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Abstract

A key feature that distinguishes modern botnets from
earlier counterparts is their increasing use of structured
overlay topologies. This lets them carry out sophisticated
coordinated activities while being resilient to churn, but
it can also be used as a point of detection. In this
work, we devise techniques to localize botnet mem-
bers based on the unique communication patterns aris-
ing from their overlay topologies used for command and
control. Experimental results on synthetic topologies
embedded within Internet traffic traces from an ISP’s
backbone network indicate that our techniques (i) can lo-
calize the majority of bots with low false positive rate,
and (ii) are resilient to incomplete visibility arising from
partial deployment of monitoring systems and measure-
ment inaccuracies from dynamics of background traffic.

1 Introduction

Malware is an extremely serious threat to modern net-
works. In recent years, a new form of general-purpose
malware known as bots has arisen. Bots are unique in
that they collectively maintain communication structures
across nodes to resiliently distribute commands from a
command and control (C&C) node. The ability to coor-
dinate and upload new commands to bots gives the bot-
net owner vast power when performing criminal activi-
ties, including the ability to orchestrate surveillance at-
tacks, perform DDoS extortion, sending spam for pay,
and phishing. This problem has worsened to a point
where modern botnets control hundreds of thousands of
hosts and generate revenues of millions of dollars per
year for their owners [23, 42].

Early botnets followed a centralized architecture.
However, growing size of botnets, as well as the devel-
opment of mechanisms that detect centralized command-
and-control servers [10, 44, 27, 31, 72,9, 49, 30, 29, 76],
has motivated the design of decentralized peer-to-peer

botnets. Several recently discovered botnets, such as
Storm, Peacomm, and Conficker, have adopted the use
of structured overlay networks [71, 57, 58]. These net-
works are a product of research into efficient communi-
cation structures and offer a number of benefits. Their
lack of centralization means a botnet herder can join
and control at any place, simplifying ability to evade
discovery. The topologies themselves provide low de-
lay any-to-any communication and low control overhead
to maintain the structure. Further, structured overlay
mechanisms are designed to remain robust in the face of
churn [48, 32], an important concern for botnets, where
individual machines may be frequently disinfected or
simply turned off for the night. Finally, structured over-
lay networks also have protection mechanisms against
active attacks [12].

In this work, we examine the question of whether ISPs
can detect these efficient communication structures of
peer-to-peer (P2P) botnets and use this as a basis for bot-
net defense. ISPs, enterprise networks, and IDSs have
significant visibility into these communication patterns
due to the potentially large number of paths between
bots that traverse their routers. Yet the challenge is sep-
arating botnet traffic from background Internet traffic, as
each botnet node combines command-and-control com-
munication with the regular connections made by the ma-
chine’s user. In addition, the massive scale of the com-
munications makes it challenging to perform this task ef-
ficiently.

We propose BotGrep, an algorithm that isolates effi-
cient peer-to-peer communication structures solely based
on the information about which pairs of nodes commu-
nicate with one another (communication graph). Our
approach relies on the fast-mixing nature of the struc-
tured P2P botnet C&C graph [26, 11, 6, 79]. The Bot-
Grep algorithm iteratively partitions the communication
graph into a faster-mixing and a slower-mixing piece,
eventually narrowing on to the fast-mixing component.
Although graph analysis has been applied to botnet and



P2P detection [15, 36, 78, 35], our approach exploits the
spatial relationships in communication traffic to a sig-
nificantly larger extent than these works. Based on ex-
perimental results, we find that under typical workloads
and topologies our techniques localize 93-99% of botnet-
infected hosts with a false positive probability of less
than 0.6%, even when only a partial view of the commu-
nication graph is available. We also develop algorithms
to run BotGrep in a privacy-preserving fashion, such that
each ISP keeps its share of the communication graph pri-
vate, and show that it can still be executed with access to
a moderate amount of computing resources.

The BotGrep algorithm is content agnostic, thus it is
not affected by the choice of ports, encryption, or other
content-based stealth techniques used by bots. However,
BotGrep must be paired with some sort of malware de-
tection scheme, such as anomaly or misuse detection,
to be able to distinguish botnet control structures from
other applications using peer-to-peer communication. A
promising approach starts with a honeynet that “traps” a
number of bots. BotGrep is then able to take this small
seed of bot nodes and recover the rest of the botnet com-
munication structure and nodes.

Roadmap: We start by giving a more detailed prob-
lem description in Section 2. In Section 3, we describe
our overall approach and core algorithms, and describe
privacy-preserving extensions that enable sharing of ob-
servations across ISP boundaries in Section 4. We then
evaluate performance of our algorithms on synthetic bot-
net topologies embedded in real Internet traffic traces in
Section 5. We provide a brief discussion of remaining
challenges in Section 6, and describe related work in Sec-
tion 7. Finally, we conclude in Section 8.

2 System Architecture

In this section we describe several challenges involved in
detecting botnets. We then describe our overall architec-
ture and system design.

Challenges: Over the recent years, botnets have been
adapting in order to evade detection and their activities
have become increasingly stealthy. Botnets use random
ports, encrypt their communication contents, thus defeat-
ing content-based identification. Traffic patterns, which
have previously been used for detection [29], could po-
tentially be altered as well, using content padding or
other approaches. However, overall, it seems hard to hide
the fact that two nodes are communicating, and thus we
use this information as the basis for our design.
However, we are faced with several additional chal-
lenges. The background traffic on the Internet is highly
variable and continuously changing, and likely dwarfs
the small amount of control traffic exchanged between

botnet hosts. Further, botnet nodes combine their ma-
licious activity with the regular traffic of the legitimate
users, thus they are deeply embedded inside the back-
ground communication topology. For example, Fig-
ure 1(b) shows a visualization of a synthetic P2P bot-
net graph embedded within a communication graph col-
lected from the Abilene Internet2 ISP. The botnet is
tightly integrated and cannot be separated from the rest
of the nodes by a small cut.

In order to observe a significant fraction of botnet
C&C traffic, it is necessary to combine observations from
many vantage points across multiple ISPs. This creates
an extremely large volume of data, since originally the
background traffic will be captured as well. Thus, any
analysis algorithms face a significant scaling challenge.
In addition, although ISPs have already demonstrated
their willingness to detect misbehavior in order to better
serve their customers [3] as well as cooperating across
administrative boundaries [4], they may be reluctant to
share traffic observations, as those may reveal confiden-
tial information about their business operations or their
customers.

‘We next propose a botnet defense architecture that ad-
dresses these challenges.

System architecture : As a first step, our approach
requires collecting a communication graph, where the
nodes represent Internet hosts and edges represent com-
munication (of any sort) between them. Portions of this
graph are already being collected by various ISPs: the
need to perform efficient accounting, traffic engineer-
ing and load balancing, detection of malicious and dis-
allowed activity, and other factors, have already led net-
work operators to deploy infrastructure to monitor traffic
across multiple vantage points in their networks. Bot-
Grep operates on a graph that is obtained by combin-
ing observations across these points into a single graph,
which offers significant, though incomplete visibility
into the overall communication of Internet hosts . Traf-
fic monitoring itself has been studied in previous work
(e.g., [44]), and hence our focus in this work is not on
architectural issues but rather on building scalable botnet
detection algorithms to operate on such an infrastructure.

A second source of input is misuse detection. Since
botnets use communication structures similar to other
P2P networks, the communication graph alone may not

'Tools such as Cisco 10S’s NetFlow [2] are designed to sample
traffic by only processing one out of every 500 packets (by default).
To evaluate the effect of sampling, we replayed packet-level traces col-
lected by the authors of [42] from Storm botnet nodes, and simulated
NetFlow to determine the fraction of botnet links that would be de-
tected. We found that in the worst case (assuming each flow traversed a
different router), after 50 minutes, 100% of botnet links were detected.
Moreover, recent advances in counter architectures [77] may enable
efficient tracking of the entire communication graph without need for
sampling.
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Figure 1: (a) BotGrep architecture and (b) Abilene network with embedded P2P subgraph

be enough to distinguish the two. Some form of indica-
tion of malicious activity, such as botnet nodes trapped in
Honeynets [68] or scanning behavior detected by Dark-
nets [7], is therefore necessary. A list of misbehaving
hosts can act as an initial “seed” to speed up botnet iden-
tification, or it can be used later to verify that the detected
network is indeed malicious.

The next step is to isolate a botnet communication sub-
graph. Recently, botnet creators have been turning to
communication graphs provided by structured networks,
both due to their advantages in terms of efficiency and
resilience, and due to easy availability of well-tested
implementations of the structured P2P algorithms (e.g.,
Storm bases the C&C structure for its supernodes on the
Overnet implementation of Kademlia [50]). One com-
mon feature of these structured graphs is their fast mix-
ing time, i.e., the convergence time of random walks to a
stationary distribution. Our algorithm exploits this prop-
erty by performing random walks to identify fast-mixing
component(s) and isolate them from the rest of the com-
munication graph. If sharing of sensitive information
is an issue, it is possible to perform random walks in a
privacy-preserving fashion on a graph that is split among
a collection of ISPs.

Once the botnet C&C structure is identified and con-
firmed as malicious, BotGrep outputs a set of suspect
hosts. This list may be used to install blacklists into
routers, to configure intrusion detection systems, fire-
walls, and traffic shapers; or as “hints” to human oper-
ators regarding which hosts should be investigated. The
list may also be distributed to subscribers of the service,
potentially providing a revenue stream. The overall ar-
chitecture is shown in Figure 1(a).

3 Inference Algorithm

Our inference algorithm starts with a communication
graph G = (V,E) with V representing the set of hosts

observed in traffic traces and undirected edges e € E in-
serted between communicating hosts. Embedded within
G is a P2P graph G, C G, and the remaining subgraph
G, = G — G, containing non-P2P communications. The
goal of our algorithms is to reliably partition the input
graph G into {G,,,G,} in the presence of dynamic back-
ground traffic and with only partial visibility.

3.1 Approach overview

The main idea behind our approach is that, since most
P2P topologies are much more highly structured than
background Internet traffic, we can partition by detect-
ing subgraphs that exhibit different topological patterns
from each other or the rest of the graph. We do this
by performing random walks, and comparing the relative
mixing rates of the P2P subgraph structure and the rest
of the communication graph. The subgraph correspond-
ing to structured P2P traffic is expected to have a faster
mixing rate than the subgraph corresponding to the rest
of the network traffic. The challenge of the problem is to
partition the graph into these two subgraphs when they
are not separated by a small cut, and to do so efficiently
for very large graphs.

Our approach consists of three key steps. Since the
input graph could contain millions of nodes, we first ap-
ply a prefiltering step to extract a smaller set of candi-
date peer-to-peer nodes. This set of nodes contains most
peer-to-peer nodes, as well as false positives. Next, we
use a clustering technique based on the Sybillnfer algo-
rithm [21] to cluster only the peer-to-peer nodes, and re-
move false positives. The final step involves validating
the result of our algorithms based on fast-mixing charac-
teristics of peer-to-peer networks.



3.2 Prefiltering Step

The key idea in the prefiltering step is that for short ran-
dom walks, the state probability mass associated with
nodes in the fast-mixing subgraph is likely to be closer to
the stationary distribution than nodes in the slow-mixing
subgraph. Let P be the transition matrix of the random
walks. P is defined as

1
Pij= (’)1"

where d; denotes the degree of vertex i in G.

The probability associated with each vertex after the
short random walk of length ¢, denoted by ¢, can be be
used as a metric to compare vertices and guide the ex-
traction of the P2P subgraph. The initial probability dis-
tribution ¢° is set to ¢” = 1/|V|, which means that the
walk starts at all nodes with the equal probability. We
can recursively compute ¢’ as follows:

ifi — jisanedgein G
; ey

otherwise

q=q7"P @

Now, since nodes in the fast-mixing subgraph are
likely to have ¢’ values closer to the stationary distri-
bution than nodes in the slow-mixing subgraph, and be-

cause the stationary distribution is proportional to node
I

degrees, we can cluster nodes with homogeneous d’ val-
ues. However, before doing so, we apply a transfor-
mation to dampen the negative effects of high-degree
nodes on structured graph detection. High-degree nodes
or hubs are responsible for speeding up the mixing rate
of the non-structured subgraph G, and can reduce the
relative mixing rate of G, as compared to G,,. The trans-
formation filter is as follows:

1
si = (Z) g &)

where r is the dampening constant. We can now cluster
vertices in the graph by using the k-means algorithm [47]
on the set of values s. The k-means clustering algorithm
divides the points in s into k (k < |V|) clusters such that
the sum of squares J from points to the assigned cluster
centers is minimized.

k
Z ||S,'—Cj||2, “
where c; is the center of cluster j. The within-cluster sum
of squares for each cluster constitutes the cluster score.
The parameter k is chosen using the method of Pelleg
and Moore [56]. Starting from a user specified minimum
number of clusters k = k,;;, we repeatedly compute k-
means over our dataset by incrementing k up to a max-
imum of k... We then select the best-scoring k value.

™=

kmin and k. correspond to the minimum and maximum
number of possible botnets within the dataset. In our ex-
periments, we used ki, = 0 and kg = 20.

Each of the k clusters corresponds to a set of nodes
in Vg, so we may partition our graph into subgraphs
{G1,G3,...,Gy}. We must now confirm or reject the hy-
pothesis that each of these subgraphs contains a struc-
tured P2P graph. Clustering helps speed up the super-
linear components of the following algorithm; we may
also be able to focus our attention on a particular sub-
set of clusters if misuse detection is concentrated within
them.

Note that we can use the sparse nature of the ma-
trix P to compute ¢’ using Equation 2 very efficiently
in O(|E|-t) time. The time and space complexity of
Equation 3 is O(|V]), while Equation 4 can be computed
in O(k-|V|) iterations. Thus the prefiltering step is a
very efficient mechanism to obtain a set of candidate P2P
nodes, capable of operating on large node graphs.

3.3 Clustering P2P Nodes

The subgraphs computed by the above step are likely
to contain P2P nodes, but they are also likely to con-
tain some non-P2P nodes due to the “leakage” of random
walks out of the structured subgraph. We perform a sec-
ond pass over the each subgraph G; € G1,Ga,...,G to
remove weakly connected nodes.

We cluster P2P nodes by using the Sybillnfer [21]
framework. Sybillnfer is a technique to detect Sybil
identities in a social network graph; a key feature of
Sybillnfer is a sampling strategy to identify a good parti-
tion out of an extremely large space of possibilities (2).
However, the detection algorithm used in Sybillnfer re-
lies on the existence of a small cut between the honest
social network and the Sybil subgraph, and is thus not
directly applicable to our setting. Next, we present a
modified Sybillnfer algorithm that is able to detect P2P
nodes.

1. Generation of Traces : The first step of the clus-
tering is the the generation of a set of random walks on
the input graph. The walks are generated by perform-
ing a number n of random walks, starting at each node in
the graph. A special probability transition matrix is used,
defined as follows:

11 ip .. .
P mln(ji,jj) if i — jis an edge in G 5)
0 otherwise

This choice of transition probabilities ensures that the
stationary distribution of the random walk is uniform
over all vertices. The length of the random walk is
O(log|V|), while the number of random walks per node



(denoted by n), is a tunable parameter of the system.
Only the start vertex and end vertex of each random walk
are used by the algorithm, and this set of vertex pairs is
called the traces, denoted by T'.

2. A probabilistic model for P2P nodes: At the heart
of our detection algorithm lies a model that assigns a
probability to each subset of nodes of being P2P nodes.
Consider any cut X C V of nodes in the graph. We wish
to compute the probability that the set of nodes X are all
P2P nodes, given our set of traces T, i.e. P(X = P2P|T).
Through the application of Bayes theorem, we have an
expression of this probability:

P(T|X = P2P)-P(X = P2P)

P(X = P2P|T) = Z—F)

(6)

Note that we can treat P(T) as a normalization con-
stant Z, as it does not change with the choice of X. The
prior probability P(X = P2P) can be used to encode any
further knowledge about P2P nodes (using honeynets), or
can simply be set uniformly over all possible cuts. Our
key theoretical task here is the computation of the proba-
bility P(T|X = P2P), since given this probability, we can
compute P(X = P2P|T) using the Bayes theorem.

Our intuition in proposing a model for P(T|X = P2P)
is that for short random walks, the state probability mass
for peer-to-peer nodes quickly approaches the station-
ary distribution. Recall that the stationary distribution of
our special random walks is uniform, and thus, the state
probability mass for peer-to-peer nodes should be homo-
geneous. We can classify the random walks in the trace T
into two categories: random walks that end in the set X,
and random walks that end in the set X (complementary
set of nodes).

Using our intuition that for short random walks, the
state probability mass associated with peer-to-peer nodes
is homogeneous, we assign a uniform probability to all
walks ending in the set X. On the other hand, we make
no assumptions about random walks ending in the set X
(in contrast to the original Sybillnfer algorithm). Thus,

P(T|X = P2P) =I,,er P(W|X = P2P), @)

where w denotes a random walk in the trace. Now if the
walk w ends in vertex a in X, then we have that

N, 1

P(wlX =P2P) =) PR

veX

®)

where N, denotes the number of random walks ending in
vertex v. Observe that this probability is the same for all
vertices in X. On the other hand, if the walk w ends in
vertex a in X, then we have that

Ny
n- V|

P(w|X = P2P) = )

3. Metropolis-Hastings Sampling: Using the proba-
bilistic model for P2P nodes, we have been able to com-
pute the the probability P(X = P2P|T) up to a multi-
plicative constant Z. However, computing Z is difficult
since it involves enumeration over all subsets X of the
graph. Thus, instead of directly calculating this prob-
ability for any configuration of nodes X, we will sam-
ple configurations X; following this distribution. We use
the Metropolis-Hastings algorithm [34] to compute a set
of samples X; ~ P(X|T). Given a set of samples S, we
can compute marginal probabilities of nodes being P2P
nodes as follows:

Yiesl(i€X;)

Pliis P2P] = S ,

(10
where /(i € X;) is an indicator random variable taking
value 1 if node i is in the P2P sample X, and value 0 oth-
erwise. Finally, we can use a threshold on the marginal
probabilities (set to 0.5) to partition the set of nodes into
fast-mixing and slow-mixing components.

3.4 Validation

We note that a general graph may be composed of mul-
tiple subgraphs having different mixing characteristics.
However, our modified Sybillnfer based clustering ap-
proach only partitions the graph into two subgraphs. This
means we may have to use multiple iterations of the mod-
ified Sybillnfer based clustering algorithm to get to the
desired fastest mixing subgraph. This raises an impor-
tant question - what is the termination condition for the
iteration. In other words, we need a validation test to
establish that we have obtained the fast-mixing P2P sub-
graph that we were trying to detect. Next, we propose
a set of validation tests: if all of the tests are true, the
iteration is terminated.

e Graph Conductance test: It has been shown [62]
that the presence of a small cut in a graph results
in a slow mixing time and that a fast-mixing time
implies the absence of small cuts. To formalize the
notion of a small cut, we use the measure of graph
conductance (®,) [43] between cuts (X, X), defined
as

Exexzy¢xn(x)ny
n(X)

Since peer-to-peer networks are fast mixing, their
graph conductance should be high (they do not have
a small cut). Thus we can prevent further parti-
tioning of a fast-mixing subgraph by testing that the
graph conductance between the cuts is high.

o gl ) entropy comparison test: Random walks on
structured homogeneous P2P graphs are character-
ized by high entropy state probability distributions.

Dy =



This means that on a graph with n nodes, a random
walk of length t & [og|n| results in q(t) =1/n. In

1
this sense they are theoretically optimal. We com-
pute the relative entropy of the state probability dis-
tribution in graph G(V, E) versus its theoretical op-
timal equivalent graph G’. For this we use the
Kullback-Leibler (KL) divergence measure [45] to

calculate the relative entropy between g and ggr:

Fo=Y,q¢gr(x)log ZGGT(S) When Fg is close to zero

then the mixing rates of G and G’ are compara-
ble. This step can be computed in O(]V|) time and
O(|V]) space.

e Degree-homogeneity test: The entropy comparison
test above does not rule out fast-mixing heteroge-
neous graphs such as a star topology. However since
structured P2P graphs have relatively homogeneous
degree distributions (by definition), we need an ad-
ditional test to measure the dispersion of degree val-
ues. In our study, we measured the coefficient of
variation of the degree distribution of G, defined as
the ratio of standard deviation and mean: ¢ = G/u.
cg will be 0 for a fully homogeneous degree dis-
tribution. This metric can also be computed within
O(|V]) time and space.

4 Privacy Preserving Graph Algorithms

In general, ISPs treat the monitoring data they collect
from their own networks as confidential, since it can re-
veal proprietary information about the network config-
uration, performance, and business relationships. Thus,
they may be reluctant to share the pieces of the commu-
nication graph they collect with other ISPs, presenting a
barrier to deploying our algorithms. In this section, we
present privacy-preserving algorithms for performing the
computations necessary for our botnet detection. Funda-
mentally, these algorithms support the task of performing
a random walk across a distributed graph.

4.1 Establishing a Common Identifier
Space

Our algorithms are expressed in terms of a graph G =
(V,E), where the vertices are Internet hosts and edges
are connections between them. This graph is assembled
from m subgraphs belonging to m ASes, G; = (V;,E;)
such that G = UL, G;. To simplify computations, we
would like to generate an index mapping / : Zy| — V.
We base our approach on private set intersection pro-
tocols. In particular, Jarecki and Liu have shown how
to use Oblivious Pseudo-Random Functions (OPRFS)
to perform private set intersection in linear time, i.e.,

O(|Vi|+ |V;]). [37]. The basic approach consists of hav-
ing a server pick a PRF fi(x), with a secret k. The
server then evaluates S = {fi(s;)} for all points within
the server’s set and sends it to the client. The client then,
together with the server, evaluates the PRF obliviously
on all ¢; for its own set; i.e, the client learns C = { fi(c¢;)}
without learning k, whereas the server learns nothing ex-
cept |C|. The client can then compute CUS and thus find
the intersection.

We extend this approach to our problem as follows: we
pick one AS to act as the server, and the rest as clients.
Each client uses OPRF to compute fi(V;). The server
then generates an ordered list of f;(V1) and sends it to the
second AS. The second AS finds f(V1) N fx(V2) and thus
identifies the positions of its nodes in the vector. It then
appends f;(V2) fi(V1) to the list and sends the resulting
list fx(Vi UVa) to the next AS. This process continues
until the last AS is reached, who then reports |V| to all of
the others. Each AS can then compute [ for any node v
in its subgraph by finding the corresponding position of
fi(v) in the list it saw.

Next, the ASes needs to eliminate duplicate edges. A
similar algorithm can be used here, with each ISP drop-
ping from its observations any edge that was also ob-
served by another ISP that comes earlier in the list. Al-
ternatively, routing information can be used to determine
which edges might be observed by which other AS and
perform a pairwise set intersection including only those
nodes.

Finally, to perform random walk, each AS needs to
learn the degree of each node. Since we eliminated du-
plicated edges, d(v) = Y1 | di(v), where d;(v) is the de-
gree of node v in G;. The sum can be computed by a
standard privacy-preserving protocol, which is an exten-
sion of Chaum’s dining cryptographer’s protocol [13].
Each AS i creates m random shares s§l> € Z; such that
()
j .
max,d(v)). Each share sy) is sent to AS j. After all
shares have been distributed, each AS computes s; =

f] sl(’ ) mod  and broadcasts it to all the other ASes.
Then d(v) =Y | s; mod /. This protocol is information-
theoretically secure: any set of malicious ASes S only
learns the value d(v) — ¥ ;esdi(v). The protocol can be
executed in parallel for all nodes v to learn all node de-

grees.

.15, =di(v) mod [ (where [ is chosen such that / >

4.2 Random Walk

We perform a random walk by using matrix operations.
In particular, given a transition matrix 7 and an initial
state vector V, we can compute TV, the state vector after a
single random walk step. Our basic approach is to create
matrices 7; such that }'7* | 7; = T. We can then compute



T;V in a distributed fashion and compute the final sum at
the end.

To construct 7;, an AS will set the value (7;);x to be
1/d(v;) for each edge (j,k) € E; (after duplicate edges
have been removed). Note that this transition matrix is
sparse; it can be represented by N linked lists of non-
zero values (T;);x. Thus, the storage cost is O(|E;|) <
O(|Vi*).

To protect privacy, we use Paillier encryption [55] to
perform computation on an encrypted vector E (V). Pail-
lier encryption supports a homomorphism that allows
one to compute E(x) ® E(y) = E(x+Y); it also allows
the multiplication by a constant: ¢ ® E(x) = E(cx). This,
given an encrypted vector E (V) and a known matrix T}, it
is possible to compute E (T;V).

Damgéard and Jurik [20] showed an efficient dis-
tributed key generation mechanism for Paillier that al-
lows the creation of a public key K such that no indi-
vidual AS knows the private key, but together, they can
decrypt the value. In the full protocol, one AS creates an
encrypted vector E (V) that represents the initial state of
the random walk. This vector is sent to each AS, who
then computes E(7;V). The ASes sum up the individual
results to obtain E (Y, T;¥) = E(TV). This process can
be iterated to obtain E(T*V). Finally, the ASes jointly
decrypt the result to obtain 7.

Note that Paillier operates over members Z,, where n
is the product of two large primes. However, the vector
v and the transition matrices 7; contain fractional values.
To address this, we used fixed-point representation, stor-
ing |x x 2¢| (equivalently, (x —€) x 2¢, where € < 27°).
Each multiplication results in changing the position of
the fixed point, since:

((r—e1) x2) ((y—2) X 2) = (xy —&3) x 2

where €3 < 271, Therefore, we must ensure that 2ke
n, where k is the number of random walk steps. The
maximal length random walk we use is 2log;|V |, where
d is the average node degree, so k < 40, which gives us
plenty of fixed-point precision to work with for a typical
choice of n (1024 or 2048 bits).2

4.3 Performance

Although the base privacy-preserving protocols we pro-
pose are efficient, due to the large data sizes, the oper-
ations still take a significant amount of processing time.

2Note that the multiplication of probabilities might result in values
that are extremely small; however, the number of digits after the fixed
point correspondingly increases after each multiplication, preventing
loss of precision.

3The CPU time is estimated based on experiments on different hard-
ware; however, these numbers are intended to provide an order-of-
magnitude estimate of the costs.

Table 1: Privacy Preserving Operations
Step CPU time AS1 (s) 3

1. Determine common identifiers 1020000
2. Eliminate duplicate edges 8160000
3. Compute node degrees (no crypto)
4. Random walk (20 steps) 8000000

We estimate the actual processing costs and bandwidth
overhead, using some approximate parameters. In par-
ticular, we consider a topology of 30 million hosts, with
an average degree of 20 per node.*

The running time of the intersections to compute a
common representation is linear in |V;| 4+ |V;|. We expect
that |V;| < V|, but in the worst case, each ISP sees all of
the nodes. Projecting linearly, we expect to spend about
30 000s on an intersection between two ISPs. Most ASes
must perform only one intersection, but the first AS is in-
volved in m — 1 intersections. We expect m to be around
35, based on our analysis of visibility of bot paths by
tier-1 ISPs (Section 5.1). An important feature of the al-
gorithm is that each ISP other than the first need only
perform as many OPRF evaluations as it has nodes in its
observation table, thus smaller ISPs with fewer resources
need to perform correspondingly less work. We therefore
suggest that the largest contributing ISP be chosen as the
server. De Cristofaro and Tsudik suggest an efficiency
improvement for Jaercki and Liu’s algorithm [18]; they
find that the server computation for 1 000 client values is
less than 400ms. Projecting linearly, we expect that the
server load per client should be 12 000 seconds.

The next series of set intersections involve edge sets.
The worst-case scenario for this computation assumes
that all ASes see all edges, although, of course, this is
unlikely (and would mean that the participation of some
ASes is redundant). The load on the central server is
(0.45/1000) - 600000000 - 34 = 8 160000s

A step of the random walk requires O(|E|) homomor-
phic multiplications and additions of encrypted values.
Our measurements with 1ibpaillier® show that the
multiplications are two orders of magnitude slower than
additions. We were able to perform approx. 1500 mul-
tiplications per second using a 2048-bit modulus. This
means that a single step would take 400 000s of compu-
tation.

We summarize the costs of the computation in Ta-
ble 1. It is important to note that all of the operations
are trivially parallelizable and thus can be computed on a
moderately-sized cluster of commodity machines. Addi-
tionally, the table represents the costs of an initial com-
putation; updated results can be computed by operating

4The choice of topology size and the average node degree is moti-
vated from our experimental setting in Section 5.
Shttp://acsc.cs.utexas.edu/libpaillier/



only on the deltas of the observations, which we expect
to be significantly smaller.

5 Results

To evaluate performance of our design, we evaluate it in
the context of real Internet traffic traces. Ideally, to eval-
uate our design, we would like to have a list of all bots
in the Internet, along with which logs of packets flowing
between them, in addition to packet traces between non-
botnet hosts. Unfortunately, acquiring data this exten-
sive is very hard, due to the (understandable) reluctance
of ISPs to share their internal traffic, and the difficulty in
gaining ground truth on which hosts are part of a botnet.

To address this, we apply our approach to synthetic
traces. In particular, we construct a topology containing
a botnet communication graph, and embed it within a
communication graph corresponding to background traf-
fic. To improve realism, we build the background traf-
fic communication graph by using real traffic collected
from Netflow logs from the IP backbone of the Abi-
lene Internet2 ISP. For our analysis, we consider a full
day’s trace collected on 22 October 2009. Since Abi-
lene’s NetFlow traces are aggregated into /24-sized sub-
nets for anonymity, we perform the same aggregation for
the botnet graph, and collect experimental results over
the resulting subnet-level communication graph (we ex-
pect if our design were deployed in practice with access
to per-host information, its performance would improve
due to increased visibility). To investigate sensitivity of
our results to this methodology and data set, we also use
packet-level traces collected by CAIDA on OC192 Inter-
net backbone links [5] on 11 January 2009. To construct
the botnet graph, we select a random subset of nodes in
the background communication graph to be botnet nodes,
and synthetically add links between them correspond-
ing to a particular structured overlay topology. We then
pass the combined graph as input to our algorithm. By
keeping track of which nodes are bots (this information
is not passed to our algorithm), we can acquire “ground
truth” to measure performance. To investigate sensitivity
of our techniques to the particular overlay structure, we
consider several alternative structured overlays, includ-
ing (a) Chord, (b) de Bruijn, (c) Kademlia, and (d) the
“robust ring” topology described in [39]. The remainder
of this section contains results from running our algo-
rithms over the joined botnet and Internet communica-
tion graphs, and measuring the ability to separate out the
two from each other.

Before we proceed to the results, we first illustrate our
inference algorithm with an example run.
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Figure 2: The filtered limit distribution (s;) after cluster-
ing

5.1 Algorithm Example

Let us consider a specific application of our algorithm
on a synthetically-generated de Bruijn [41] peer-to-peer
graph embedded within a communication graph sampled
from the Internet (using NetFlow traces from the Abi-
lene Internet2 ISP). The Abilene communication graph
Gp contains |Vp| = 104426 nodes. We then generated a
de Bruijn graph G, of 10000 nodes, with m = 10 out-
going links and n = 4 dimensions (10% of |V|). G, is
then embedded in Gp by mapping a node in G, into a
node in Gp: for every node i € Vp we select anode j € Vp
uniformly at random between 1 and |Vp| without replace-
ment, and add the corresponding edges in Ep to Ep. The
resulting graph is G(V,E) with N = |V| = 104426 nodes
and |E| = 647053 edges. The goal of our detection tech-
nique is to extract G, from Gp as accurately as possible.

First, we apply the pre-filtering step: we carry out a
short random walk starting from every node with proba-
bility 1/N to obtain g""), on which the transformation fil-
ter of Equation 3 is applied to obtain s. We used a damp-
ening constant of » = 100 to undermine the influence of
hub nodes on the random walk process. The data points
in s corresponding to each of the partitions returned by
k-means clustering is shown in Figure 2.

In the example we consider here, applying the k-
means algorithm gives us ten sets of potential P2P can-
didates. In a completely unsupervised setting, we would
need to run the modified Sybillnfer algorithm on each of
the candidate sets. However we expect that the analysis
can simply be focused on the candidate set containing the
set of honey-net nodes. Thus, let us consider the graph



Table 2: Termination Conditions

Condition Final iter.  Other iters.
Conductance 0.9 <0.5
KL-divergence 0.1 > 0.45
Entropy 0.97 < 0.64
Coeff. of variation <1 >4.6

nodes corresponding to the fourth cluster (colored in yel-
low). The cluster size is 17576 nodes.

Next, we recursively apply the modified Sybillnfer
partitioning algorithm to this cluster. After three itera-
tions of the Sybillnfer partitioning algorithm, we obtain
a subgraph of size 10143 nodes, containing 9905 P2P
nodes, and 238 other nodes. At this stage, our set of val-
idation conditions indicates that the sub-graph is indeed
fast mixing, and we stop the recursion. Table 2 shows the
values of the validation metrics on the final subgraph and
the previous graphs. There is a significant gap, making it
easy to select a threshold value.

To evaluate performance, we are concerned with the
false positive rate (the fraction of non-bot nodes that are
detected as bots) and the false negative rate (the frac-
tion of bot nodes that are not detected). These results
are shown in Tables 3(a) and 3(b). The experimental
methodology and parameters used were the same as in
the above example. All results are averaged over five
random seeds. Overall, we found that BotGrep was able
to detect 93-99% of bots over a variety of topologies and
workloads. In particular, we observed several key results:

Effect of botnet topology: To study applicability of
our approach to different botnet topologies, we consider
Kademlia [50], Chord [70], and de Bruijn graphs. In ad-
dition, we also consider the LEET-Chord topology [39],
a recently proposed overlay topology that aims to be dif-
ficult to detect (cannot be reliably detected with exist-
ing traffic dispersion graph techniques). Overall, we find
performance to be fairly stable across multiple kinds of
botnet topologies, with detection rates higher than 95%.
In addition, BotGrep is able to achieve a false positive
rate of less than 0.42% on the harder-to-detect LEET-
Chord topology. While our approach is not perfectly ac-
curate, we envision it may be of use when coupled with
other detection strategies (e.g., previous work on botnet
detection [38, 36], or if used to signal “hints” to net-
work operators regarding which hosts may be infected.
Furthermore, while the LEET-Chord topology is harder
to detect, this comes at a tradeoff with less resilience
to failure. To study the robustness of the LEET-Chord
topology, Figure 3 shows the robustness of Chord and
LEET-Chord by randomly removing varying percentages
of nodes. We observed that LEET-Chord is much less re-
silient to node failures (or active attacks) as compared
with Chord. This trade-off between stealthiness of the
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Figure 3: Robustness of Chord and LEET-Chord with 65,536
nodes. We also consider an alternative LEET-Chord-Iter, where
routing proceeds as in regular LEET-Chord, but when the des-
tination is outside the node’s cluster, and when all long range
links are failed, it greedily forwards the packet iteratively to
next clockwise cluster.

topology and its resilience is not surprising, since a com-
mon indicator of resilience is the bisection bandwidth,
and Sinclair [66] has shown that the bisection bandwidth
is bounded by the mixing time of the topology. Thus, it
is likely that the use of stealthy slow mixing topologies
to escape detection via BotGrep would adversely effect
the resilience of the botnet.

Effect of botnet graph size: Next, we vary the size
of the embedded botnet. We do this to investigate perfor-
mance as a function of botnet size, for example, to evalu-
ate whether BotGrep can efficiently detect small botnets
(e.g., bots in early stages of deployment, which may have
greater chance of containment) and large-scale botnets
(which may pose significant threats due to their size and
large topological coverage). We perform this experiment
by keeping the size of the background traffic graph con-
stant, and generating synthetic botnet topologies of vary-
ing sizes (between 100 and 100,000 bots). The degree
of bot nodes in the case of Chord and Kademlia depend
on the size of the topology (logN), while for de Bruijn,
we used a constant node degree of 10. Overall, we found
that as the size of the bot graph increases, performance
degrades, but only by a small amount. For example, in
Table 3(a), with the fully visible de Bruijn topology, for
100 nodes the false positive rate is zero, while for 10,000
nodes the rate becomes 0.12%.

Effect of background graph size: One concern is that
BotGrep may perform less accurately with larger back-
ground graphs, as it may become easier for the botnet
structure to “hide” in the increasing number of links in
the graph. To evaluate sensitivity of performance to
scale, we vary the size of the background communication
graph, by evaluating over both the Abilene and CAIDA
dataset (104,426 and 3,839,936 nodes, respectively). To



(a) Abilene (b) CAIDA
Topology 7] % FP % FN % Detected  Topology [Vs] % FP % FN % Detected
de Bruijn 100 0.00 2.00 98.00 de Bruijn 1000 0.00 1.80 98.20
1000 0.01 2.40 97.60 10000 0.01 0.93 99.07
10000 0.12 2.35 97.65 100000 0.09 0.67 99.33
Kademlia 100 0.00 3.20 97.80 Kademlia 1000 0.00 2.10 97.90
1000 0.01 2.48 98.52 10000 0.01 0.80 99.20
10000 0.10 2.12 97.88 100000 0.19 0.17 99.83
Chord 100 0.00 3.00 97.00 Chord 1000 0.00 2.20 97.80
1000 0.01 232 97.68 10000 0.01 0.48 99.52
10000 0.08 1.94 98.06 100000 0.06 0.46 99.54
LEET-Chord 100 0.00 3.00 97.00 LEET-Chord 1000 0.00 0.40 99.60
1000 0.03 1.60 98.40 10000 0.02 0.48 99.52
10000 0.42 1.00 99.00

Table 3: Detection and error rates of inference for (a) Abilene and (b) CAIDA communication graphs

(a) CAIDA 30M

(b) Leveraging Honeynets - CAIDA

Topology [Va| % FP % FN % Detected  Topology [Va] % FP % FN % Detected
de Bruijn 100000 0.01 0.8 99.20 de Bruijn 100000 0.04 0.8 99.20
Kademlia 100000 0.01 0.4 99.60 Kademlia 100000 0.05 0.4 99.60
Chord 100000 0.01 04 99.60 Chord 100000 0.04 0.4 99.60

Table 4: Detection and error rates of inference (a) for CAIDA 30M (b) when leveraging Honeynets for CAIDA.

get a rough sense of performance on much larger back-
ground graphs, we also build a “scaled up” version of
the CAIDA graph containing 30 million hosts while re-
taining the statistical properties of the CAIDA graph. To
scale up the CAIDA graph G, by a factor of k, we make
k copies of G, namely G ... Gy with vertex sets Vi ... V;
and edge sets E| ... Ej. Note that for each edge (p,q) in
E,, we have a corresponding edge in each copy G ... Gy,
we refer to these as (p1,41) - .. (Pk,qx). We then compute
the graph disjoint union over them as Gg(Vs, Es) where
Vg = (V] UV,---UV, and Es = E; UE2"'UEk). Next,
we randomly select a fraction of links from Eg to ob-
tain a set of edges E, that we shall rewire. As a heuris-
tic, we set the number of links selected for rewiring to
|E;| = ky/Nlog(N) where N is the number of nodes in
the CAIDA graph G.. For each edge (p,q) in E, we
wish to rewire, we choose two random numbers a and
b (1 <a,b < k) and rewire edges (p,,q,) and (pp,qp) to
(Pa»qp) and (pp,qq) such that d,,, = d,, and d,, = d,.
This edge rewiring ensures that (a) the degree of all
four nodes p,,q4,pp and g, remains unchanged, (b) the
joint degree distribution P(d,d,) — the probability that
an edge connects d; and d, degree nodes remains un-
changed, and (c) P(d;,ds,...d;) remains unchanged as
well, where [ is the number of unique degree values that
nodes in G, can take.

Overall, we found that BotGrep scales well with net-
work size, with performance remaining stable as network
size increases. For example, in the CAIDA dataset with
a background graph of size 3.8 million hosts, the false
positive rate for the de Bruijn topology of size 100000
is 0.09% (shown in Table 3b), while for the scaled up
30 million node CAIDA topology, this rate is 0.01 (Ta-
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Figure 4: Number of visible botnet links, as a function of num-
ber of most-affected ASes contributing views.

ble 4(a)). Observe that the false positive rate has de-
creased by a factor of 9, which is approximately equal
to the scale up factor between the two topologies, indi-
cating the the actual number of false positives remains
the same. This indicates that the number of false posi-
tives depend on botnet size and not the background graph
size.

Effect of reduced visibility: In the experiments we
have performed so far, the embedded structured graph G,
is present in its entirety. However, just as Gp is obtained
by sampling Internet or enterprise traffic, only a subset of
botnet control traffic will actually be available to us. It is
therefore important to evaluate how well our algorithms
work with graphs where only a fraction of the structured
subgraph edges are known. To study this, we evalu-
ate performance of our scheme when deployed at only
a subset of ISPs in the Internet. To do this, we collected
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(a) Abilene (b) CAIDA
Topology 7] % FP % FN % Detected  Topology [Va| % FP % FN % Detected
de Bruijn 100 0.00 3.00 97.00 de Bruijn 1000 0.00 2.70 97.30
1000 0.02 2.80 97.20 10000 0.00 422 95.78
10000 0.17 3.31 96.69 100000 0.12 1.74 98.26
Kademlia 100 0.00 3.75 96.25 Kademlia 1000 0.00 0.50 99.50
1000 0.01 2.90 97.10 10000 0.01 0.30 99.70
10000 0.19 2.07 97.93 100000 0.09 0.53 99.47
Chord 100 0.00 9.00 91.00 Chord 1000 0.00 3.40 96.60
1000 0.02 3.50 96.50 10000 0.01 0.65 99.35
10000 0.13 2.54 97.46 100000 0.06 5.36 94.64
LEET-Chord 100 0.00 6.00 94.00 LEET-Chord 1000 0.01 0.20 99.80
1000 0.06 2.70 97.30 10000 0.02 1.09 98.91
10000 0.58 1.80 98.20

Table 5: Results if only Tier-1 ISPs contribute views, for (a) Abilene and (b) CAIDA

roughly 4,000 Storm botnet IP addresses from Botlab [1]
(botlab-storm), and measured what fraction of inter-bot
paths were visible from tier-1 ISPs. From an analysis of
the Internet AS-level topology [63], we find that 60%
of inter-bot paths traverse tier-1 ISPs. We found that
if the most-affected ASes cooperate—the ASes with the
largest number of bots—this number increased to 89%).
Figure 4 shows this result in more detail. Here, we vary
the number of ASes cooperating to contribute views (as-
suming the most-affected ASes contribute views first),
plotting the number of visible inter-bot links. We repeat
the experiment also for the Kraken botnet trace from [1]
(kraken-botlab), as well as a packet-level trace from the
Storm botnet (storm-trace). We find that if only the 5
most-affected ASes contribute views, 57% of Storm links
and 65% of Kraken links were visible.

We therefore removed 40% of links from our botnet
graphs (Table 5a and Table 5b). While the false-negative
rate increases, our approach still detects over 90% of bot-
net hosts with high reliability (the false positive rate for
the hard to detect LEET-Chord topology still remains
less than 0.58%). Disabling or removing such a large
fraction of nodes will lead to certain loss of operational
capability.

Leveraging Honeynets: We shall now present an exten-
sion to our inference algorithm that leverages the knowl-
edge of a few known bot nodes. This extension considers
random walks starting only from the honeynet nodes to
obtain a set of candidate P2P nodes in the prefiltering
stage. Using this extension, we find that there is a sig-
nificant gain in terms of reducing the false positives, as
well as speeding up the efficiency of the protocol. As
Table 4b shows, the false positive rate for the Kademlia
topology has been reduced by a factor of 4 as compared
to corresponding value in Table 3b. Furthermore, only a
single iteration of the modified Sybillnfer algorithm was
required to obtain the final subgraphs, providing a signif-
icant gain in efficiency.

Effect of inference algorithm: For comparison pur-
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poses, we also consider several graph partitioning algo-
rithms that have been proposed in the literature. While
these techniques were not intended to scale up to the
large data sets we consider here, we can compare against
them on smaller data sets to get a sense of how BotGrep
compares against these approaches. In particular, several
algorithms for community detection (detecting groups of
nodes in a network with dense internal connections) have
been proposed. Work in this space mainly focuses on hi-
erarchical clustering methods. Work in this space can be
classified as following two categories, and for our evalu-
ation we implement two representative algorithms from
each category:

Edge importance based community structure detec-
tion iteratively removes the edges with the highest im-
portance, which can be defined in different ways. Gir-
van and Newman [25] defined edge importance by its
shortest path betweenness. The idea is that the edge with
higher betweenness is typically responsible for connect-
ing nodes from different communities. In [22], informa-
tion centrality has been proposed to measure the edge
importance. The information centrality of an edge is de-
fined as the relative network efficiency [46] drop caused
by the removal of that. The time complexity of algorithm
in [25] and [22] are O(|V|*) and O(|E|® x V'), respec-
tively.

The spectral-based approach detects communities by
optimizing the modularity (a benefit function measures
community structure [52] over possible network divi-
sions. In [53], the communities are detected by calcu-
lating the eigenvector of the modularity matrix. It takes
O(|E|+|V|?) time to separating each community. More-
over, Clauset et al. [14] proposed a hierarchical agglom-
eration algorithm for community detecting. The pro-
posed greedy algorithm adopts more sophisticated data
structures to reduce the computation time of modularity
calculation. The time complexity is O(|E| + |V |log, |V])
in average.

As the time complexity of above algorithms is not ac-
ceptable for computing large-scale networks, here we



Topology  BotGrep  Fast Greedy Girvan-Newman Modularity
Modularity Betweenness Eigenvector

de Bruijn  0.78/2.55  14.43/7.65 19.73/15.31 0.92/43.88
Chord 0.77/7.15  7.58/10.13 6.05/19.50 4.24/20.19
Kademlia 0.92/7.00 14.66/33.80 18.06/4.75 5.70/48.70

Table 6: 2k Abilene Results (% FP /% FN)

consider a small-scale scenario for performance evalua-
tion. We extract subgraphs from full Abilene data by per-
forming a Breadth-First-Search (BFS) starting at a ran-
domly selected node, in which the overall visited nodes
are limited by a size of 2000. Results from our com-
parison are shown in Table 6. The information central-
ity algorithm took more than one month to run for just
one iteration on this 2000-node graph, and was hence
excluded from further analysis (we tested information
centrality on smaller 50-node graphs, and found perfor-
mance comparable to the Girvan and Newman Between-
ness algorithm). Overall, we found that our approach
outperformed these approaches. For example, on the
Chord topology, BotGrep’s false positive rate was 0.77%,
while false positive rates for the other approaches ranged
from 4.24-7.58%. The performance of BotGrep is less on
this scaled down 2000-node topology as compared to the
earlier Abilene and CAIDA datasets, because our method
of generating the scaled-down 2000 node graph selected
the densely connected core of the graph, which is fast-
mixing, while on more realistic graphs, it is easier for
BotGrep to distinguish the fast-mixing botnet topology
from the rest of the non-fast-mixing background graph.

Moreover, we found that run-time was a significant
limiting factor in using these alternate approaches. For
example, the Girvan-Newman Betweenness Algorithm
took 2.5 hours to run on a graph containing 2000 nodes
(in all cases, BotGrep runs in under 10.4 seconds on a
Core2 Duo 2.83GHz machine with 4GB RAM using a
single core). While these traditional techniques were not
intended to scale to the large data sets we consider here,
they may be appropriate for localizing smaller botnets in
contained environments (e.g., within a single Honeynet,
or the part of a botnet contained within an enterprise net-
work). Since these techniques leverage different features
of the inputs, they are synergistic with our approach, and
may be used in conjunction with our technique to im-
prove performance.

6 Discussion

As we have demonstrated, analysis of core Internet traf-
fic can be effective at identifying nodes and communi-
cation links of structured overlay networks. However,
many challenges remain to turn our approach into a full-
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scale detection mechanism.

Misuse Detection: It is easy to see that other forms of
P2P activity, such as file sharing networks, will also be
identified by our techniques. While there is some benefit
to being able to identify such traffic as well, it requires a
dramatically different response than botnets and so it is
important to distinguish the two. We believe that funda-
mentally, our mechanisms need to be integrated with de-
tection mechanisms at the edge that identify suspicious
behavior. Also, multiple intrusion detection approaches
can reinforce each other and provide more accurate re-
sults [75, 67, 30]; e.g., misbehaving hosts that follow a
similar misuse pattern and at the same time are detected
to be part of the same botnet communication graph may
be precisely labeled as a botnet, even if each individual
misbehavior detection is not sufficient to provide a high-
confidence categorization.

A concrete example of how misuse detection may
work is the following: we randomly sample nodes from
the suspect P2P network and compute the likelihood of
the sampled nodes being malicious, based on inputs from
honeynets, spam blacklists etc. If we can identify a statis-
tically significant difference of the rates of misuse, then
we can assume that membership in the P2P network is
correlated with misuse and we should label it as a P2P
botnet. Note that, given the availability of large sample
sizes, even a small difference in the rates will be statisti-
cally significant, so this approach will be successful even
if misuse detection fails to identify the vast majority of
the botnet nodes as malicious.

Scale and cooperation: Our experiments show our de-
sign can scale to large traffic volumes, and in the pres-
ence of partial observations. However, several practi-
cal issues remain. First, large ISPs tend to use sam-
pled data analysis to monitor their networks. This can
miss low-volume control communications used by botnet
networks. New counter architectures or programmable
monitoring techniques should be used to collect suffi-
cient statistics to run our algorithms [73]. Also, for best
results multiple vantage points should contribute data to
obtain a better overall perspective.

Tradeoffs between structure and detection: The com-
munication structure of botnet graphs plays an important
role in their delay penalty, and how resilient they are to
network failures. At the same time, our results indicate



that the structure of the communication graph has some
effect on the ability to detect the botnet host from a col-
lection of vantage points. As part of future work, we plan
to study the tradeoff between resilience and the ability to
avoid detection, and whether there exist fundamentally
hard-to-detect botnet structures that are also resilient.

Containing botnets: The ability to quickly localize
structured network topologies may assist existing sys-
tems that monitor network traffic to quickly localize and
contain bot-infected hosts. When botnets are detected
in edge networks, the relevant machines are taken of-
fline. However, this may not always be easy with in-
core detection; an interesting question is whether in-core
filtering or distributed blacklisting can be an effective re-
sponse strategy when edge cooperation is not possible.
Another question we plan to address is whether there ex-
ist responses that do not completely disconnect a node
but mitigate its potential malicious activities, to be ef-
fected when a node is identified as a botnet member, but
with a low confidence.

7 Related Work

The increasing criticality of the botnet threat has led to
vast amounts of work that attempt to localize them. We
can classify this work into host based approaches and
network based approaches. Host based approaches detect
intrusions by analyzing information available on a sin-
gle host. On the other hand, network based approaches
detect botnets by analyzing incoming and outgoing host
traffic. Hybrid approaches exist as well. BotGrep (our
work) is a network based approach to botnet detection
that uses graph theory to detect botnets.

In the following section (Section 7.1) we review re-
lated work on network based approaches and then de-
scribe work on botnet detection using graph analysis
(Section 7.2).

7.1 Network based approaches

Several pieces of work isolate bot-infected hosts by de-
tecting the malicious traffic they send, which may be
divided into schemes that analyze attack traffic, and
schemes that analyze control traffic.

Attack traffic: For example, network operators may
look for sources of denial of service attacks, port scan-
ning, spam, and other unwanted traffic as a likely bot.
These works focus on the symptoms caused by the bot-
nets instead of the networks themselves. Several works
seek to exploit DNS usage patterns. Dagon et al. [19]
studied the propagation rates of malware released at dif-
ferent times by redirecting DNS traffic for bot domain
names. Their use of DNS sinkholes is useful in mea-
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suring new deployments of a known botnet. However,
this approach requires a priori knowledge of botnet do-
main names and negotiations with DNS operators and
hence does not target scaling to networks where a bot-
net can simply change domain names, have a large pool
of C&C IP addresses and change the domain name gen-
eration algorithm by remotely patching the bot. Subse-
quently, Ramachandran et al. [61] use a graph based ap-
proach to isolate spam botnets by analyzing the pattern
of requests to DNS blacklists maintained by ISPs. They
observed that legitimate email servers request blacklist
lookups and are looked up by other email servers ac-
cording to the timing pattern of email arrival, while bot-
infected machines are a lot less likely to be looked up
by legitimate email servers. However, DNS blacklists
and phishing blacklists [65], while initially effective have
are becoming increasingly ineffective [60] owing to the
agility of the attackers. Much more recently, Villamar
et al. [74] applied Bayesian methods to isolate central-
ized botnets that use fast-flux to counter DNS blacklists,
based on the similarity of their DNS traffic with a given
corpus of known DNS botnet traces. Further, in order
to study bots, Honeypot techniques have been widely
used by researchers. Cooke et al. [17] conducted several
studies of botnet propagation and dynamics using Hon-
eypots; Barford and Yegneswaran [8] collected bot sam-
ples and carried out a detailed study on the source code
of several families; finally, Freiling et al. [24] and Rajab
et al. [59] carried out measurement studies using Honey-
pots. Collins et al. [16] present a novel botnet detection
approach based on the tendency of unclean networks to
contain compromised hosts for extended periods of time
and hence acting as a natural Honeypot for various bot-
nets. However Honeypot-based approaches are limited
by their ability to attract botnets that depend on human
action for an infection to take place, an increasingly pop-
ular aspect of the attack vector [51].

Control traffic: Another direction of work, is to local-
ize botnets solely based on the control traffic they use to
maintain their infrastructures. This line of work can be
classified as traffic-signature based detection and statis-
tical traffic analysis based detection. Techniques in the
former category require traffic signatures to be developed
for every botnet instance. This approach has been widely
used in the detection of IRC-based botnets. Blinkley and
Singh[10] combine IRC statistics and TCP work weight
to generate signatures; Karasaridis et al. [44] present an
algorithm to detect IRC C&C traffic signatures using
Netflow records; Rishi [27] uses n-gram analysis to iden-
tify botnet nickname patterns. The limitations of these
approaches are analogous to the scalability issues faced
by host-based detection techniques. In addition, such
signatures may not exist for P2P botnets. In the latter
category, several works [31, 72, 9, 49] suggest that bot-



nets can be detected by analyzing their flow character-
istics. In all these approaches, the authors use a vari-
ety of heuristics to characterize the network behavior of
various applications and then apply clustering algorithms
to isolate botnet traffic. These schemes assume that the
statistical properties of bot traffic will be different from
normal traffic because of synchronized or correlated be-
havior between bots. While this behavior is currently
somewhat characteristic of botnets, it can be easily mod-
ified by botnet authors. As such it does not derive from
the fundamental property of botnets.

Other works use a hybrid approach such as Both-
unter [30] which automates traffic-signature generation
by searching for a series of flows that match the infec-
tion life-cycle of a bot; BotMiner [29] combines packet
statistics of C&C traffic with those of attack traffic and
then applies clustering techniques to heuristically isolate
botnet flows. TAMD [76] is another method that ex-
ploits the spatial and temporal characteristics of botnet
traffic that emerges from multiple systems within a van-
tage point. They aggregate flows based on similarity of
flow sizes and host configuration (such as OS platforms)
and compare them with a historical baseline to detect in-
fected hosts.

Finally, there are also schemes that combine network-
and host-based approaches. The work of Stinson et
al. [69] attempts to discriminate between locally-initiated
versus remotely-initiated actions by tracking data arriv-
ing over the network being used as system call arguments
using taint tracking methods. Following a similar ap-
proach, Gummadi et al. [33] whitelist application traf-
fic by identifying and attesting human-generated traffic
from a host which allows an application server to se-
lectively respond to service requests. Finally, John et
al. [40] present a technique to defend against spam bot-
nets by automating the generation of spam feeds by di-
recting an incoming spam feed into a Honeynet, then
downloading bots spreading through those messages and
then using the outbound spam generated to create a bet-
ter feed. While all the above are interesting approaches
they again deal with the side-effects of botnets instead of
tackling the problem in its entirety in a scalable manner.

7.2 Graph-based approaches

Several works [15, 36, 35, 78, 38] have previously ap-
plied graph analysis to detect botnets. The technique of
Collins and Reiter [15] detects anomalies induced in a
graph of protocol specific flows by a botnet control traf-
fic. They suggest that a botnet can be detected based on
the observation that an attacker will increase the number
of connected graph components due to a sudden growth
of edges between unlikely neighboring nodes. While it
depends on being able to accurately model valid network
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growth, this is a powerful approach because it avoids de-
pending on protocol semantics or packet statistics. How-
ever this work only makes minimal use of spatial re-
lationship information. Additionally, the need for his-
torical record keeping makes it challenging in scenar-
ios where the victim network is already infected when
it seeks help and hasn’t stored past traffic data, while our
scheme can be used to detect pre-existing botnets as well.
Illiofotou et al. [36, 35] also exploit dynamicity of traffic
graphs to classify network flows in order to detect P2P
networks. It uses static (spatial) and dynamic (temporal)
metrics centered on node and edge level metrics in addi-
tion to the largest-connected-component-size as a graph
level metric. Our scheme however starts from first princi-
ples (searching for expanders) and uses the full extent of
spatial relationships to discover P2P graphs including the
joint degree distribution and the joint-joint degree distri-
bution and so on.

Of the many botnet detection and mitigation tech-
niques mentioned above, most are rather ad-hoc and
only apply to specific scenarios of centralized botnets
such as IRC/HTTP/FTP botnets, although studies [28]
indicate that the centralized model is giving way to the
P2P model. Of the techniques that do address P2P bot-
nets, detection is again dependent on specifics regarding
control traffic ports, network behavior of certain types
of botnets, reverse engineering botnet protocols and so
on, which limits the applicability of these techniques.
Generic schemes such as BotMiner [29] and TAMD [76]
using behavior based clustering are better off but need
access to extensive flow information which can have le-
gal and privacy implications. It is also important to think
about possible defenses that botmasters can apply, the
cost of these defenses and and how they might affect the
efficiency of detection. Shear and Nicol [64, 54] describe
schemes to mask the statistical characteristics of real traf-
fic by embedding it in synthetic, encrypted, cover traffic.
The adoption of such schemes will only require minimal
alterations to existing botnet architectures but can effec-
tively defend against detection schemes that depend on
packet level statistics including BotMiner and TAMD.

8 Conclusion

The ability to localize structured communication graphs
within network traffic could be a significant step forward
in identifying bots or traffic that violates network policy.
As a first step in this direction, we proposed BotGrep, an
inference algorithm that identifies botnet hosts and links
within network traffic traces. BotGrep works by search-
ing for structured topologies, and separating them from
the background communication graph. We give an ar-
chitecture for a BotGrep network deployment as well as
a privacy-preserving extension to simplify deployment



across networks. While our techniques do not achieve
perfect accuracy, they achieve a low enough false posi-
tive rate to be of substantial use, especially when com-
bined with complementary techniques. There are sev-
eral avenues of future work. First, performance of our
approach may be improved by leveraging temporal in-
formation (observing how parts of the the communica-
tion graph change over time) to assist in separating out
the botnet graph. In addition, it may be desirable to
distinguish other peer-to-peer structure from other Inter-
net background traffic, perhaps by observing more fine-
grained properties of communication patterns. Finally,
we do not attempt to address the challenging problem of
botnet response. Future work may leverage our inferred
botnet topologies by dropping crucial links to partition
the botnet, based on the structure of the botnet graph.
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