146	. 3624039	3. 31	0. 001	. 4898251	1. 912467
x25h	-2. 622509	. 3181912	-8. 24	0.000	-3. 24705	-1. 997968
x25i	6518584	. 3177172	-2. 05	0. 041	-1. 275469	0282476
x25j	. 699863	. 3073602	2. 28	0. 023	. 0965809	1. 303145
x25f1	(dropped)					
x25f2	(dropped)					
x25f3	(dropped)					
_cons	`39. 5981 8	7. 345718	5. 39	0. 000	25. 18011	54. 01625

Case study: regression

Here is another example

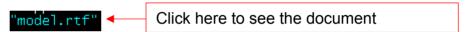
regress x8b gender age educ income x25*, robust

. regress x8b gender age educ income x25*, robust

Li near regressi on

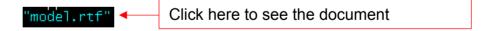
Number of obs = 857 F(14, 842) = 70.66 Prob > F = 0.0000 R-squared = 0.4955 Root MSE = 22.135

x8b	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
gender	2. 568956	1. 529457	1. 68	0. 093	4330398	5. 570951
age	3590177	. 4220541	-0. 85	0. 395	-1. 187419	. 469384
educ	2. 394501	. 8376223	2. 86	0.004	. 7504277	4. 038573
i ncome	. 7567806	. 5004008	1. 51	0. 131	2253989	1. 73896
x25a	4245393	. 2513435	-1. 69	0. 092	9178727	. 068794
x25b	5100364	. 2616189	-1. 95	0. 052	-1. 023538	. 0034653
x25c	-1. 546259	. 3302899	-4. 68	0. 000	-2. 194547	8979706
x25d	0041063	. 2839938	-0. 01	0. 988	5615252	. 5533125
x25e	5360159	. 2764522	-1. 94	0. 053	-1. 078632	. 0066005
x25f	1. 08052	. 3298975	3. 28	0. 001	. 4330022	1. 728038
x25g	2805339	. 3361083	-0. 83	0. 404	9402424	. 3791746
x25ȟ	3. 539997	. 3070789	11. 53	0.000	2. 937267	4. 142727
x25i	. 5077791	. 3273211	1. 55	0. 121	134682	1. 15024
x25j	0397483	. 2948785	-0. 13	0. 893	6185315	. 5390349
x25f1	(dropped)					
x25f2	(dropped)					
x25f3	(dropped)					
_cons	28. 87047	7. 224851	4. 00	0.000	14. 68964	43. 0513


	(1)	(2)
COEFFICIENT	x8a	x8b
gender	1.09	2.57
_	(1.52)	(1.53)
age	-0.10	-0.36
	(0.44)	(0.42)
educ	1.57	2.39**
	(0.82)	(0.84)
income	-0.30	0.76
	(0.48)	(0.50)
x25a	1.10***	-0.42
	(0.28)	(0.25)
x25b	0.60*	-0.51
	(0.27)	(0.26)
x25c	2.75***	-1.55***
	(0.37)	(0.33)
x25d	-0.13	-0.00
	(0.31)	(0.28)
x25e	-0.27	-0.54
	(0.28)	(0.28)
x25f	-0.96**	1.08**
	(0.32) 1.20***	(0.33)
x25g		-0.28
	(0.36)	(0.34)
x25h	-2.62***	3.54***
	(0.32)	(0.31)
x25i	-0.65*	0.51
	(0.32)	(0.33)
x25j	0.70*	-0.04
	(0.31)	(0.29)
Constant	39.60***	28.87***
	(7.35)	(7.22)
Observations	857	857
R-squared	0.61	0.50
Adj. R-squared	0.60	0.49

Robust standard errors in parentheses
*** p<0.001, ** p<0.01, * p<0.05

Case study: regression (exporting results)


Use the outreg2 command to export the output in a journal-paper like presentation. Run outreg2 after each regression as follows

regress x8a gender age educ income x25*, robust
outreg2 using model, bdec(2) tdec(2) rdec(2) adec(2)
alpha(0.001, 0.01, 0.05) addstat(Adj. R-squared, e(r2_a))
word

regress x8b gender age educ income x25*, robust

outreg2 using model, bdec(2) tdec(2) rdec(2) adec(2)
alpha(0.001, 0.01, 0.05) addstat(Adj. R-squared, e(r2_a))
word append

Case study: do-file (part1)

log using workshop.log /*Preparing income variable*/ gen income=f13 /*Distribution of electoral preferences (frequencies)*/ tab income labelbook f13 tab q5 /*No weights*/ label value income f13 tab q5 [aweight=weight] /*With weights*/ tab income replace income=. if income==8 label variable income "Family income" tab ga /*No weights*/ tab ga [aweight=weight] /*With weights*/ tab income /*Electoral preferences by some demographics*/ /*Preparing employment variable*/ gen employ=f8 tab employ tab q5 ga [aw=weight], col row /*Electoral preferences by gender*/ tab q5 f1 [aw=weight], col row /*Electoral preferences by age*/ labelbook f8 tab q5 f4 [aw=weight], col row /*Electoral preferences by education*/ label value employ f8 tab q5 f13 [aw=weight], col row /*Electoral preferences by income*/ tab employ tab g5 f8 [aw=weight], col row /*Electoral preferences by employment status*/ replace employ=. if employ==8 label variable employ "Employment status" /*Preparing age variable*/ tab employ gen age=f1 /*Preparing gender variable*/ tab age gen gender=ga labelbook f1 label value age f1 tab gender tab age labelbook ga replace age=. if age>8 label value gender ga label variable age "Age" tab gender tab age /*Recoding electoral guestion*/ /*Preparing education variable*/ recode q5 (1=1 "Obama/Biden") (2=2 "McCain/Palin") (3 4 8=3 "Undecided/DK/NA/Other"), gen(elec) label(elec) tab q5 gen educ=f4 tab educ tab elec labelbook f4 /*Testing for associations*/ label value educ f4 tab elec gender, nofreq chi2 tab educ tab elec age, nofreg chi2 replace educ=. if educ==8 tab elec educ, nofreg chi2 label variable educ "Educational attainment" tab elec income, nofreg chi2 tab educ tab elec employ, nofreg chi2

```
/*Factor, data preparation*/
gen x8a = g8a
aen x8b = a8b
gen x8c = g8c
gen x8d = g8d
gen x8e = g8e
gen x8f = g8f
gen x8g = g8g
gen x8h = g8h
gen x8i = g8i
gen x8i = g8i
replace x8a = .if x8a > 100
replace x8b = .if x8b > 100
replace x8c = .if x8c > 100
replace x8d = .if x8d > 100
replace x8e = .if x8e > 100
replace x8f = ... if x8f > 100
replace x8q = .if x8q > 100
replace x8h = .if x8h > 100
replace x8i = . if x8i>100
replace x8i = .if x8i > 100
label variable x8a "Obama"
label variable x8b "McCain"
label variable x8c "Biden"
label variable x8d "Palin"
label variable x8e "Congress"
label variable x8f "Congressman"
label variable x8g "Supreme court"
label variable x8h "Pres. Bush"
label variable x8i "State gov"
label variable x8j "Local gov"
/*Running factor analysis */
factor x8a x8b x8c x8d x8e x8f x8g x8h x8i x8j, pcf
rotate
predict x8f1 x8f2
gen repubfav = (x8b + x8d + x8h)/3
gen govinst = (x8e + x8f + x8i + x8i)/4
```

Case study: do-file (part 2)

```
/*Descriptive statistics*/
tabstat g8a x8a g8b x8b, s(mean)
tabstat x8a x8b x8c x8d x8e x8f x8q x8h x8i x8i, s(mean median sd var count
range min max)
describe x8*
/* One more factor example */
gen x25a = g25a
gen x25b = g25b
gen x25c = g25c
gen x25d = g25d
gen x25e = g25e
gen x25f = g25f
gen x25g = g25g
gen x25h = g25h
gen x25i = g25i
gen x25j = g25j
replace x25a = .if x25a > 10
replace x25b = .if x25b>10
replace x25c = .if x25c > 10
replace x25d = .if x25d > 10
replace x25e = .if x25e > 10
replace x25f = ... if x25f > 10
replace x25g = .if x25g > 10
replace x25h = .if x25h>10
replace x25i = .if x25i > 10
replace x25j = . if x25j > 10
```

Case study: do-file (part 3)

label variable x25a "A woman should be able to get an abortion if she wants one in the first three months of pregnancy, no matter what the reason" label variable x25b "Gay couples should be allowed to marry, giving them full legal rights of married couples"

label variable x25c "The government should provide health care coverage to all citizens who can't afford it, even if it means higher taxes"

label variable x25d "Government regulation of financial institutions should be greatly increased"

label variable x25e "The government should have let financial institutions that got into trouble over bad mortgage debt go out of business rather than trying to rescue them"

label variable x25f "The government should allow offshore drilling for oil and gas in the waters off the U.S. coast

label variable x25g "Congress should pass stricter laws to protect the environment and reduce global warming, even if the economic costs are high" label variable x25h "Our troops should stay in Iraq without a timetable for withdrawal until the Iraqi government is stable"

label variable x25i "Government should cut taxes on businesses to help the economy"

label variable x25j "The government should help people who can't afford their mortgage payments by suspending foreclosures until the economy has improved"

factor x25a x25b x25c x25d x25e x25f x25g x25h x25i x25j, pcf rotate predict x25f1 x25f2 x25f3

/*Regression*/

regress x8a gender age educ income x25*, robust regress x8b gender age educ income x25*, robust

Exploring data: annotated output

Exploring data: frequencies (intro)

Frequency refers to the number of times a value is repeated. Frequencies are usually used to analyze <u>categorical data</u>. The tables below are *frequency tables*. Values are in ascending order. Use the command tab (type help tab for more details)

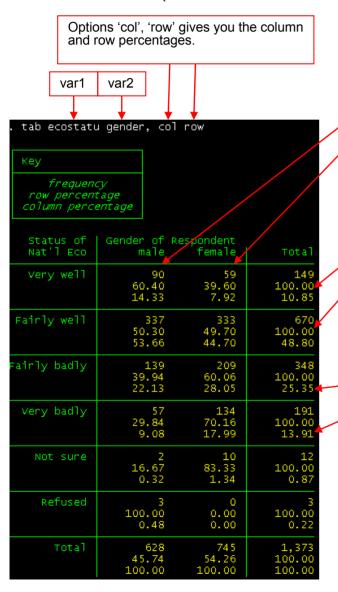
. tab major			
Major	Freq.	Percent	Cum.
Econ Math Politics	10 10 10	33.33 33.33 33.33	33.33 66.67 100.00
Total	30	100.00	

'<u>Freq</u>.' provides a raw count of each value. In this case 10 students for each major.

'<u>Percent</u>' gives the relative frequency for each value. For example, 33.33% of the students in this group are econ majors.

'<u>Cum.</u>' is the cumulative frequency in ascending order of the values. For example, 66.67% of the students are econ or math majors.

. tab readnews					
Newspaper read / week	Freq.	Percent	⊂um.		
3 4 5 6 7	6 5 9 7 3	20.00 16.67 30.00 23.33 10.00	20.00 36.67 66.67 90.00 100.00		
Total	30	100.00			


'<u>Freq</u>.' Here 6 students read the newspaper 3 days a week, 9 students read it 5 days a week.

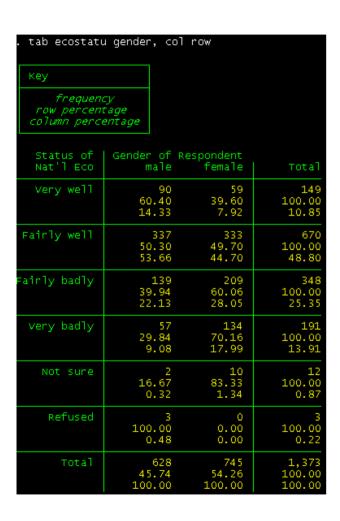
'<u>Percent</u>'. Those who read the newspaper 3 days a week represent 20% of the sample, 30% of the students in the sample read the newspaper 5 days a week.

'<u>Cum</u>.' 66.67% of the students read the newspaper 3 to 5 days a week.

Exploring data: crosstabs

Also known as *contingency tables*, crosstabs help you to analyze the relationship between two or more variables (mostly categorical). Below is a crosstab between the variable 'ecostatu' and 'gender'. We use the command tab (with two variables to make the crosstab).

The first value in a cell tells you the number of observations for each xtab. In this case, 90 respondents are 'male' and said that the economy is doing 'very well', 59 are 'female' and believe the economy is doing 'very well'

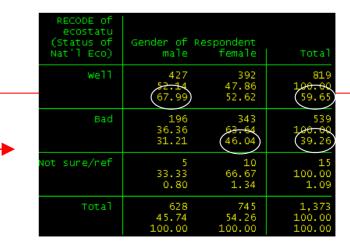

The second value in a cell gives you row percentages for the first variable in the xtab. Out of those who think the economy is doing 'very well', 60.40% are males and 39.60% are females.

The third value in a cell gives you column percentages for the second variable in the xtab. Among males, 14.33% think the economy is doing 'very well' while 7.92% of females have the same opinion.

You can use tab1 for multiple frequencies or tab2 to run all possible crosstabs combinations. Type help tab for further details.

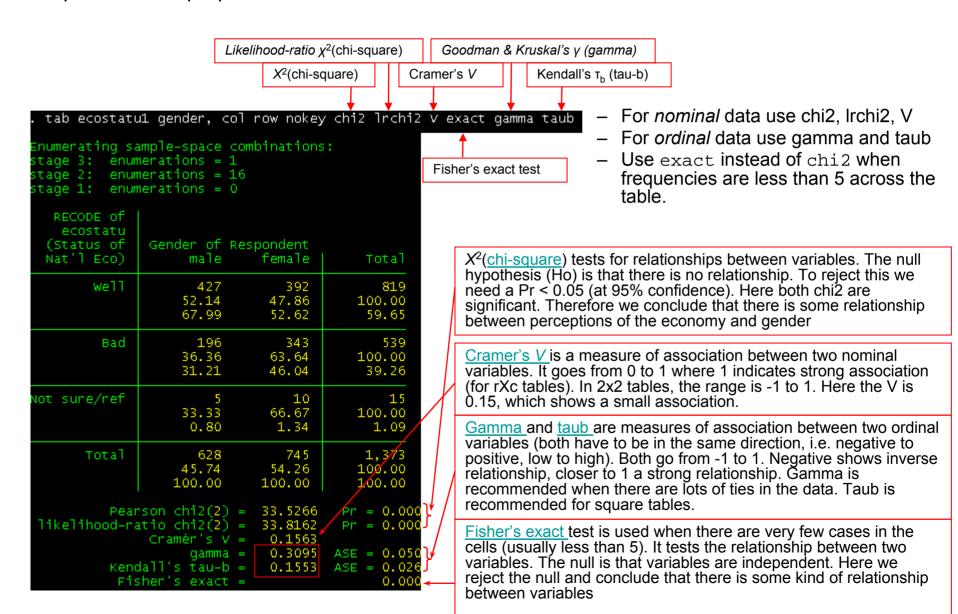
Exploring data: crosstabs (a closer look)

You can use crosstabs to compare responses among categories in relation to aggregate responses. In the table below we compare male and female responses vs. the national aggregate.



As a rule-of-thumb, a margin of error of ±4 percentage points can be used to indicate a significant difference (some use ±3).

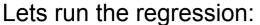
For example, rounding up the percentages, 11% (10.85) answer 'very well' at the national level. With the margin of error, this gives a range roughly between 7% and 15%, anything beyond this range could be considered significantly different (remember this is just an approximation). It does not appear to be a significant bias between males and females for this answer.

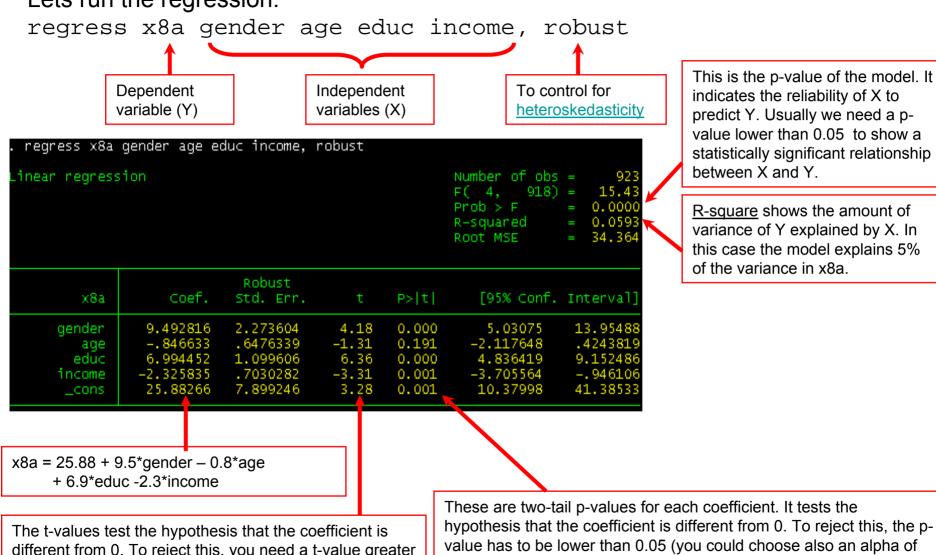

In the 'fairly well' category we have 49%, with range between 45% and 53%. The response for males is 54% and for females 45%. We could say here that males tend to be a bit more optimistic on the economy and females tend to be a bit less optimistic.

If we aggregate responses, we could get a better picture. In the table below 68% of males believe the economy is doing well (comparing to 60% at the national level, while 46% of females thing the economy is bad (comparing to 39% aggregate). Males seem to be more optimistic than females.

Exploring data: crosstabs (test for associations)

To see whether there is a relationship between two variables you can choose a number of tests. Some apply to <u>nominal</u> variables some others to <u>ordinal</u>. I am running all of them here for presentation purposes.


Exploring data: descriptive statistics


For continuous data we use <u>descriptive statistics</u>. These statistics are a collection of measurements of two things: *location* and *variability*. Location tells you the central value of your variables (the mean is the most common measure of this). Variability refers to the spread of the data from the center value (i.e. variance, standard deviation). Statistics is basically the study of what causes such variability. We use the command tabstat to get these stats (the 's' after the comma means 'statistics').

. tabstat	age sat	score heig	ht readnew	s, s(mean	median sd	var	count	range	min r	max)
stats	age	sat	score	height	readnews					
mean	25.2	1848.9	80.36667	66.43333	4.866667					
p50	23	1817	79.5	66.5	5					
sd	6.870226	275.1122	10.11139	4.658573	1.279368					
variance	47.2	75686.71	102.2402	21.7023	1.636782					
N	30	30	30	30	30					
range	21	971	33	16	4					
min	18	1338	63	59	3					
max	39	2309	96	75	7					

- •The *mean* is the sum of the observations divided by the total number of observations.
- •The *median* (p50 in the table above) is the number in the middle. To get the median you have to order the data from lowest to highest. If the number of cases is odd the median is the single value, for an even number of cases the median is the average of the two numbers in the middle.
- •The *standard deviation* is the squared root of the variance. Indicates how close the data is to the mean. Assuming a normal distribution, 68% of the values are within 1 sd from the mean, 95% within 2 sd and 99% within 3 sd
- •The *variance* measures the dispersion of the data from the mean. It is the simple mean of the squared distance from the mean.
- •Count (N in the table) refers to the number of observations per variable.
- •Range is a measure of dispersion. It is the difference between the largest and smallest value, max min.
- •Min is the lowest value in the variable.
- •Max is the largest value in the variable.

Exploring data: regression (what to look for)

different from 0. To reject this, you need a t-value greater than 1.96 (95% confidence). You can get the t-values by dividing the coefficient by its standard error. The t-values also show the importance of a variable in the model. In this case, educ is the most important.

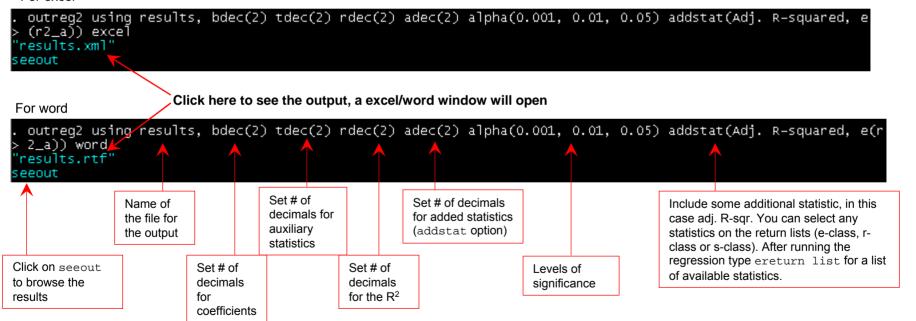
0.01). In this case, only "age" does not seem to be significant.

Exploring data: regression, publishing regression output (outreg2)

Once you define your final model, you can export your regression results using either your log file or the option outreg2. For the log you just open it using any word processor and copy-and-paste the regression table into excel or word. The command outreg2 gives you the type of presentation you see in scholar's papers. Let's say the final regression is

```
regress csat percent percent2 high
```

After running the regression type the following if you want to export the results to excel*


```
outreg2 using results, bdec(2) tdec(2) rdec(2) adec(2) alpha(0.001, 0.01, 0.05) addstat(Adj. R-squared, e(r2_a)) excel
```

Or this if you want to export to word

outreg2 using results, bdec(2) tdec(2) rdec(2) adec(2) alpha(0.001, 0.01, 0.05) $addstat(Adj. R-squared, e(r2_a))$ word

You will see this in Stata's output window

For excel

Type help outreg2 for more details. If you do not see outreg2, you may have to install it by typing ssc install outreg2. If this does not work type findit outreg2, select from the list and click "install".

Note: If you get the following error message (when you use the option append or replace it means that you need to close the excel/word window.

file results.rtf is read-only; cannot be modified or erased

^{*}See the following document for some additional info/tips http://www.fiu.edu/~tardanic/brianne.pdf

Exploring data: regression, publishing regression output (outreg2)

This is how the output would like (you will still need to do some additional editing):

In excel				
	А	В		
1	v1	v2		
2	COEFFICIENT	csat		
3				
4	percent	-6.52***		
5		(0.51)		
6	percent2	0.05***		
7		(0.01)		
8	high	2.99***		
9		(0.49)		
10	Constant	844.82***		
11		(36.63)		
12	Observations	51		
13	R-squared	0.93		
14	Adj. R-squared	0.92		
15	Standard errors in parentheses			
16	*** p<0.001, ** p<0.01, * p<0.05			

- 1	n	14/	าาด

COEFFICIENT	csat		
percent	-6.52***		
	(0.51)		
percent2	0.05***		
	(0.01)		
high	2.99***		
	(0.49)		
Constant	844.82***		
	(36.63)		
Observations	51		
R-squared	0.93		
Adj. R-squared	0.92		
Chandend amous in accountly			

Standard errors in parentheses
*** p<0.001, ** p<0.01, * p<0.05

You can add more models to compare. Lets say you want to add another model without percent 2:

regress csat percent high

Now type to export the results to excel (**notice** we add the append option)

outreg2 using results, bdec(2) tdec(2) rdec(2) adec(2) alpha(0.001, 0.01, 0.05) addstat(Adj. R-squared, e(r2_a)) excel append

In excel

	А	В	C
1	v1	v2	v3
2		(1)	(2)
3	COEFFICIENT	csat	csat
4			
5	percent	-6.52***	-2.32***
6		(0.51)	(0.16)
7	percent2	0.05***	
8		(0.01)	
9	high	2.99***	2.56**
10		(0.49)	(0.76)
11	Constant	844.82***	831.63***
12		(36.63)	(57.39)
13	Observations	51	51
14	R-squared	0.93	0.81
15	Adj. R-squared	0.92	0.80
16	Standard errors in parentheses		
17	*** p<0.001, ** p<0.01, * p<0.05		

In word

	(1)	(2)
COEFFICIENT	csat	csat
percent	-6.52***	-2.32***
	(0.51)	(0.16)
percent2	0.05***	
	(0.01)	
high	2.99***	2.56**
	(0.49)	(0.76)
Constant	844.82***	831.63***
	(36.63)	(57.39)
Observations	51	51
R-squared	0.93	0.81
Adj. R-squared	0.92	0.80
a. 1 1		

*** p<0.001, ** p<0.01, * p<0.05