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Abstract—Deep neural networks are known to be vulnerable
to adversarially perturbed inputs. A commonly used defense is
adversarial training, whose performance is influenced by model
architecture. While previous works have studied the impact of
varying model width and depth on robustness, the impact of
using learnable parametric activation functions (PAFs) has not
been studied. We study how using learnable PAFs can improve
robustness in conjunction with adversarial training. We first ask
the question: Can changing activation function shape improve
robustness? To address this, we choose a set of PAFs with
parameters that allow us to independently control behavior on
negative inputs, inputs near zero, and positive inputs. Using these
PAFs, we train models using adversarial training with fixed
PAF shape parameter values. We find that all regions of PAF
shape influence the robustness of obtained models, however only
variation in certain regions (inputs near zero, positive inputs) can
improve robustness over ReLU. We then combine learnable PAFs
with adversarial training and analyze robust performance. We
find that choice of activation function can significantly impact the
robustness of the trained model. We find that only certain PAFs,
such as smooth PAFs, are able to improve robustness significantly
over ReLU. Overall, our work puts into context the importance
of activation functions in adversarially trained models.

I. INTRODUCTION

Deep Neural Networks (DNNs) can be fooled by perceptu-

ally insignificant perturbations known as adversarial examples

[1]. A commonly used approach to defend against adversarial

examples is adversarial training [2, 3] which involves training

models using adversarial images. Previous studies have shown

that the performance of adversarial training depends on model

architecture [2, 4, 5, 6]; larger models are able to fit the train-

ing set better leading to higher robust accuracy. Additionally, a

few works have studied the impact of activation function shape

on robustness of adversarially trained models [4, 7]; however,

it is still unclear what aspects of activation function shape

are important for adversarial training. We begin by asking the

question:

How does activation function shape impact the per-
formance of adversarially trained models?

To address this question, we use a set of parametric activation

functions (PAFs) with a parameter controlling aspects of shape

such as behavior on negative inputs, behavior on positive

inputs, and behavior near zero. We vary the PAF parameter

and evaluate the robustness of adversarially trained models

to identify properties of activation function shape that are

correlated with robustness. Our findings suggest all three

aspects of activation function shape can play a significant role

in adversarial robustness, but only certain aspects are able to

lead to robustness higher than ReLU. We find that tuning

parameters controlling behavior near zero and behavior on

positive inputs can improve robustness over ReLU.

We then ask the question:

How do learnable parametric activation functions
perform when combined with adversarial training?

We train models using learnable PAFs with adversarial training

and observe the resulting robust accuracy and learned PAF

shape. We find that while introducing only 1-2 parameters

into the network, certain PAFs (namely smooth PAFs) can

significantly improve robustness over ReLU. For instance,

when trained on CIFAR-10 with an additional 6M synthetic

images from a generative model (DDPM-6M), PSSiLU, a PAF

that we introduce, improves robust accuracy by 2.69% over

ReLU on WideResNet(WRN)-28-10 (and 4.54% over ReLU

on ResNet-18) in the �∞ threat model while adding only
2 additional parameters into the network architecture. The

WRN-28-10 model achieves 61.96% robust accuracy, making

it the top performing model in its category on RobustBench

[8].

In summary, our contributions are as follows

1) We explore the impact of activation function shape on

the robustness of adversarially trained models through

PAFs parameterized by a single parameter controlling

shape. We choose a set of PAFs which allow us to

vary behavior on negative inputs, inputs near zero, and

positive inputs. These PAFs include both pre-existing

PAFs such as PReLU and PELU as well as PAFs

that we introduce (ReBLU and PReLU+). Additionally,

we introduce a new activation function called PSSiLU

parameterized by 2 parameters which allow us to vary

multiple shape properties (behavior on negative inputs

and behavior near 0) simultaneously.

2) Using our set of PAFs, we manually vary the shape pa-

rameter in order to determine which shape properties are

correlated with robust accuracy on adversarially trained

models. We find that for negative inputs outputting
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values near 0 can improve robustness. Additionally, we

find that near zero, high bounded curvature can also

improve robustness.

3) We then explore the use of PAFs with learnable pa-

rameters and observe their impact on robustness with

adversarial training. We find that while our PAFs intro-

duce only 1-2 parameters into the entire network (all

parameters of PAFs are shared across all activations),

smooth PAFs are able to improve robust accuracy over

ReLU and other nonparametric activation functions.

In comparison, prior works demonstrate that it takes

millions of parameters in width and depth to obtain the

same increase in robustness [4].

II. RELATED WORKS

a) Adversarial Attacks and Adversarial Training: Pre-

vious studies have shown that modern NNs can be fooled

by perturbations known as adversarial attacks, which are

imperceptible to humans, but cause NNs to predict incorrectly

with high confidence [1]. These attacks can be generated in a

white box [2, 8, 9, 10] or black-box [11, 12, 13] manner.

Adversarial training is a defense in which adversarial images

are used to train the model. The first variant of adversarial

training is PGD adversarial training [2]. Since then other

variants of adversarial training have been introduced to im-

prove robust performance [14, 15] and reduce tradeoff between

natural and robust accuracy[3, 16, 17]. Recent works have

also explored how to improve robustness when combined with

adversarial training [4, 18]. These include techniques such as

using additional data [19, 20, 21], and early stopping [22].

Croce et al. [23] provide a leaderboard for ranking defenses

against adversarial attacks, and currently the top defenses on

this leaderboard are all based on adversarial training.

b) Importance of Model Capacity in Adversarial Train-
ing: Prior works have indicated that the performance of

adversarial training depends on model capacity. Madry et al.

[2] demonstrated that large model capacity is necessary for

adversarial training to successfully fit the training data. Re-

cently, Bubeck and Sellke [24] proved that nd parameters are

necessary for a model to robustly fit n d-dimensional data

points. These findings raise the question, if adversarial training

requires high capacity models, where in the model architecture

should we introduce additional parameters? In line with this

question, multiple works have studied the impact of changing

the capacity of DNNs by modifying width and depth on

robustness [4, 5, 6]. However, the question of how introducing

parameters into activation functions impacts robustness has

been unexplored. We address this question by observing the

performance of parametric activation functions in conjunction

with adversarial training.

c) Activation Functions and Robustness: While most

works on activation functions focus on improving natural

accuracy [25, 26, 27, 28], there have been a few works

which explore activation functions in the adversarial setting.

One line of works evaluates the impact of properties such

as boundedness [29], symmetry [30], data dependency [31],

learnable shape [32], and quantization [33] on robustness

without using adversarial training. A more closely related

line of works evaluates the performance of models using

various nonparametric activation functions in conjunction with

adversarial training [4, 7, 34].

In contrast to prior works, we experiment with parametric
activation functions (PAFs), allowing us to explore a wider

range of activation function shapes and understand the impact

of increasing model capacity through activation functions. We

will first identify qualities of activation functions that are cor-

related robustness by observing the robustness of adversarially

trained models with various activation function shape (Section

III). We then perform adversarial training on architectures with

learnable PAFs and analyze their potential in improving robust

accuracy (Section IV).

III. IMPACT OF ACTIVATION FUNCTION SHAPE ON

ROBUSTNESS

Existing PAFs are designed for improving natural accuracy

through standard training without considering robustness, lead-

ing to the question: how should we design a PAF for improving
robustness? One challenge is that there are many shapes that

an activation function can take, leading to a large design space.

Since ReLU is commonly used in DNNs, we choose a set of

6 different PAFs which can take on the shape of ReLU while

allowing us to vary behavior from ReLU, which we discuss in

Section III-A. Additionally, we introduce a PAF which we call

PSSiLU that combines behaviors in different regions. In this

section, we manually vary the parameter of PAFs and measure

the robustness of adversarially trained models with different

activation function shape in order to understand what aspects

of shape can improve robustness through adversarial training.

A. Parametric Activation Functions Used

Since ReLU is commonly used in DNN architectures, we

first consider a set of PAFs with a single parameter α that

are able to model the shape of ReLU, while also allowing

for variation in behavior at different regimes in the input.

We divide our initial set of PAFs into 3 groups: those which

capture variation on negative inputs, those which capture

variation for inputs of small magnitude, and those which

capture variation for large positive inputs. The shapes at varied

parameter values of all PAFs that will be introduced are shown

in Figure 1 and Figure 2.

a) Variation on negative inputs: To capture variation on

negative inputs, we consider parametric ReLU (PReLU) [28]

and parametric ELU (PELU) [25] defined as follows:

PReLUα(x) =

{
αx x ≤ 0

x x > 0

PELUα(x) =

{
α(ex − 1) x ≤ 0

x x > 0
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Fig. 1. Visualization of parametric activation functions at various values of
parameter α.
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Fig. 2. Shape of PSSiLU at various values of α and β. Left: β is fixed to 0.3
while α is varied. Right: α is fixed to 1 while β is varied. ReLU is given by
the dotted black line. We can see that α controls the curvature of the function
near 0 while β controls the behavior on negative inputs.

b) Variation near zero: To capture variation for inputs

near zero, we consider two parametric activation functions

parametric SiLU (PSiLU) [27] and parametric Softplus (PSoft-

plus) [35]. These activation functions are defined as follows:

PSiLUα(x) = xσ(αx) PSoftplusα =
1

α
log(1 + eαx)

where σ(x) = 1
1+e−x is the sigmoid function. For both PAFs,

the parameter α controls its curvature, the maximum value

of the second derivative. We can see that at large values of

α, both PSiLU and PSoftplus approach the shape of ReLU.

Unlike PELU and PReLU, PSiLU and PSoftplus also have the

property of being smooth, which prior work [7] suggests may

improve the performance of adversarial training.

c) Combining properties: We introduce a PAF, which we

call PSSiLU (parametric shifted SiLU) which allows for both

variation along negative inputs and variation near zero via 2

parameters α and β:

PSSiLUα,β(x) = x(σ(αx)− β)/(1− β) (1)

where α, β > 0, β < 1, and σ(x) = 1
1+e−x is the sigmoid

function. At β = 0, PSSiLU’s behavior matches that of PSiLU.

The impact of changing these parameters on the shape of

PSSiLU is shown in Figure 2. α controls curvature around

0 while β controls behavior on negative inputs. Increasing

β allows PSSiLU’s output on input x < 0 to grow with

the magnitude of x similar to PReLU. Similar to PSiLU and

PSoftplus, PSSiLU is smooth.

d) Variation on positive inputs: To capture variation

on positive inputs, we introduce two PAFs: one which we

call Positive PReLU (PReLU+) and the other which we call

Rectified BLU (ReBLU). PReLU+ has a parameter controlling

the slope of the linear portion of ReLU and is defined as:

PReLU+
α (x) =

{
0 x ≤ 0

αx x > 0

We note that the function class modelled by PReLU+ is

the same as the function class modelled by ReLU since for

every PReLU+ network, you can construct a corresponding

ReLU network by scaling the weight parameters. Thus, any

difference in performance between PReLU+ and ReLU is due

to optimization.

Unlike PReLU+, ReBLU allows for nonlinear behavior on

positive inputs and is based off Bendable Linear Unit (BLU)

defined as BLUα = α(
√
x2 + 1− 1) + x [36]. To allow BLU

to take the shape of ReLU for comparison, we modify BLU

so that it is piecewise and outputs 0 for all negative inputs.

We define ReBLU as follows:

ReBLUα(x) =

{
0 x ≤ 0

BLUα(x) x > 0

B. Identifying Properties of Shape Correlated with Robustness
on Adversarially Trained Models

Using our set of 6 PAFs with a single parameter, we vary

activation function shape and measure the change in robustness

in order to determine which properties of activation shape are

correlated with robustness of adversarially trained models.

a) Experimental Setup: We train ResNet-18 models on

CIFAR-10 with 10 step PGD adversarial training [2]. We use

an �∞ adversary with radius ε = 8
255 and step size 2

255 . For

optimization, we use SGD with initial learning rate of 0.1 and

train for a total of 200 epochs. We decrease the learning rate
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by a factor of 10 at the 100th and 150th epoch. For each PAF,

we train a model with parameter α fixed to the values shown in

Figure 1. We measure the robustness of trained models using

AutoAttack [8].

We report the measured AutoAttack robust accuracy and

clean accuracy of models for different PAF parameter values

in Figure 3.
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Fig. 3. Square robust accuracy and average minimum PGD radius for
ResNet-18 models trained on CIFAR-10 with various parameter α. Results
are computed over 3 trials. Red points indicate the clean accuracy while blue
points indicate the AutoAttack robust accuracy across models.

b) Robustness is highest when behavior on negative
values is near 0: Across both PReLU and PELU, varying the

parameter α can lead to high variation in robust performance.

We find that robust accuracy ranges from �44% to 48%

across PReLU and PELU, which suggests that this behavior

on negative inputs is correlated with robustness. We find that

when α = 0, we achieve the highest robust accuracy. At α = 0,

both PAFs take the shape of ReLU, suggesting that ReLU has

optimal behavior on negative inputs.

c) High bounded curvature is correlated with robustness:
Across PSiLU and PSoftplus, for which α controls curvature,

we find that the optimal performance is obtained at α > 1.

α = 1 is the parameter setting corresponding to SiLU and

Softplus activations used in practice, and we find that these ac-

tivations can perform worse than ReLU. From our plot, SiLU

obtains �47.5% robust accuracy, Softplus obtains �44% robust

accuracy. In comparison, ReLU (shown at α = 0 on the plot

for PReLU) obtains �48% robust accuracy. This suggests that

while previous work [7] demonstrates that smooth activation

functions can improve robustness through adversarial training,

the function class that can be modelled by these activation

functions is also important. We find that high curvature, which

brings the shape of PSiLU and PSoftplus closer to the shape of

ReLU, can improve robust accuracy. We also find that for both

activation functions, the robustness decreases when α becomes

large. For instance for ReLU which has infinite curvature, we

can obtain only �48% accuracy while the maximum accuracy

of PSiLU and PSoftplus is above 49%.

d) On ReBLU, superlinear behavior is correlated with
robustness: We find that for ReBLU, increasing parameter α
improves robustness. On this PAF, α = 0 corresponds to the

performance of ReLU. From Figure 1, α > 0 corresponds

to superlinear growth in the positive portion of ReBLU,

and these values of α can improve over the performance of

ReLU. This result suggests that superlinear behavior may be

correlated with robustness in adversarially trained models. We

do not observe the same trend for PReLU+ for which there is

generally less variation in robustness across α due to the fact

that PReLU+ captures the same function class as ReLU.

Overall, our findings suggest that the choice of activation

function shape can improve or detriment the robust accuracy of

PAFs. Additionally, our findings suggest that certain activation

function shapes such as those with high bounded curvature

and ReBLU with superlinear growth on positive inputs can

improve robustness over a corresponding ReLU network.

IV. INVESTIGATING THE PERFORMANCE OF

ADVERSARIALLY TRAINED MODELS USING PARAMETRIC

ACTIVATION FUNCTIONS

We now combine learnable PAFs with adversarial training

to investigate the impact of incorporating parameters into ac-

tivation functions on adversarial training. Specifically, we add

α (and β for PSSiLU) to the parameter set θ that we optimize

during adversarial training. We share PAF parameters across

all layers in the network, so that PSSiLU only introduces two

additional parameters into the model while all other PAFs

introduce one new parameter. We also train models using

the commonly used nonparametric activation functions: ReLU,

ELU, SiLU, Softplus. ELU, SiLU, and Softplus correspond to

α = 1 for PELU, PSiLU, and PSoftplus respectively.

We perform experiments on WRN-28-10 and ResNet-18

architectures on CIFAR-10. We also experiment with using

additional data during training. For additional CIFAR-10 data,

we use DDPM-6M [37], a set of 6M CIFAR-10 images

generated by DDPM, a generative model [38] which have

been shown to improve the robustness of adversarially trained

models [20, 21], and labelled by a 98.5% accurate BiT model

[39]. For the bulk of our experiments, we use 10-step PGD

adversarial training [2] and focus on �∞ attacks. We present

results on ResNet-18 in Table I and results on WRN-28-10 in

Table II.

a) Not all parameters are equal: We find that although

networks using PAFs capture a larger function class than ReLU

networks, not all PAFs can obtain robust accuracy higher than

ReLU. For instance, across both Table I and Table II, we find

that PReLU and PELU consistently perform worse than ReLU

despite both being able to capture the shape of ReLU. This

suggests that there may be some difficulty in optimization for

these activation functions which prevent them from learning a

more optimal α parameter value of 0.
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CIFAR-10 +DDPM-6M
Activation Natural AA Natural AA

ReLU 82.84 48.46 82.83 53.67

PReLU 83.05 47.27 83.27 53.66

ELU 80.47 45.43 82.47 51.59

PELU 82.51 47.34 83.07 53.29

Softplus 80.46 44.64 79.44 49.41

PSoftplus 83.74 49.28 84.56 56.78

PReLU+ 81.96 47.62 83.91 54.09

ReBLU 83.15 48.22 83.63 54.21

SiLU 83.80 47.41 83.53 54.07

PSiLU 83.96 49.64 84.73 55.20

PSSiLU 84.10 49.27 84.79 58.21

TABLE I
NATURAL AND ROBUST ACCURACY OF PGD ADVERSARIALLY TRAINED

RESNET-18 MODELS OF VARIOUS ACTIVATION FUNCTIONS ON CIFAR-10
WITH RESPECT TO �∞ ATTACKS WITH RADIUS 0.031. THE AA COLUMN

GIVES THE ROBUST ACCURACY OF ATTACKS GENERATED THROUGH

AUTOATTACK ON THE TEST SET. WE HIGHLIGHT ROBUST ACCURACIES

LARGER THAN RELU IN PURPLE.

CIFAR-10 +DDPM-6M
Activation Natural AA Natural AA

ReLU 86.29 51.95 85.92 59.27

PReLU 86.88 48.51 86.04 58.74

ELU 77.67 43.90 81.09 50.79

PELU 86.89 48.41 85.83 58.90

Softplus 79.99 44.41 78.86 49.14

PSoftplus 86.99 52.74 86.60 60.94

PReLU+ 87.18 45.05 86.05 59.13

ReBLU 86.80 52.25 86.39 59.62

SiLU 83.95 48.39 84.90 55.10

PSiLU 87.13 51.92 86.47 60.37

PSSiLU 86.41 51.47 87.02 61.96

TABLE II
NATURAL AND ROBUST ACCURACY OF PGD ADVERSARIALLY TRAINED

WRN-28-10 MODELS OF VARIOUS ACTIVATION FUNCTIONS ON

CIFAR-10 WITH RESPECT TO �∞ ATTACKS WITH RADIUS 0.031. THE AA
COLUMN GIVES THE ROBUST ACCURACY OF ATTACKS GENERATED

THROUGH AUTOATTACK ON THE TEST SET. WE HIGHLIGHT ROBUST

ACCURACIES LARGER THAN RELU IN PURPLE.

Meanwhile, smooth PAFs including PSoftplus, PSiLU, and

PSSiLU consistently achieve robust accuracy that is compara-

ble to or higher than ReLU. For instance on PSSiLU on WRN-

28-10 improves over the performance of ReLU by 2.28% with-

out extra data and 2.69% with additional data. The importance

of smoothness was studied by Xie et al. [7] and [4]. Xie et al.

[7] found that smooth activation functions can improve the

performance of adversarial training on ImageNet while Gowal

et al. [4] were unable to observe the same trend in CIFAR-10.

We find that when smooth nonparametric activation functions

are unable to outperform ReLU, their parametric counterparts

are able to, suggesting that the combination of smoothness

and the flexibility of our PAFs to model ReLU improves

robustness.

Additionally, despite not being smooth, ReBLU can also

consistently achieve robustness on par with or higher than

ReLU. However, this improvement over ReLU is quite small;

for instance ReBLU only achieves a 0.35% improvement over

ReLU on WRN-28-10 with additional DDPM-6M data.

Overall, we find that the importance of parameters are

generally consistent with our results in Section III, where

we found that when manually varying shape paramete PELU

and PReLU are optimal at ReLU’s shape while for PSiLU,

PSoftplus, and ReBLU, we are able to find a parameter setting

that led to higher robustness than ReLU.

b) By adding only two additional parameters, PSSiLU
can significantly improve robust accuracy over ReLU.: We

observe that for ResNet-18 and WRN-28-10, PSSiLU achieves

both high clean and high robust accuracy. Compared to ReLU,

we observe that PSSiLU improves robust performance by a

total of 4.54% while only adding 2 parameters into the network
architecture. Moreover, with the additional DDPM-6M data on

ResNet-18, PSSiLU improves over the robust performance of

SiLU by 4.14% and PSiLU by 3.01%, both of which can be

modeled by PSSiLU.

On WRN-28-10, PSSiLU achieves 87.02% clean accuracy

and 61.96% robust accuracy, improving on clean accuracy by

1.10% and robust accuracy by 2.69% over ReLU, making

our WRN-28-10 model the best performing in its category

on RobustBench [8]. This improvement in robust accuracy

is significant; prior works have shown that it takes millions

of additional parameters through varying width and depth of

CNNs in order to achieve a 1-2% increase in robustness on

WRN on CIFAR-10 [4].

The improvement of PSSiLU over ReLU demonstrates the

potential of using learnable activation functions in conjunction

with adversarial training. Additionally, the significance of the

improvement in robust accuracy over ReLU emphasizes the

importance of activation function shape.

In summary, we find that even when parameters are learn-

able, we cannot always improve robustness over ReLU with

PAFs. We find that certain PAFs, specifically smooth PAFs

and ReBLU are able to improve robustness over ReLU, while

other PAFs such as PReLU and PELU are always suboptimal,

despite being able to capture the function class of ReLU

networks. This result demonstrates that optimization may

play a role in performance of PAFs. Additionally, we find

that differences in robustness between models of different

activation function can be significant; for instance, PSSiLU

improves on robust accuracy by 2.69% over ReLU when

trained with additional DDPM data. We now move on to

visualize the learned shapes of these PAFs.

A. Visualizing Learned Shapes of Parametric Activation Func-
tions

Previously, in Section III, we manually varied the shape

parameter of PAFs in order to understand how behavior in

different regions of input is correlated with robustness. We

present the learned shapes of the 6 PAFs with single parameter

in Figure 4 for models trained without additional data.

We find the shapes of learned activation functions are

consistent with our analysis in Section III across architec-

tures. For instance, in Section III, we found that for PSiLU

and PSoftplus, large values of α (higher curvature) leads to
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Fig. 4. Learned shapes of PAFs across models trained on CIFAR-10. Red
lines indicate activation shape for the ResNet-18 model while blue lies indicate
activation shape for the WRN-28-10 model.

improved robustness. We find that when the parameter is

learnable, the best performing model also optimizes towards

these larger values of α. Similarily, we find that for ReBLU,

the shape learned has superlinear behavior which we found is

correlated with higher robustness in Section III. However, we

find that while trends are conserved, the values for α learned

do not exactly coincide with the values of the α with optimal

robustness in Figure 3. For instance, in Figure 3, we find

that the optimal value of α is �5 when training with a fixed

activation value. However, we find that when training with a

learnable parameter, α tends towards �10.

Additionally, the relation to trends from Section III also

help to explain why PReLU and PELU perform suboptimally

compared to ReLU. We find that for PReLU and PELU, the

activation function shape optimizes towards small negative

values of α while from Section III, we found that the behavior

of these activation functions is optimal when PReLU and

PELU have shape near that of ReLU (α = 0).

V. LIMITATIONS AND FUTURE DIRECTIONS

In our work, we showed that the choice of activation

function is important to robust accuracy obtained through

adversarial training. We identified aspects of activation func-

tion behavior which allow activation functions to improve

robustness over ReLU. These include outputting values near

zero on negative inputs, having high bounded curvature, and

superlinear growth on positive inputs (in the case of ReBLU).

We now suggest several future directions in order to address

limitations of this work.

a) Understanding why certain properties of activation
function shape improve robustness: While we demonstrated

that activation function shape impacts robustness, we do not

have explanations for this phenomenon. In a future direction,

we would like to understand why certain activation function

shapes are more optimal/suboptimal than others when used

with adversarial training. For instance, we found that PReLU

and PELU were unable to improve over ReLU, leading to

the question: why does changing behavior on negative inputs

degrade robust accuracy? Additionally, we found that inter-

estingly ReBLU, which is not smooth, can improve robust

accuracy over ReLU when ReBLU has superlinear behavior on

positive inputs. In the future, we would like to further examine

why this occurs.

b) Combining properties of activation function shape:
In this work, we introduced PSSiLU which allows us to

vary behavior on both negative inputs and behavior near zero

(while having the nice property of being smooth). To further

investigate the impact of activation function shape, it would

be good to also introduce PAFs which allow for other com-

binations of activation shape properties. For instance, since

ReBLU can improve robustness over ReLU, we would like

to combine ReBLU with smooth PAFs controlling curvature

such as PSiLU and PSoftplus to see if we can further improve

on robust accuracy.

VI. CONCLUSION

In this work, we studied the impact activation function

shape on robustness through adversarial training. We find that

not all parameterizations of activation functions are able to

improve robustness over ReLU, but find that smooth acti-

vation functions with a parameter controlling curvature and

a PAF we introduce named ReBLU are able to improve

robustness over ReLU. We combine learnable PAFs with

adversarial training and find that by introducing as many as

1-2 additional parameters into the network architecture, PAFs

can significantly improve robustness over ReLU. Overall, this

work demonstrates the importance of activation functions in

adversarial training and the potential of PAFs for enhancing

robustness of machine learning against adversarial examples.
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Nadeau, and René Garcia. Incorporating second-order

functional knowledge for better option pricing. Advances
in neural information processing systems, pages 472–

478, 2001.

[36] Luke B. Godfrey. An evaluation of parametric ac-

tivation functions for deep learning. In 2019 IEEE

International Conference on Systems, Man and Cy-
bernetics (SMC), pages 3006–3011, 2019. doi:

10.1109/SMC.2019.8913972.

[37] Preetum Nakkiran, Behnam Neyshabur, and Hanie

Sedghi. The deep bootstrap framework: Good online

learners are good offline generalizers. In International
Conference on Learning Representations, 2020.

[38] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising

diffusion probabilistic models. In Hugo Larochelle,

Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina

Balcan, and Hsuan-Tien Lin, editors, Advances in Neural
Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL
https://proceedings.neurips.cc/paper/2020/hash/

[39] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai,

Joan Puigcerver, Jessica Yung, Sylvain Gelly, and Neil

Houlsby. Big transfer (bit): General visual representation

learning. In European conference on computer vision,

pages 491–507. Springer, 2020.

87

Authorized licensed use limited to: Princeton University. Downloaded on September 19,2022 at 00:01:15 UTC from IEEE Xplore.  Restrictions apply. 


