
DetectorGuard: Provably Securing Object Detectors
against Localized Patch Hiding Attacks
Chong Xiang

Princeton University

Princeton, NJ, USA

cxiang@princeton.edu

Prateek Mittal

Princeton University

Princeton, NJ, USA

pmittal@princeton.edu

ABSTRACT
State-of-the-art object detectors are vulnerable to localized patch

hiding attacks, where an adversary introduces a small adversarial

patch to make detectors miss the detection of salient objects. The

patch attacker can carry out a physical-world attack by printing

and attaching an adversarial patch to the victim object; thus, it im-

poses a challenge for the safe deployment of object detectors. In this

paper, we propose DetectorGuard as the first general framework for

building provably robust object detectors against localized patch

hiding attacks. DetectorGuard is inspired by recent advancements

in robust image classification research; we ask: can we adapt ro-

bust image classifiers for robust object detection? Unfortunately, due

to their task difference, an object detector naively adapted from a

robust image classifier 1) may not necessarily be robust in the adver-

sarial setting or 2) even maintain decent performance in the clean

setting. To address these two issues and build a high-performance

robust object detector, we propose an objectness explaining strategy:

we adapt a robust image classifier to predict objectness (i.e., the

probability of an object being present) for every image location and

then explain each objectness using the bounding boxes predicted

by a conventional object detector. If all objectness is well explained,

we output the predictions made by the conventional object detec-

tor; otherwise, we issue an attack alert. Notably, our objectness

explaining strategy enables provable robustness for “free": 1) in the

adversarial setting, we formally prove the end-to-end robustness of

DetectorGuard on certified objects, i.e., it either detects the object

or triggers an alert, against any patch hiding attacker within our

threat model; 2) in the clean setting, we have almost the same per-

formance as state-of-the-art object detectors. Our evaluation on the

PASCAL VOC, MS COCO, and KITTI datasets further demonstrates

that DetectorGuard achieves the first provable robustness against

localized patch hiding attacks at a negligible cost (<1%) of clean

performance.

CCS CONCEPTS
• Security and privacy→ Domain-specific security and pri-
vacy architectures; •Computingmethodologies→Object de-
tection; Neural networks.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8454-4/21/11.

https://doi.org/10.1145/3460120.3484757

KEYWORDS
Provable Robustness; Adversarial Patch Attack; Object Detection

ACM Reference Format:
Chong Xiang and Prateek Mittal. 2021. DetectorGuard: Provably Securing

Object Detectors against Localized Patch Hiding Attacks. In Proceedings of

the 2021 ACM SIGSAC Conference on Computer and Communications Security

(CCS ’21), November 15–19, 2021, Virtual Event, Republic of Korea. ACM, New

York, NY, USA, 20 pages. https://doi.org/10.1145/3460120.3484757

1 INTRODUCTION
Localized adversarial patch attacks can inducemispredictions inMa-

chine Learning (ML) systems and have gained significant attention

over the past few years [4, 21, 50, 57, 61]. A patch attacker constrains

all adversarial perturbations within a small region so that they can

carry out a physical world attack by printing and attaching the ad-

versarial patch to the victim object.
1
To counter the threat of patch

attacks on real-world ML systems, the security community has

been actively seeking defense mechanisms [9, 18, 24, 25, 33, 58, 65].

However, most existing defenses are restricted to the image clas-

sification domain. In this paper, we aim to secure object detectors,

which are used in critical applications like autonomous driving,

video surveillance, and identity verification [52].

We focus on the threat of localized patch hiding attacks against

object detectors: an attacker uses a localized patch for physical

world attacks that cause the object detector to fail to detect victim

objects. Lee et al. [23] show that a physical patch far away from

the objects can successfully “hide" victim objects. Wu et al. [57]

and Xu et al. [61] have succeeded in evading object detection via

wearing a T-shirt printed with adversarial perturbations. The patch

hiding attack can cause serious consequences in scenarios like an

autonomous vehicle missing a pedestrian (or an upcoming car).

Unfortunately, securing object detectors is extremely challenging

due to the complexity of the detection task. A single image can con-

tain multiple objects, and thus an object detector needs to output a

list of object bounding box coordinates and class labels. To the best

of our knowledge, there is only one prior work [46] discussing de-

fenses for YOLOv2 [43] detectors against patch attacks, in contrast

to numerous new patch attacks being proposed [7, 14, 50, 57, 61, 66].

Furthermore, this only defense [46] is restricted to the setting of a

non-adaptive adversarial patch at the image corner and does not

have any security guarantee (i.e., only heuristics-based). To over-

come these weaknesses, we propose a defense framework named

DetectorGuard that can achieve provable robustness against any

patch hiding attack within our threat model.

1
The patch attack significantly differs from classic 𝐿𝑝 -norm-bounded adversarial

examples [6, 16, 48] that require global perturbations and thus are difficult to realize

in the physical world.

Session 11D: Data Poisoning and Backdoor Attacks in ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3177

https://doi.org/10.1145/3460120.3484757
https://doi.org/10.1145/3460120.3484757

Detection Output

Objectness

Predictor

Input Image

(clean)

Objectness Explainer

Base Detector ALERT!

Clean

Setting

Adversarial

Setting

Detection Output

Objectness

Predictor

Input Image

(adversarial)

Base Detector

dog dog

dog dog

dog dog

Objectness Explainer

Figure 1: DetectorGuard Overview. Base Detector is a conventional detector that typically predicts precise bounding boxes on clean images.

Objectness Predictor aims to robustly predict an objectness map. Objectness Explainer uses the predicted bounding boxes to explain/match the

predicted objectness and determines the final output. In the clean setting (left figure), the dog on the left is detected by both Base Detector and

Objectness Predictor. The objectness is well explained/matched by the green bounding box, and DetectorGuard outputs the bounding box

predicted by Base Detector. In the meantime, due to the imperfection of the robust classifier, the dog on the right is missed by Objectness

Predictor. Objectness Explainer will consider this as a benign mismatch, and DetectorGuard will also output the predicted bounding box from

Base Detector. In the adversarial setting (right figure), a patch makes Base Detector fail to detect any object while Objectness Predictor still

robustly outputs high objectness. Objectness Explainer detects a cluster of unexplained objectness and triggers an attack alert. Our defense

can achieve provable robustness for certified objects while maintaining a clean performance comparable to state-of-the-art object detectors.

Insight & Challenge: a bridge between robust image clas-
sification and robust object detection. To start with, we observe
that the robust image classification research is making significant

advancement [9, 24, 33, 36, 58, 65] while object detectors remain

vulnerable to attacks. This sharp contrast motivates us to ask: can

we take advantage of robust image classification research and adapt

robust image classifiers for robust object detection? Unfortunately,

there is a huge gap between these two tasks: an image classifier

outputs a single-label prediction while an object detector predicts a

list of bounding boxes and class labels. This gap brings two major

challenges for such an adaptation. Challenge 1: Lack of End-to-end

Provable Robustness. A robust image classifier only provides robust-

ness for a single-label prediction while an object detector requires

robustness for multiple object labels and bounding boxes in each

image. Therefore, using a robust image classifier does not guarantee

the end-to-end robustness of the object detector, and we need a

new defense design and proof of robustness. Challenge 2: Amplified

Cost of Clean Performance. All existing provably robust image clas-

sifiers [9, 24, 36, 58, 65] attain robustness at a non-negligible cost of

clean performance (e.g., state-of-the-art defense [58] incurs a >20%

clean accuracy drop on ImageNet [11]). The imperfection of robust

classifiers can be severely amplified during the adaptation towards

the much more demanding object detection task. Therefore, we

need to prevent our object detectors from being broken in the clean

setting (even in the absence of an adversary). In DetectorGuard, we

overcome these two challenges as discussed below.

Defense Design: an objectness explaining strategy.We pro-

vide our defense overview in Figure 1. DetectorGuard has three

modules: Base Detector, Objectness Predictor, and Objectness Ex-

plainer. Base Detector can be any state-of-the-art object detector

that canmake accurate predictions on clean images but is vulnerable

to patch hiding attacks. Objectness Predictor aims to predict a robust

objectness map, which indicates the probability of an object being

present at different locations. We build Objectness Predictor using

adapted provably robust image classifiers together with carefully

designed feature-space operation and error filtering mechanisms

(Section 3.3). Finally, Objectness Explainer uses each predicted

bounding box from Base Detector to explain/match high objectness

predicted by Objectness Predictor (Section 3.4). If all objectness is

well explained/matched, we output the prediction of Base Detector;

otherwise, we issue an attack alert. In the clean setting, we optimize

the configuration of Objectness Predictor towards the case where

all objectness can be explained and then use Base Detector for ac-

curate final predictions (Figure 1 left). When a hiding attack occurs,

Base Detector could miss the object while Objectness Predictor can

still robustly output high objectness. This will lead to unexplained

objectness and trigger an attack alert (Figure 1 right). Notably, we

can show that our defense design successfully addresses Challenge

1 and 2, as discussed next.

End-to-end provable robustness for “free". First, our object-
ness explaining strategy enables us to rigorously prove the end-

to-end robustness of DetectorGuard (Theorem 1 in Section 4). We

will show that DetectorGuard will always perform robust detec-

tion or issue an alert on objects certified by our provable analysis

(Algorithm 2 in Section 4). We note that this robustness property

is agnostic to attack strategies and holds for any patch hiding at-

tacker within our threat model, including adaptive attackers who have

full access to our defense setup. This strong theoretical guarantee

addresses Challenge 1. Next, in contrast to most security-critical

systems whose robustness comes at the cost of clean performance,

DetectorGuard achieves provable robustness for “free" (at a negligi-

ble cost of clean performance). In Objectness Predictor, we design

error mitigation mechanisms to handle the imperfection of the

adapted robust classifier. In Objectness Explainer, our explaining

strategy ensures that even when our Objectness Predictor fails to

Session 11D: Data Poisoning and Backdoor Attacks in ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3178

predict high objectness (missing objects; false negatives), Detec-

torGuard still performs as well as state-of-the-art Base Detector.
2

These designs solve Challenge 2.

Evaluating the first provable robustness against patch hid-
ing attacks.We extensively evaluate DetectorGuard performance

on the PASCAL VOC [13], MS COCO [26], and KITTI [15] datasets.

In our evaluation, we instantiate the Base Detector with YOLOv4 [2,

53], Faster R-CNN [45], and a hypothetical object detector that

is perfect in the clean setting. We build Objectness Predictor by

adapting multiple variants of robust image classifiers [58, 65]. Our

evaluation shows that our defense has a minimal impact (<1%)

on the clean performance and achieves the first provable robust-

ness against patch hiding attacks. Our code is available at https:

//github.com/inspire-group/DetectorGuard.

Our contributions can be summarized as follows.

• We solve two major challenges in adapting robust image

classifiers for robust object detection via a careful design of

Objectness Predictor and Objectness Explainer.

• We formally prove the robustness guarantee of DetectorGuard

on certified objects against any adaptive attacker within our

threat model.

• Weextensively evaluate our defense on the PASCALVOC [13],

MS COCO [26], and KITTI [15] datasets and demonstrate the

first provable robustness against patch hiding attacks and a

similar clean performance as conventional object detectors.

2 BACKGROUND AND PROBLEM
FORMULATION

In this section, we introduce the object detection task, the patch

hiding attack, the defense formulation, and the key principles for

building provably robust image classifiers that we will adapt for

robust object detection in DetectorGuard.

2.1 Object Detection
Detection objective. An object detector aims to predict a list

of bounding boxes (and class labels) for all objects in the image

x ∈ [0, 1]𝑊 ×𝐻×𝐶 , where pixel values are rescaled into [0, 1], and
𝑊,𝐻,𝐶 is the image width, height, and channel, respectively. Each

bounding box b is represented as a tuple (𝑥min, 𝑦min, 𝑥max, 𝑦max, 𝑙),
where 𝑥min, 𝑦min, 𝑥max, 𝑦max together illustrate the coordinates of

the bounding box, and 𝑙 ∈ L = {0, 1, · · · , 𝑁 − 1} denotes the pre-
dicted object label (𝑁 is the number of object classes).

3

Conventional object detector. Object detection models can

be categorized into two-stage and one-stage detectors depending

on their pipelines. A two-stage object detector first generates pro-

posals for regions that might contain objects and then uses the

proposed regions for object classification and bounding-box regres-

sion. Representative examples include Faster R-CNN [45] and Mask

R-CNN [19]. On the other hand, a one-stage object detector does

2
Objectness Predictor can also have other types of errors. However, we can optimize

its configuration to ensure most errors are false-negatives, which our objectness

explaining strategy can tolerate. More discussions are in Section 3. We also note that

we manage to build a system with high clean performance (i.e., DetectorGuard) despite

the use of a module with poor clean performance (i.e., provably robust image classifier).

We provide additional discussion on this intriguing property in Appendix F.

3
Conventional object detectors usually output objectness score and prediction confi-

dence as well—we discard them in notation for simplicity.

detection directly on the input image without any explicit region

proposal step. SSD [29], YOLO [2, 42–44, 53], RetinaNet [25], and

EfficientDet [49] are representative one-stage detectors.

Conventionally, a detection is considered correct when 1) the

predicted label matches the ground truth and 2) the overlap between

the predicted bounding box and the ground-truth box, measured

by Intersection over Union (IoU), exceeds a certain threshold 𝜏 . We

term a correct detection a true positive (TP). On the other hand, any

predicted bounding box that fails to satisfy both two TP criteria is

considered as a false positive (FP). Finally, if a ground-truth object

is not detected by any TP bounding box, it is a false negative (FN).

2.2 Attack Formulation
Attack objective. The hiding attack [30, 50, 57, 61, 66], also re-

ferred to as the false-negative (FN) attack, aims to make object

detectors miss the detection of certain objects (which increases FN)

at the test time. The hiding attack can cause serious consequences in

scenarios like an autonomous vehicle missing a pedestrian. There-

fore, defending against patch hiding attacks is of great importance.

Attacker capability.We allow the localized adversary to arbi-

trarily manipulate pixels within one restricted region.
4
Formally,

we can use a binary pixel mask pm ∈ {0, 1}𝑊 ×𝐻 to represent this

restricted region, where the pixels within the region are set to 1.

The adversarial image then can be represented as x′ = (1 − pm) ⊙
x + pm ⊙ x′′ where ⊙ denotes the element-wise product opera-

tor, and x′′ ∈ [0, 1]𝑊 ×𝐻×𝐶 is the content of the adversarial patch,

which the adversary can arbitrarily modify. pm is a function of

patch size and patch location. The patch size should be limited such

that the object is recognizable by a human. For patch locations,

we consider three different threat models: over-patch, close-patch,

far-patch, where the patch is over, close to, or far away from the vic-

tim object, respectively. The adversary can pick any valid location

within the threat model for an optimal attack.

Previous works [23, 30, 46] have shown that attacks against

object detectors can succeed even when the patch is far away from

the victim object. Therefore, defending against all three threat

models is of interest.

2.3 Defense Formulation
Defense objective. We focus on defending against patch hiding

attacks. We consider our defense to be robust on an object if we can

1) detect the object on the clean image is correct and 2) detect part

of the object or send out an attack alert on the adversarial image.
5

Crucially, we design our defense to be provably robust: for an

object certified by our provable analysis, our defense can either

detect the certified object or issue an alert regardless of what the

adversary does (including any adaptive attack at any patch location

within the threat model). This robustness property is agnostic to

the attack algorithm and holds against an adversary that has full

access to our defense setup.

4
Provably robust defenses against one single patch are currently an open/unsolved

problem, and hence the focus of this paper. In Appendix C, we will justify our one-patch

threat model and quantitatively discuss the implication of multiple patches.

5
We note that in the adversarial setting, we only require the predicted bounding box

to cover part of the object because it is likely that only a small part of the object is

recognizable due to the adversarial patch (e.g., the left dog in the right part of Figure 1).

We provide additional justification for our defense objective in Appendix E.

Session 11D: Data Poisoning and Backdoor Attacks in ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3179

https://github.com/inspire-group/DetectorGuard
https://github.com/inspire-group/DetectorGuard

Remark: primary focus on hiding attacks. In this paper, we

focus on the hiding attack because it is the most fundamental and

notorious attack against object detectors. We can visualize dividing

the object detection task into two steps: 1) detecting the object

bounding box and then 2) classifying the detected object. If the

first step is compromised by the hiding attack, there is no hope for

robust object detection. On the other hand, securing the first step

against the patch hiding attack lays a foundation for the robust object

detection; we can design effective remediation for the second step

if needed (Section 6).

Take the application domain of autonomous vehicles (AV) as an

example: an AVmissing the detection of an upcoming car could lead

to a serious car accident. However, if the AV detects the upcoming

object but predicts an incorrect class label (e.g., mistaking a car

for a pedestrian), it can still make the correct decision of stopping

and avoiding the collision. Moreover, in challenging application

domains where the predicted class label is of great importance (e.g.,

traffic sign recognition), we can feed the detected bound box to

an auxiliary image classifier to re-determine the class label. The

defense problem is then reduced to the robust image classification

and has been studied by several previous works [24, 36, 58, 65].

Therefore, we make the hiding attack the primary focus of this

paper and will also discuss the extension of DetectorGuard against

other attacks in Section 6.

2.4 Provably Robust Image Classification
In this subsection, we introduce two key principles that are widely

adopted in recent research on provably robust image classifica-

tion against adversarial patches [24, 36, 58, 65]. In Section 3.2, we

will discuss how to adapt these two principles to build a robust

image classifier, which will be alter used in Objectness Predictor

(Section 3.3).

Feature extractor – use small receptive fields. The receptive
field of a Deep Neural Network (DNN) is the input pixel region

where each extracted feature is looking at. If the receptive field of a

DNN is too large, then a small adversarial patch can corrupt most

extracted features and easily manipulate the model behavior [30, 46,

58]. On the other hand, the small receptive field bounds the number

of corrupted features by ⌈(p+r−1)/s⌉, where p is the patch size, r is
the receptive field size, and s is the stride of receptive field (the pixel
distance between two adjacent receptive field centers) [58], and

makes robust classification possible [24, 36, 58, 65]. Popular design

choices including the BagNet architecture [3, 36, 58, 65] and an

ensemble architecture using small pixel patches as inputs [24, 58].

Classification head – do secure feature aggregation. Given
a feature map, DNN uses a classification head, which consists of a

feature aggregation layer and a fully-connected (classification) layer,

to make final predictions. Since the small receptive field bounds

the number of corrupted features, we can use secure aggregation

techniques to build a robust classification head; design choices

include clipping [58, 65], masking [58], andmajority voting [24, 36].

3 DETECTORGUARD
In this section, we first introduce the key insight and overview of

DetectorGuard, and then detail the design of our defense modules

(Objectness Predictor and Objectness Explainer).

3.1 Defense Overview
Bridging robust image classification and robust object detec-
tion. There has been a significant advancement in (provably) robust

image classification research [9, 24, 36, 58, 65] while object detec-

tors remain vulnerable. This sharp contrast motivates us to ask: can

we adapt robust image classifiers for robust object detection? Unfor-

tunately, there is a huge gap between these two tasks: an image

classifier only robustly predicts one single label for each image

while an object detector has to robustly output a list of class labels

and object bounding boxes. This gap leads to two major challenges.

• Challenge 1: Lack of End-to-end Provable Robustness. A robust

image classifier only provides robustness for single-label pre-

dictions while a robust object detector requires robustness

for multiple labels and bounding boxes. Therefore, an object

detector adapted from a robust image classifier can still be

vulnerable without any security guarantee, and we aim to

carefully design our defense pipeline to enable the proof of

end-to-end robustness for object detection.

• Challenge 2: Amplified Cost of Clean Performance. All existing

provably robust image classifiers [9, 24, 36, 58, 65] attain

robustness at a non-negligible cost of clean performance

(e.g., >20% clean accuracy drop on ImageNet [11]), and this

cost can be severely amplified when adapting towards the

more demanding object detection task. An object detector

with poor clean performance (even in the absence of an

adversary) prohibits its real-world deployment; therefore, we

aim to minimize the clean performance cost in our defense.

DetectorGuard: an objectness explaining strategy. In De-

tectorGuard, we propose an objectness explaining strategy to ad-

dresses the above two challenges. Recall that Figure 1 provides an

overview of DetectorGuard, which will either output a list bound-

ing box predictions (left figure; clean setting) or an attack alert

(right figure; adversarial setting). There are three major modules in

DetectorGuard: Base Detector, Objectness Predictor, and Objectness

Explainer. Base Detector is responsible for making accurate detec-

tions in the clean setting and can be any popular high-performance

object detector such as YOLOv4 [2, 53] and Faster R-CNN [45]. Ob-

jectness Predictor is adapted from the core principles for building

robust image classifiers as introduced in Section 2.4 and aims to out-

put a robust objectness map in the adversarial environment. We also

carefully design Objectness Predictor to mitigate the errors made by

the robust image classifier in the clean setting. Finally, Objectness

Explainer leverages predicted bounding boxes from Base Detector

to explain/match the objectness predicted by Objectness Predictor

and aims to catch a malicious attack. When no attack is detected,

DetectorGuard will output the detection results of Base Detector

(i.e., a conventional object detector), so that our clean performance

is close to state-of-the-art object detectors. When a patch hiding

attack occurs, Base Detector can miss the object while Objectness

Predictor can robustly predict high objectness. This mismatch will

lead to unexplained objectness and trigger an attack alert. Notably,

our objectness explaining strategy can achieve end-to-end provable

robustness for “free" (at a negligible cost of clean performance) and

solve two major challenges. We will introduce the module details

and theoretically analyze the free provable robustness property.

Session 11D: Data Poisoning and Backdoor Attacks in ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3180

Table 1: Summary of important notation

Notation Description Notation Description

x Input image b bounding box

fm Feature map om Objectness map

v classification logits 𝑁 number of object classes

(𝑤𝑥 ,𝑤𝑦) window size (𝑝𝑥 , 𝑝𝑦) patch size

𝑇 binarizing threshold D detection results

u, l upper/lower bound of classification logits values of each class

Algorithm Pseudocode. We provide the pseudocode of Detec-

torGuard in Algorithm 1 and a summary of important notation

in Table 1. The main procedure DG(·) has three sub-procedures:
BaseDetector(·),ObjPredictor(·), andDetMatcher(·). The sub-
procedure BaseDetector(·) can be any off-the-shelf object detec-

tor as discussed in Section 2.1. All tensors/arrays are represented

with bold symbols and scalars are in italic. All tensor/array indices

start from zeros; the tensor/array slicing is in Python style (e.g.,

[𝑖 : 𝑗] means all indices 𝑘 satisfying 𝑖 ≤ 𝑘 < 𝑗). We assume that the

“background" class corresponds to the largest class index.

In the remainder of this section, we first introduce how we in-

stantiate robust image classifiers and then discuss the design of

Objectness Predictor and Objectness Explainer.

3.2 Instantiating Robust Image Classifiers
To start with, we discuss how we build robust image classifiers that

will be used in Objectness Predictor.

As discussed in Section 2.4, we can build a robust image classifier

RC(·) using a feature extractor FE(·) with small receptive fields, and

a robust classification head RCH(·) with secure feature aggregation.

In our design, we choose BagNet [3] backbone as the feature extrac-

tor FE(·), and we clip elements of local logits vectors
6
into [0,∞]

for secure aggregation in RCH(·). This implementation is similar

to the robust image classifier Clipped BagNet (CBN) [65], but we

note that we use a different clipping function that is tailored to our

more challenging task of object detection. In Appendix B, we provide

additional details of FE(·) and RCH(·) and also discuss alternative

design choices of robust image classifier RC(·) (e.g., robust masking

from PatchGuard [58]).

Remark: Limitations of robust classifiers. We note that the

adapted robust image classifierRC(·) achieves robustness at the cost
of a non-negligible clean performance drop [24, 36, 58]. Therefore,

in the clean setting, classification at different image locations can

be imprecise with three typical errors that lead to Challenge 2:

• Clean Error 1: Confusion between two object class labels

• Clean Error 2: Predicts background pixels as objects

• Clean Error 3: Predicts objects as “background"

In the next two subsections, we will discuss how DetectorGuard

design can eliminate/mitigate these three clean errors.

3.3 Objectness Predictor
Overview. Objectness Predictor aims to output a robust object-

ness map that indicates the probability of objects being present at

different locations. Its high-level idea is to perform robust image

6
The local logits vector [58] is the classification logits based on each local feature that

is extracted from a particular region (i.e., the receptive field) of the input image.

𝟏
𝟎
𝟖

𝟎
𝟐
𝟓

𝟏
𝟎
𝟖

𝟏
𝟏
𝟖

𝟖
𝟕
𝟎

𝟓
𝟎
𝟏

𝟏
𝟐
𝟓

𝟓
𝟔
𝟏

𝟔
𝟎
𝟎

𝟏 𝟐 𝟏

𝟏 𝟖 𝟓

𝟐 𝟔 𝟔

𝟎 𝟎 𝟎

𝟎 𝟏 𝟏

𝟎 𝟏 𝟏

Dog

Cat

Back-

ground

Robust

feature

extraction

Robust

classification

Max element
(ignoring background)

Binarization

Objectness

map

Robust feature-space window classification

Objectness map generation (with error filtering)

Figure 2: Visualization of Objectness Predictor operations

classification on different regions to predict an object class label or

“background". We provide a simplified visual overview in Figure 2.

Objectness Predictor involves two major operations: robust feature-

space window classification and objectness map generation. The

first step aims to perform efficient robust classification at different

image regions and the second step aims to filter out clean errors

made by the robust classifier and generate the final objectness map.

Robust feature-space window classification. To perform ro-

bust image classification at different image locations, we first extract

a feature map via FE(·), and then apply the robust image classifica-

tion head RCH(·) to a sliding window over the feature map.

Pseudocode. The pseudocode of Objectness Predictor in Line 12-

23 of Algorithm 1. We first extract the feature map fm with FE(·)
(Line 13). Next, for every valid window location, represented as

(𝑖, 𝑗),7 we feed the feature window fm[𝑖 : 𝑖 +𝑤𝑥 , 𝑗 : 𝑗 +𝑤𝑦] to a

robust classification head RCH(·) to get the classification label 𝑙

and the classification logits v ∈ R𝑁+1 for 𝑁 object classes and the

“background" class (Line 17). The use of RCH(·) ensures that the
classification is robust when window features are corrupted.

Remark: defense efficiency.We note that our window classifica-

tion operates in the feature space, and this allows us to reuse the

expensive feature map generation (i.e., FE(·)); each classification

only needs a cheap computation of the classification head (i.e.,

RCH(·)). Therefore, our defense only incurs a small overhead (will

be evaluated in Section 5.5).

Objectness map generation: handling clean errors of ro-
bust classifiers. Next, we aim to filter out incorrect window clas-

sifications and generate the final objectness map. We reduce each

prediction vector at each location to its maximum non-background

element to discard label information (eliminating Clean Error 1)

and perform binarization (with a threshold) to remove objectness

predicted with low confidence (mitigating Clean Error 2).

Pseudocode. First, we initialize an all-zero R𝑁+1 vector (𝑁 object

classes plus the “background" class) at every feature location and

use one tensor ¯om to represent all vectors (Line 15). Second, we

aim to gather all window classification results: for each window,

we add the classification logits v to every vector located within the

window (Line 18). Third, we take the maximum non-background

element in each vector as the objectness score at the corresponding

7
We will use feature-space coordinates for the remainder of the paper. The mapping

between pixel-space and feature-space coordinates is discussed in Appendix G.

Session 11D: Data Poisoning and Backdoor Attacks in ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3181

Algorithm 1 DetectorGuard

Input: input image x, window size (𝑤𝑥 ,𝑤𝑦), binarizing thresh-

old 𝑇 , Base Detector BaseDetector(·), robust classifier RC(·)
(consisting of a feature extractor FE(·) and a robust classifica-

tion head RCH(·)), cluster detection procedureDetCluster(·)
Output: robust detection D∗ or ALERT
1: procedure DG(x,𝑤𝑥 ,𝑤𝑦,𝑇)

2: D ← BaseDetector(x) ⊲ Conventional detection

3: om← ObjPredictor(x,𝑤𝑥 ,𝑤𝑦,𝑇) ⊲ Objectness

4: 𝑎 ← ObjExplainer(D, om) ⊲ Detect hiding attacks

5: if 𝑎 == True then ⊲ Malicious mismatch

6: D∗ ← ALERT ⊲ Trigger an alert

7: else
8: D∗ ← D ⊲ Return Base Detector’s predictions

9: end if
10: return D∗
11: end procedure

12: procedure ObjPredictor(x,𝑤𝑥 ,𝑤𝑦,𝑇)

13: fm← FE(x) ⊲ Extract feature map

14: 𝑋,𝑌, _← Shape(fm) ⊲ Get the shape of fm
15: ¯om← ZeroArray[𝑋,𝑌, 𝑁 + 1] ⊲ Initialization

16: for each valid (𝑖, 𝑗) do ⊲ Every window location

17: 𝑙, v← RCH(fm[𝑖 : 𝑖 +𝑤𝑥 , 𝑗 : 𝑗 +𝑤𝑦]) ⊲ Classify

⊲ Add classification logits

18: ¯om[𝑖 : 𝑖 +𝑤𝑥 , 𝑗 : 𝑗 +𝑤𝑦] ← ¯om[𝑖 : 𝑖 +𝑤𝑥 , 𝑗 : 𝑗 +𝑤𝑦] +v
19: end for
20: ¯om← MaxObj(¯om, axis = −1) ⊲ Max objectness score

21: om← Binarize(¯om,𝑇 ·𝑤𝑥 ·𝑤𝑦) ⊲ Binarization

22: return om
23: end procedure

24: procedure ObjExplainer(D, om)

25: ˆom← Copy(om) ⊲ A copy of om
⊲ Match each detected box to objectness map

26: for 𝑖 ∈ {0, 1, · · · , |D| − 1} do
27: 𝑥min, 𝑦min, 𝑥max, 𝑦max, 𝑙 ← b← D[𝑖]
28: if Sum(om[𝑥min : 𝑥max, 𝑦min : 𝑦max]) > 0 then
29: ˆom[𝑥min : 𝑥max, 𝑦min : 𝑦max]) ← 0
30: end if
31: end for
32: if DetCluster(ˆom) is None then
33: return False ⊲ All objectness explained

34: else
35: return True ⊲ Unexplained objectness

36: end if
37: end procedure

location (Line 20). This operation discards label information and

fully eliminates Clean Error 1, e.g., confusion between bicycles and

motorbikes. At last, we binarize every objectness score (Line 21):

if the score is larger than 𝑇 ·𝑤𝑥 ·𝑤𝑦 , we set it to one; otherwise,

set it to zero. This binarization mitigates Clean Error 2, when the

classifier incorrectly predicts background as objects but with low

Match

Malicious

mismatch

Benign

mismatch

Objectness PredictorBase Detector DetectorGuard Output

ALERT!1

Figure 3: Visualization of explaining/matching rules

classification confidence. We discuss the strategy for Clean Error 3

in the next subsection.

3.4 Objectness Explainer
Objectness Explainer takes as inputs the predicted bounding boxes

of Base Detector and the generated objectness map of Object-

ness Predictor, and tries to use each predicted bounding box to

explain/match the high activation in the objectness map. Its out-

come determines the final prediction of DetectorGuard. We will

first introduce the high-level explaining/matching rules and then

elaborate on the algorithm.

Explaining/matching rules. There are three possible explain-
ing/matching outcomes, each of them leading to a different predic-

tion strategy (a visual example is in Figure 3):

• A match happens when Base Detector and Objectness Pre-

dictor both predict a bounding box or high objectness at a

specific location. In this simplest case, the objectness is well

explained by the bounding box; our defense will consider the

detection as correct and output the accurate bounding box

and the class label predicted by Base Detector.

• Amalicious mismatch will be flagged when only Object-

ness Predictor outputs high objectness. This is most likely to

happen when a hiding attack fools the conventional object

detector to miss the object while our Objectness Predictor

still makes robust predictions. In this case, our defense will

find unexplained objectness and send out an attack alert.

• A benign mismatch occurs when only Base Detector de-

tects the object and there is no objectness to be explained. This

can happen when Objectness Predictor incorrectly misses

the object due to its limitations (recall our remark in Sec-

tion 3.3). In this case, we trust Base Detector and output its

predicted bounding box. Notably, this strategy can fully elim-

inate Clean Error 3, i.e., predicting objects as background.
8

Next, we discuss the concrete procedure for explaining objectness.

Matching and explaining objectness. In Line 25-31 of Algo-

rithm 1, we use each predicted bounding box to match/explain the

8
We note that this miss can also be caused by other attacks that are orthogonal to

the focus of this paper, e.g., FP attacks that aim to introduce incorrect bounding box

predictions. We will discuss such attacks and our defense strategies in Section 6.

Session 11D: Data Poisoning and Backdoor Attacks in ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3182

objectness predicted at the same location. First, we create a copy of

om as ˆom to hold the explaining results. Next, for each bounding

box b, we get its coordinates 𝑥min, 𝑦min, 𝑥max, 𝑦max, and calculate

the sum of objectness scores within the same box on the objectness

map om. If the objectness sum is larger than zero, we assume that

the bounding box b agrees with om, and we zero out the corre-

sponding region in ˆom, to indicate that this region of objectness

has been explained by the detected bounding box. On the other

hand, if all objectness scores are zeros, we assume it is a benign

mismatch; the algorithm proceeds without alert.

Detecting clusters of unexplained objectness. The final step
is to detect unexplained objectness in ˆom. We use the sub-procedure

DetCluster(·) to determine if any non-zero points in ˆom form

a large cluster. Specifically, we choose DBSCAN [12] as the clus-

ter detection algorithm, which will assign each point to a certain

cluster or label it as an outlier based on the point density in its

neighborhood. If DetCluster(ˆom) returns None, it means that no

large cluster is found, or all objectness predicted by Objectness

Predictor is explained by the bounding boxes predicted by Base

Detector; ObjExplainer(·) then returns False (i.e., no attack de-

tected). We note that this clustering operation further mitigates

Clean Error 2 when the robust classifier predicts background as

objects at only a few scattered locations. On the other hand, re-

ceiving a non-empty cluster set indicates that there are clusters of

unexplained objectness activations in ˆom (i.e, Base Detector misses

an object but Objectness Predictor predicts high objectness). Ob-

jectness Explainer regards this as a sign of patch hiding attacks and

returns True.
Final output. Line 5-10 of Algorithm 1 demonstrates the strat-

egy for the final prediction. If the alert flag 𝑎 is True (i.e., a malicious

mismatch is detected), DetectorGuard returnsD∗ = ALERT. In other
cases, DetectorGuard returns the detection D∗ = D.

Remark: Clean performance of DetectorGuard. Recall that
Clean Error 1 of the robust classifier is fully eliminated in our ob-

jectness map generation via discarding label information; Clean

Error 2 is mitigated via binarizing (in Objectness Predictor) and

clustering (in Objectness Explainer) operations; Clean Error 3 is

fully tolerated via our prediction matching strategy (the benign

mismatch case). Therefore, we can safely optimize the setting of

DetectorGuard to mitigate most of Clean Error 2 (which can lead to

unexplained objectness in the clean setting and trigger a false alert)

so that we can achieve a clean performance that is comparable to

state-of-the-art object detectors (performance difference smaller

than 1%; more details are in Section 5). This helps us solve Chal-

lenge 2: Amplified Cost of Clean Performance. In the next section, we

will demonstrate that our efforts in mitigating the imperfection of

robust classifiers are worthwhile by showing how DetectorGuard

addresses Challenge 1: Lack of End-to-end Provable Robustness.

4 END-TO-END PROVABLE ROBUSTNESS
Recall that we consider DetectorGuard to be provably robust for a

given object (in a given image) when it can make correct detection

on the clean image and will either detect part of the object or issue

an alert on the adversarial image. The robustness property holds

for any adaptive patch hiding attacker at any location within our

threat model, including ones who have full access to our models

Algorithm 2 Provable Analysis of DetectorGuard

Input: input image x, window size (𝑤𝑥 ,𝑤𝑦), matching threshold𝑇 ,

the set of patch locations P, the object bounding box b, feature
extractor FE(·), provable analysis of the robust classification
head RCH-PA(·), cluster detection procedure DetCluster(·)

Output: whether the object b in x has provable robustness

1: procedure DG-PA(x,𝑤𝑥 ,𝑤𝑦,𝑇 ,P, b)
2: if b ∉ DG(x,𝑤𝑥 ,𝑤𝑦,𝑇) then
3: return False ⊲ Clean detection is incorrect

4: end if
5: fm← FE(x) ⊲ Extract feature map

6: for each p ∈ P do ⊲ Check every patch location

7: 𝑥,𝑦, 𝑝𝑥 , 𝑝𝑦 ← p
8: 𝑟 ← DG-PA-One(fm, 𝑥,𝑦,𝑤𝑥 ,𝑤𝑦, 𝑝𝑥 , 𝑝𝑦, b,𝑇)
9: if 𝑟 == False then
10: return False ⊲ Possibly vulnerable

11: end if
12: end for
13: return True ⊲ Provably robust

14: end procedure

15: procedure DG-PA-One(fm, 𝑥,𝑦,𝑤𝑥 ,𝑤𝑦, 𝑝𝑥 , 𝑝𝑦, b,𝑇)
16: 𝑋,𝑌, _← Shape(fm) ⊲ Get the shape of fm
17: ¯om∗ ← ZeroArray[𝑋,𝑌, 𝑁 + 1] ⊲ Initialization

⊲ Generates worst-case objectness map for analysis

18: for each valid (𝑖, 𝑗) do ⊲ Every window location

19: u, l ← RCH-PA(fm[𝑖 : 𝑖 +𝑤𝑥 , 𝑗 : 𝑗 +𝑤𝑦], 𝑥 − 𝑖, 𝑦 −
𝑗, 𝑝𝑥 , 𝑝𝑦)

⊲ Add worst-case (lower-bound) logits

20: ¯om∗ [𝑖 : 𝑖+𝑤𝑥 , 𝑗 : 𝑗+𝑤𝑦] ← ¯om∗ [𝑖 : 𝑖+𝑤𝑥 , 𝑗 : 𝑗+𝑤𝑦]+l
21: end for
22: ¯om∗ ← MaxObj(¯om∗, axis = −1) ⊲ Max objectness score

23: om∗ ← Binarize(¯om∗,𝑇 ·𝑤𝑥 ·𝑤𝑦) ⊲ Binarization

24: 𝑥min, 𝑦min, 𝑥max, 𝑦max, 𝑙 ← b
25: if DetCluster(om∗ [𝑥min : 𝑥max, 𝑦min : 𝑦max]) is None

then
26: return False ⊲ No high objectness left

27: else
28: return True ⊲ High worst-case objectness

29: end if
30: end procedure

and defense setup. In this section, we will prove the end-to-end

robustness of DetectorGuard, solving Challenge 1.

Provable analysis of DetectorGuard. Thanks to our object-

ness explaining strategy, a patch hiding attacker has to make both

Base Detector and Objectness Predictor fail to predict a bounding

box, or high objectness, for a successful attack. Therefore, if we

can prove that Objectness Predictor can output high objectness for

an object in the worst case, we can certify its provable robustness.

We present the provable analysis of DetectorGuard in Algorithm 2.

The algorithm takes a clean image x, a ground-truth object bound-

ing box b,9 and a set of valid patch locations P as inputs, and will

9
We note that the ground-truth information is essential in our provable analysis

(Algorithm 2) but is not used in our actual defense (Algorithm 1).

Session 11D: Data Poisoning and Backdoor Attacks in ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3183

determine whether the object in bounding box b in the image x
has provable robustness against any patch at any location in P. We

state the correctness of Algorithm 2 in Theorem 1, and will explain

the algorithm details by proving the theorem.

Theorem 1. Given an object bounding box b in a clean image x, a
set of patch locations P, window size (𝑤𝑥 ,𝑤𝑦), and binarizing thresh-
old 𝑇 (used in DG(·) of Algorithm 1), if Algorithm 2 returns True,
i.e., DG-PA(x,𝑤𝑥 ,𝑤𝑦,𝑇 , b,P) = True, DetectorGuard has provable
robustness for the object b against any patch hiding attack using any

patch location in P.

Proof. DG-PA(·) first calls DG(·) of Algorithm 1 to determine

if DetectorGuard can detect the object bounding box b on the clean

image x. The algorithm will proceed only when the clean detection

is correct (Line 2-4).

Next, we extract feature map fm, iterate over each patch location

in P, and call the sub-procedure DG-PA-One(·), which analyzes

worst-case behavior over all possible adversarial strategies for each

patch location, to determine the model robustness. If any call of

DG-PA-One(·) returns False, the algorithm returns False, indi-
cating that at least one patch location can bypass our defense. On

the other hand, if the algorithm tries all valid patch locations and

does not return False, this means that DetectorGuard is provably

robust to all patch locations in P and the algorithm returns True.
In the sub-procedure DG-PA-One(·), we analyze the worst-case

output of Objectness Predictor against the given patch location. We

perform the provable analysis of the robust image classification

head (using RCH-PA(·)) to determine the lower/upper bounds of

classification logits for each window. If the aggregated worst-case

(i.e., lower bound) objectness map still has high activation for the

object of interest, we can certify the robustness of DetectorGuard.

As shown in the DG-PA-One(·) pseudocode, we first initialize a
zero array ¯om∗ to hold the worst-case objectness scores. We then

iterate over each sliding window and call RCH-PA(·), which takes

the feature map window fm[𝑖 : 𝑖 +𝑤𝑥 , 𝑗 : 𝑗 +𝑤𝑦], relative patch co-

ordinates (𝑥 − 𝑖, 𝑦− 𝑗), patch size (𝑝𝑥 , 𝑝𝑦) as inputs and outputs the
upper bound u and lower bound l of the classification logits. Since

the goal of the hiding attack is to minimize the objectness scores,

we only need to reason about the lower bound of classification log-

its. Recall that in RCH(·), we clip all local logits values into [0,∞];
therefore, the best an adversary can do is to push all corrupted

logits values down to zeros. We then compute the lower bound l by
zeroing out all corrupted logits values and aggregating the remain-

ing ones. We note that the sub-procedure DG-PA-One(·) aims to

check defense robustness for a particular patch location; therefore,

the patch location and corrupted features/logits are known in this

provable analysis (we discuss how to map pixel-space coordinates

to feature-space coordinates in Appendix G).

Given the lower bound l of every window classification logits,

we will add it to the corresponding region of ¯om∗. After we ana-
lyze all valid windows, we call MaxObj(·) and Binarize(·) for the
worst-case objectness map om∗. We then get the cropped object-

ness map that corresponds to the object of interest (i.e., om∗ [𝑥min :

𝑥max, 𝑦min : 𝑦max]) and feed it to the cluster detection algorithm

DetClutser(·). If None is returned, a hiding attack using this patch
location might succeed, and the sub-procedure returns False. Oth-
erwise, Objectness Predictor has a high worst-case objectness and

is thus robust to any attack using this patch location. This implies

the provable robustness, and the sub-procedure returns True. □

Theorem 1 shows that if our provable analysis (Algorithm 2)

returns True for certain objects, DetectorGuard (Algorithm 1) will

always detect the certified object or issue an attack alert. This

robustness property is agnostic to attack strategies and holds for

any adaptive attacker at any locationwithin our threat model. In our

evaluation (next section), we will use Algorithm 2 and Theorem 1

to certify the provable robustness of every object in every image

and report the percentage of certified objects.

5 EVALUATION
In this section, we provide a comprehensive evaluation of Detec-

torGuard on PASCAL VOC [13], MS COCO [26], and KITTI [15]

datasets. We will first introduce the datasets and models used in our

evaluation, followed by our evaluation metrics. We then report our

main evaluation results on different models and datasets, and finally

provide a detailed analysis of DetectorGuard performance. Our code

is available at https://github.com/inspire-group/DetectorGuard.

5.1 Dataset and Model
Dataset:

PASCAL VOC [13]. The detection challenge of PASCAL Visual

Object Classes (VOC) project is a popular object detection dataset

with annotations for 20 different classes. We take trainval2007
(5k images) and trainval2012 (11k images) as our training set

and evaluate our defense on test2007 (5k images), which is a

conventional usage of the PASCAL VOC dataset [29, 64].

MS COCO [26]. The Microsoft Common Objects in COntext

(COCO) dataset is an extremely challenging object detection dataset

with 80 annotated common object categories. We use the training

and validation set of COCO2017 for our experiments. The training

set has 117k images, and the validation set has 5k images. We ignore

bounding boxes with the flag iscrowd=1 for simplicity.

KITTI [15]. KITTI is an autonomous vehicle dataset that contains

both 2D camera images and 3D point clouds. We take its 7481 2D

images and use 80% of randomly splited images for training and

the remaining 20% for validation. We merge all classes into three

classes: car (all different classes of vehicles), pedestrian, cyclist.
Base Detector:

YOLOv4 [2, 53] is the state-of-the-art one-stage object detector.

We choose Scaled-YOLOv4-P5 [53] in our evaluation. For MS COCO,

we use the pre-trained model. For PASCAL VOC and KITTI, we

fine-tune the model previously trained on MS COCO.

Faster R-CNN [45] is a representative two-stage object detec-

tor. We use ResNet101-FPN as its backbone network. Image pre-

processing and model architecture follows the original paper. We

use pre-trained models for MS COCO and fine-tune pre-trained

models for PASCAL VOC and KITTI detectors.

Perfect Clean Detector (PCD) is a hypothetical object detector

simulated with ground-truth annotations. PCD can always make

correct detection in the clean setting but is assumed vulnerable to

patch hiding attacks. This hypothetical object detector ablates the

errors of Base Detector and helps us better understand the behavior

of Objectness Predictor and Objectness Explainer.

Objectness Predictor:

Session 11D: Data Poisoning and Backdoor Attacks in ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3184

https://github.com/inspire-group/DetectorGuard

Table 2: Clean performance of DetectorGuard

PASCAL VOC MS COCO KITTI

vanilla AP defense AP FAR@0.8 vanilla AP defense AP FAR@0.6 vanilla AP defense AP FAR@0.8

Perfect clean detector 100% 99.3% 0.9% 100% 99.0% 1.2% 100% 99.0% 1.5%

YOLOv4 92.9% 92.4% 4.0% 73.6% 73.4% 1.6% 93.1% 92.4% 1.7%

Faster R-CNN 90.0% 89.6% 2.9% 66.7% 66.5% 0.9% 89.9% 89.1% 1.4%

BagNet-33 [3], which has a 33×33 small receptive field, is the

backbone network of Objectness Predictor. For PASCAL VOC and

MS COCO, we zero-pad each image to a square and resize it to

416×416 before feeding it to BagNet; for KITTI, we resize each image

to 224×740. We fine-tune a BagNet model that is pre-trained on

ImageNet [11]. To train an image classifier given a list of bounding

boxes in the object detection dataset, we first map pixel-space

bounding boxes to the feature space (details of box mapping are in

Appendix G). We then teach BagNet to make correct predictions on

cropped featuremaps byminimizing the cross-entropy loss between

aggregated feature predictions and one-hot encoded label vectors.

In addition, we aggregate all features outside any feature boxes as

the “negative" feature vector for the “background" classification.

Default Hyper-parameter:
We will analyze the effect of different hyper-parameters in Sec-

tion 5.5. In our default setting, we use a square feature-space window

of size 8 and theDBSCAN clustering [12]with eps = 3, min_points =

24 for different datasets.
10

We set the default binarizing threshold

to 32 for PASCAL VOC, 36 for MS COCO, and 11 for KITTI based

on different model properties with different datasets.

5.2 Metric
Clean Performance Metric:

Precision and Recall. We calculate the precision as TP/(TP+FP)

and the recall as TP/(TP+FN). For the clean images without a false

alert, we follow previous works [8, 64] setting the IoU threshold

𝜏 = 0.5 and count TPs, FPs, FNs in the conventional manner. For

images that have false alerts, we set TP and FP to zeros, and FN to

the number of ground-truth objects since no bounding box is pre-

dicted. We note that conventional object detectors use a confidence

threshold to filter out bounding boxes with low confidence values.

As a result, different confidence thresholds will give different preci-

sion and recall values; we will plot the entire precision-recall curve

to analyze the model performance.

Average Precision (AP). To remove the dependence on the con-

fidence threshold and to have a global view of model performance,

we also report Average Prevision (AP) as one of evaluation metrics.

We vary the confidence threshold from 0 to 1, record the precision

and recall at different thresholds, and calculate AP as the averaged

precision at different recall levels. This calculated AP can be consid-

ered as an approximation of the AUC (area under the curve) for the

precision-recall curve. We note that AP is one of the most widely

used performance metrics in object detection benchmark competi-

tions [13, 15, 26] and research papers [2, 19, 25, 29, 43–45, 49].

10
A 416×416 (or 224×740) pixel image results in a 48×48 (or 24×89) feature map using

our BagNet-33 implementation.

10 20 30 40 50 60 70 80 90 100
Recall (%)

0

10

20

30

40

50

60

70

80

90

100

Pr
ec

is
io

n
/ F

AR
 (%

)

Precision-PCD-vanilla
Precision-PCD-defended
Precision-YOLO-vanilla
Precision-YOLO-defended
Precision-FRCNN-vanilla
Precision-FRCNN-defended
FAR-PCD-defended
FAR-YOLO-defended
FAR-FRCNN-defended

Figure 4: Clean performance of DetectorGuard on PASCAL
VOC (PCD – perfect clean detector; YOLO – YOLOv4; FRCNN –

Faster R-CNN; FAR – False Alert Rate)

False Alert Rate (FAR@0.x). FAR is defined as the percentage of

clean images on which DetectorGuard will trigger a false alert.

The false alert is mainly caused by Clean Error 2 as discussed in

Section 3. We note that FAR is also closely tied to the confidence

threshold of Base Detector: a higher confidence threshold leads

to fewer predicted bounding boxes, leading to more unexplained

objectness, and finally higher FAR. We will report FAR at different

recall levels for a global evaluation, and use FAR@0.x to denote

FAR at a clean recall of 0.x.

Provable Robustness Metric:
Certified Recall (CR@0.x). We use certified recall as the robust-

ness metric against patch hiding attacks. The certified recall is de-

fined as the percentage of ground-truth objects that have provable

robustness against any patch hiding attack. Recall that an object

has provable robustness when Algorithm 2 (our provable analysis)

returns True. Note that CR is also affected by the performance of

Base Detector (e.g., confidence threshold) since its prerequisite is

the correct clean detection. We use CR@0.x to denote the certified

recall at a clean recall of 0.x.

5.3 Clean Performance
In this subsection, we evaluate the clean performance of Detec-

torGuardwith three different base object detectors and three datasets.

In Table 2, we report AP of vanilla Base Detector (vanilla AP), AP of

DetectorGuard (defense AP), and False Alert Rate at a clean recall of

0.8 or 0.6 (FAR@0.8 or FAR@0.6). We also plot the precision-recall

Session 11D: Data Poisoning and Backdoor Attacks in ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3185

Table 3: Provable robustness of DetectorGuard

PASCAL VOC (CR@0.8) MS COCO (CR@0.6) KITTI (CR@0.8)

far-patch close-patch over-patch far-patch close-patch over-patch far-patch close-patch over-patch

Perfect clean detector 28.6% 20.7% 8.3% 11.5% 7.0% 2.2% 32.0% 11.1% 2.1%

YOLOv4 24.6% 18.6% 7.5% 10.1% 6.5% 1.9% 30.6% 10.9% 2.1%

Faster R-CNN 25.7% 19.4% 8.0% 10.7% 6.8% 2.0% 31.6% 11.0% 2.1%

and FAR-recall curves for PASCAL VOC in Figure 4; similar plots

for MS COCO and KITTI are in Appendix D.

DetectorGuard has a low FAR and a high AP. We can see

from Table 2 that DetectorGuard has a low FAR of 0.9% and a high

AP of 99.3% on PASCAL VOC when we use a perfect clean detector

as Base Detector. The result shows that DetectorGuard only has a

minimal impact on the clean performance.

DetectorGuard is highly compatible with different con-
ventional object detectors. From Table 2 and Figure 4, we can

see that when we use YOLOv4 or Faster R-CNN as Base Detector

on PASCAL VOC, the clean AP, as well as the precision-recall curve

of DetectorGuard, is close to that of its vanilla Base Detector. These

results show that DetectorGuard is highly compatible with different

conventional object detectors.

DetectorGuard works well across different datasets. We

can see that the observation of high clean performance is simi-

lar across three different datasets: DetectorGuard achieves a low

FAR and a similar AP as the vanilla Base Detector on PASCAL VOC,

MS COCO, and KITTI (the precision-recall plots for MS COCO and

KITTI are available in Appendix D). These similar results show

that DetectorGuard is a general approach and can be used for both

easier and more challenging detection tasks.

Remark: a negligible cost of clean performance. In this sub-
section, we have shown that DetectorGuard only incurs a negli-

gible cost of clean performance (<1% AP drop). This slight clean

performance drop is worthwhile given the first provable robustness

against patch hiding attacks (evaluated in the next subsection).

5.4 Provable Robustness
In this subsection, we first introduce the robustness evaluation setup

and then report the provable robustness of our defense against any

patch hiding attack within our threat model.

Setup.We use a 32×32 adversarial pixel patch on the re-scaled

and padded 416×416 (or 224×740) images to evaluate the provable

robustness.
11

We consider all possible image locations as candidate

locations for the adversarial patch to evaluate the model robustness.

We categorize our results into three categories depending on the

distance between an object and the patch location. When the patch

is totally over the object, we consider it as over-patch. When the

feature-space distance between patch and object is smaller than 8,

we consider it as close-patch. The other patch locations are consid-

ered as far-patch. For each set of patch locations and each object,

we use Algorithm 2 to determine the robustness. We note that the

11
DPatch [30] demonstrates that even a 20×20 adversarial patch at the image corner can

have a malicious effect. In Appendix A, we show that more than 15% of PASCAL VOC

objects and 44% of MS COCO objects are smaller than a 32×32 patch. We also provide

robustness results for different patch sizes as well as visualizations in Appendix A.

10 20 30 40 50 60 70 80 90 100
Clean Recall (%)

0

5

10

15

20

25

30

C
er

tif
ie

d
R

ec
al

l (
%

)

PCD-far
PCD-close
PCD-over
YOLO-far
YOLO-close
YOLO-over
FRCNN-far
FRCNN-close
FRCNN-over

Figure 5: Provable robustness of DetectorGuard on PASCAL
VOC (PCD – Perfect Clean Detector; YOLO – YOLOv4; FRCNN –

Faster R-CNN)

above algorithm already considers all possible adaptive attacks (at-

tacker strategies) at any location within our threat model. We use

CR@0.x as the robustness metric. Given the large number of all

possible patch locations, we only use a 500-image subset of the

test/validation datasets for evaluation.

DetectorGuard achieves the first non-trivial provable ro-
bustness against patch hiding attack. We report the certified

recall at a clean recall of 0.8 or 0.6 (CR@0.8 or CR@0.6) in Table 3.

As shown in Table 3, when we use a Perfect Clean Detector, De-

tectorGuard can certify the robustness for 28.6% of PASCAL VOC

objects when the patch is far away from the object; which means

no attacker within our threat model can successfully attack these

certified objects. We also plot the CR-recall curves for different

detectors on the PASCAL VOC dataset in Figure 5 (similar plots for

MS COCO and KITTI are in Appendix D). The figure shows that

the provable robustness improves as the clean recall increases, and

the performance of YOLOv4 and Faster R-CNN is close to that of a

perfect clean detector when the recall is close to one.

DetectorGuard is especially effectivewhen the patch is far
away from the objects. From Table 3 and Figure 5, we can clearly

see that the provable robustness of DetectorGuard is especially good

when the patch gets far away from the object. This model behavior

aligns with our intuition that a localized adversarial patch should

only have a spatially constrained adversarial effect. Moreover, this

observation shows that DetectorGuard has made the attack much

more difficult: to have a chance to bypass DetectorGuard, the ad-

versary has to put the patch close to or even over the victim object,

which is not always feasible in real-world scenarios. We also note

Session 11D: Data Poisoning and Backdoor Attacks in ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3186

that in the over-patch threat model, we allow the patch to be any-

where over the object. This means that the patch can be placed over

the most salient part of the object (e.g., the face of a person), and

makes robust detection extremely difficult.

DetectorGuardhas better robustness for object classeswith
larger object sizes. In Figure 6, we plot the certified recalls against

the close-patch attacker (similar plots for far-patch and over-patch

and for other datasets are in Appendix D) and average object sizes

(reported as the percentage of image pixels) for all 20 classes of

PASCAL VOC. As shown in the figure, the provable robustness of

DetectorGuard is highly correlated with the object size: we have

higher certified recalls for classes with larger object sizes. This is an

expected behavior because it is hard for even humans to perfectly

detect all small objects. Moreover, considering that missing a big

nearby object is much more serious than missing a small distant

object in real-world applications, we believe that DetectorGuard

has strong application potential.

Remark on absolute values of certified recalls. Despite the
first achieved provable robustness against patch hiding attacks,

we acknowledge that DetectorGuard’s absolute values of certified

recalls are still limited. First, the notion of the certified recall itself is

strong and conservative: we certify the robustness of an object only

when no patch at any location within the threat model can succeed

in the hiding attack (using any attack strategy including adaptive

attacks). In practice, the attacker capability might be limited to a

small number of patch locations. Second, we note that most objects

in our three datasets are small (or even tiny) objects (we provide

a quantitative analysis in Appendix A). Detecting small objects is

already challenging in the clean setting and becomes even more

difficult when an adversarial patch of comparable sizes is used.

However, it is still notable that DetectorGuard is the first to achieve

non-trivial and strong provable robustness against the patch hiding

attacker for “free", and that our approach works particularly well on

certain object classes and threat models (e.g., the class “dog" in the

PASCAL VOC dataset has a ~60% certified recall for the close-patch

threat model). We hope that the security community can build upon

our work and further push the certified recall to a higher value.

5.5 Detailed Analysis of DetectorGuard
In this subsection, we first perform a runtime analysis of Detec-

torGuard to show its small defense overhead. Next, we use a hypo-

thetical perfect clean detector (PCD) and the PASCAL VOC dataset

to analyze the performance of DetectorGuard under different hyper-

parameter settings. Note that using PCD helps us to focus on the

behavior of Objectness Predictor and Objectness Explainer.

Runtime analysis. In Table 4, we report the average per-example

runtime of each module in DetectorGuard. For Base Detector, we re-

port runtime for YOLOv4 (left) and Faster R-CNN (right). As shown

in the table, Objectness Predictor has a similar runtime as Base

Detector (or vanilla undefended object detectors), and Objectness

Explainer only introduces a negligible overhead. If 2 GPUs are avail-

able, then Base Detector andObjectness Predictor can run in parallel

in DetectorGuard, and the overall runtime of DetectorGuard can

be calculated as 𝑡
DetectorGuard

= max(𝑡
base

, 𝑡
predictor

) + 𝑡
explainer

(re-

ported in in the last column of Table 4), which is close to 𝑡
base

. Thus,

DetectorGuard has a similar runtime performance as conventional

ae
ro

pla
ne

bic
yc

le
bir

d
bo

at
bo

ttl
e

bu
s

ca
r

ca
t
ch

air co
w

din
ing

tab
le do

g
ho

rse

moto
rb

ike

pe
rso

n

po
tte

dp
lan

t

sh
ee

p
so

fa
tra

in

tvm
on

ito
r

0

10

20

30

40

50

60

70

C
R

 (%
)

0

5

10

15

20

25

30

O
bj

ec
t s

iz
e

(%
)

PCD-close
Average object size

Figure 6: Certified recalls and average object sizes for every
class in PASCAL VOC (reporting CR for close-patch; results for

far-patch and over-patch are in Appendix D)

Table 4: Per-example runtime breakdown

Base Detector Objectness Objectness DetectorGuard

(YOLO / FRCNN) Predictor Explainer (YOLO / FRCNN)

VOC 54.0ms / 80.9ms 48.5ms 0.2ms 54.2ms / 81.1ms

COCO 55.2ms / 79.4ms 65.2ms 0.3ms 65.5ms / 79.7ms

KITTI 55.8ms / 69.7ms 44.6ms 0.4ms 56.2ms / 70.1ms

object detectors in the setting of 2 GPUs. If only a single GPU is

available, the runtime can be calculated as 𝑡
base
+𝑡

predictor
+𝑡

explainer
,

which leads to a roughly 2x slow-down.

Effect of the binarizing threshold. We first vary the binariz-

ing threshold 𝑇 in ObjPredictor(·) to see how the model perfor-

mance changes. For each threshold, we report CR for three patch

threat models. We also include AP and 1-FAR to understand the

effect of different thresholds on clean performance. We report these

results in the leftmost sub-figure in Figure 7. We can see that when

the binarizing threshold is low, the CR is high because more object-

ness is retained after the binarization. However, more objectness

also makes it more likely to trigger a false alert in the clean setting,

and we can see both AP and 1-FAR are affected greatly as we de-

crease the threshold 𝑇 . Therefore, we need to balance the trade-off

between clean performance and provable robustness. In our default

parameter setting, we set𝑇 = 32 to have a FAR lower than 1% while

maintaining decent provable robustness.

Effect of window size.We study the effect of different window

sizes in the second sub-figure in Figure 7. The figure demonstrates

a similar trade-off between provable robustness and clean perfor-

mance. As we increase the window size, each window receives more

information from the input and therefore the clean performance

(AP and 1-FAR) improves. However, a large window size increases

the number of windows that are affected by the small adversarial

patch, and the provable robustness drops. In our default setting, we

set the window size to 8 to have a low FAR and good CR.

Session 11D: Data Poisoning and Backdoor Attacks in ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3187

28 30 32 34
Binarizing Threshold T

0

5

10

15

20

25

30

35

40

C
R

 (
%

)

94

95

96

97

98

99

100

A
P/

1-
FA

R
 (

%
)

CR-over-patch
CR-close-patch
CR-far-patch
AP
1-FAR

4 5 6 7 8 9 10 11 12
Window size

0

5

10

15

20

25

30

35

40

C
R

 (
%

)

94

95

96

97

98

99

100

A
P/

1-
FA

R
 (

%
)

CR-far-patch
CR-close-patch
CR-over-patch
AP
1-FAR

1 2 3 4 5
DBSCAN ε

0

5

10

15

20

25

30

35

40

C
R

 (
%

)

94

95

96

97

98

99

100

A
P/

1-
FA

R
 (

%
)

CR-over-patch
CR-close-patch
CR-far-patch
AP
1-FAR

14 16 18 20 22 24 26 28
DBSCAN min_points

0

5

10

15

20

25

30

35

40

C
R

 (
%

)

94

95

96

97

98

99

100

A
P/

1-
FA

R
 (

%
)

CR-over-patch
CR-close-patch
CR-far-patch
AP
1-FAR

Figure 7: Effect of different hyper-parameters (left to right: binarizing threshold, window size, DBSCAN 𝜖 , DBSCAN min_points)

Effect of DBSCAN parameters. We also analyze the effect of

DBSCAN parameters in DetCluster(·). DBSCAN has two param-

eters 𝜖 and min_points. A point is labeled as a core point when

there are at least min_points points within distance 𝜖 of it; all core

points and their neighbors will be labeled as clusters. We plot the

effect of 𝜖 and min_points in the right two sub-figures in Figure 7.

As we increase 𝜖 or min_points, it becomes more difficult to form

clusters. As a result, the clean performance improves because of

fewer detected clusters and fewer false alerts. However, the prov-

able robustness (CR) drops due to fewer detected clusters in the

worst-case objectness map.

6 DISCUSSION
In this section, we discuss the future work directions and defense

extension of DetectorGuard.

6.1 Future Work
Robust object detection without abstention. In this paper, we

have tailored DetectorGuard for attack detection: when no attack

is detected, the model uses conventional object detectors for predic-

tions; when an attack is detected, the model alerts and abstains from

making predictions. This type of defense is useful in application

scenarios like autonomous vehicles which can give the control back

to the driver upon detecting an attack. However, the most desirable

notion of robustness is to always make correct predictions without

any abstention. How to extend DetectorGuard for robust object

detection without abstention is an interesting direction of future

work.

Better robust image classifier. In DetectorGuard, we use the

key principals introduced in Section 2.4 to co-design the provably

robust image classifier and Objectness Predictor. However, the

imperfection of the adapted robust image classifier still limits the

performance of DetectorGuard detector. Although we can optimize

for few Clean Error 2 and tolerate a potentially high Clean Error 3,

as discussed in Section 3.4, a high Clean Error 3 results in a limited

certified recall of DetectorGuard in the adversarial setting. We note

that DetectorGuard is a general framework that is compatible with

any conventional object detector and (principles for building) provably

robust image classifier, and we expect a boost in DetectorGuard’s

performance given any future advance in robust image classification

research.

Extension to the video setting. In this paper, we focus on

object detection in the single-frame setting. It is interesting to

Algorithm 3 Auxiliary Predictor of DetectorGuard

1: procedure AuxPredictor(D, x)
2:

ˆD ← {}
3: for 𝑖 ∈ {0, 1, · · · , 𝑛𝑢𝑚_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 − 1} do
4: 𝑥min, 𝑦min, 𝑥max, 𝑦max, 𝑙 ← b← D[𝑖]
5: 𝑙 ′ ← AuxClassier(x[𝑥min : 𝑥max, 𝑦min : 𝑦max])
6: if 𝑙 ′ ≠ “background" then
7:

ˆD ← ˆD⋃{(𝑥min, 𝑦min, 𝑥max, 𝑦max, 𝑙
′)}

8: end if
9: end for
10: return ˆD
11: end procedure

extend our DetectorGuard to multiple-frame video setting. We

expect that the temporal information could be useful for robustness.

Moreover, we could perform the defense on a subset of frames to

reduce defense overhead and minimize false alerts in the clean

setting.

6.2 Defense Extension.
In this paper, we propose DetectorGuard as a provably robust de-

fense against patch hiding, or false-negative (FN), attacks. Here,

we discuss how to extend DetectorGuard for defending against

false-positive (FP) attacks. The FP attack aims to introduce incor-

rect bounding boxes in the predictions of detectors to increase

FP. We can consider FP attacks as a misclassification problem (i.e.,

a bounding box is given an incorrect label), and thus this attack

can be mitigated if we have a robust auxiliary image classifier to

re-classify the detected bounding boxes. If the auxiliary classifier

predicts a different label, we consider it as an FP attack and can

easily correct or filter out the FP boxes.

We provide the pseudocode for using an auxiliary classifier (can

be any robust image classifier) against FP attacks in Algorithm 3.

The algorithm re-classifies each detected bounding box in D as

label 𝑙 ′ (Line 5). We trust the robust auxiliary classifier and add

bounding boxes with non-background labels to
ˆD (Line 7). Finally,

the algorithm returns the filtered detection
ˆD, and we can replace

the D in Line 8 of Algorithm 1 with
ˆD to extend the original

DetectorGuard design. We note that when the patch is not present

in the FP box or it only occupies a small portion of the FP box (the

FP box is large), the auxiliary classifier is likely to correctly predict

“background" since there is no or few corrupted pixel within the

Session 11D: Data Poisoning and Backdoor Attacks in ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3188

FP box. When the patch occupies a large portion of the FP box,

we might finally output a bounding box that has a large IoU with

the patch. In this case, our object detector correctly locates the

adversarial patch but predicts a wrong label. This is an acceptable

outcome because the class label for patches is undefined. Therefore,

Algorithm 3 presents a strong empirical defense for FP attacks.

7 RELATEDWORK
7.1 Adversarial Patch Attacks
Image Classification. Unlike most adversarial examples that in-

troduce a global perturbation with a 𝐿𝑝 -norm constraint, localized

adversarial patch attacks allow the attacker to introduce arbitrary

perturbations within a restricted region. Brown et al. [4] introduced

the first adversarial patch attack against image classifiers. They

successfully realized a real-world attack by attaching a patch to the

victim object. Follow-up papers studied variants of localized attacks

against image classifiers with different threat models [21, 27, 28].

Object Detection. Localized patch attacks against object de-

tection have also received much attention in the past few years.

Liu et al. [30] proposed DPatch as the first patch attack against

object detectors in the digital domain. Lu et al. [31], Chen et al. [7],

Eykholt et al. [14], and Zhao et al. [66] proposed different physical

attacks against object detectors for traffic sign recognition. Thys et

al. [50] proposed to use a rigid physical patch to evade human de-

tection while Xu et al. [61] andWu et al. [57] generated successfully

non-rigid perturbations on T-shirt to evade detection.

7.2 Defenses against Adversarial Patches
Image Classification. Digital Watermark (DW) [18] and Local

Gradient Smoothing (LGS) [38] were the first two heuristic de-

fenses against adversarial patch attacks. Unfortunately, these de-

fenses are vulnerable to an adaptive attacker with the knowledge of

the defense. A few certified defenses [9, 24, 33, 36, 58, 59, 65] have

been proposed to provide strong provable robustness guarantee

against any adaptive attacker. Notably, PatchGuard [58] introduces

two key principles of small receptive fields and secure aggregation

and achieves state-of-the-art defense performance for image clas-

sification. In contrast, DetectorGuard aims to adapt robust image

classifiers for the more challenging robust object detection task.

Object Detection. How to secure object detection is a much

less studied area due to the complexity of this task. Saha et al. [46]

demonstrated that YOLOv2 [43] were vulnerable to adversarial

patches because detectors were using spatial context for their pre-

dictions, and then proposed a new training loss to limit the usage

of context information. To the best of our knowledge, this is the

only prior attempt to secure object detectors from patch attacks.

However, this defense is based on heuristics and thus does not

have any provable robustness. Moreover, the attack and defense are

targeted at YOLOv2 only, and it is unclear if the defense generalizes

to other detectors. In contrast, our defense has provable robustness

against any patch hiding attack considered in our threat model and

is compatible with any state-of-the-art object detectors.

7.3 Other Adversarial Example Attacks and
Defenses

ImageClassification.Attacks and defenses for classic𝐿𝑝 -bounded
adversarial examples [6, 16, 48] have been extensively studied.

Many empirical defenses [32, 34, 35, 40, 62] were proposed to miti-

gate the threat of adversarial examples, but were later found vulner-

able to adaptive attackers [1, 5, 51]. The fragility of the empirical

defenses has inspired certified defenses that are robust to any at-

tacker considered in the threat model [10, 17, 22, 37, 41, 47, 56]. We

refer interested readers to survey papers [39, 63] for more details.

Object Detection.Global perturbations against object detectors
were first studied by Xie et al. [60] and followed by researchers [54,

55] in different applications. Defenses against global 𝐿𝑝 perturba-

tions are also very challenging. Zhang et al. [64] used adversarial

training (AT) to improve empirical model robustness while Chi-

ang et al. [8] proposed the use of randomized median smoothing

(RMS) for building certifiably robust object detectors. Both defenses

suffer from poor clean performance while DetectorGuard’s clean

performance is close to state-of-the-art object detectors. On PAS-

CAL VOC, AT incurs a ~26% clean AP drop while DetectorGuard

only incurs a <1% drop.
12

On MS COCO, both AT and RMS have a

clean AP drop that is larger than 10% while ours is smaller than 1%.

We note that we do not compare robustness performance because

these two works focus on global perturbations and are orthogonal

to the objective of this paper.

We note that it is possible to extend our robust objectness pre-

dictor design and objectness explaining strategy to mitigate attacks

that use global perturbations with a bounded 𝐿∞ norm (if we have

a robust image classifier against 𝐿∞ perturbations). We leave this

as a future work direction.

8 CONCLUSION
In this paper, we propose DetectorGuard, the first general frame-

work for building provably robust object detectors against patch

hiding attacks. DetectorGuard introduces a general approach to

adapt robust image classifiers for robust object detection using an

objectness explaining strategy. Our evaluation on the PASCAL VOC,

MS COCO, and KITTI datasets demonstrates that DetectorGuard

achieves the first provable robustness against any patch hiding

attacker within the threat model and also has a high clean perfor-

mance that is close to state-of-the-art detectors.

ACKNOWLEDGMENTS
We are grateful to Gagandeep Singh for shepherding the paper

and anonymous reviewers at CCS 2021 for their valuable feedback.

We would also like to thank Vikash Sehwag, Shawn Shan, Sihui

Dai, Alexander Valtchanov, Ruiheng Chang, Jiachen Sun, and re-

searchers at Intel Labs for helpful discussions on the project and

insightful comments on the paper draft. This work was supported

in part by the National Science Foundation under grants CNS-

1553437 and CNS-1704105, the ARL’s Army Artificial Intelligence

Innovation Institute (A2I2), the Office of Naval Research Young

Investigator Award, Schmidt DataX award, and Princeton E-ffiliates

Award.

12
RMS [8] did not report results for PASCAL VOC.

Session 11D: Data Poisoning and Backdoor Attacks in ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3189

REFERENCES
[1] Anish Athalye, Nicholas Carlini, and David A. Wagner. 2018. Obfuscated Gra-

dients Give a False Sense of Security: Circumventing Defenses to Adversarial

Examples. In Proceedings of the 35th International Conference on Machine Learning

(ICML). 274–283.

[2] Alexey Bochkovskiy, Chien-YaoWang, and Hong-YuanMark Liao. 2020. YOLOv4:

Optimal Speed and Accuracy of Object Detection. arXiv preprint arXiv:2004.10934

(2020).

[3] Wieland Brendel and Matthias Bethge. 2019. Approximating CNNs with bag-of-

local-features models works surprisingly well on ImageNet. In 7th International

Conference on Learning Representations (ICLR).

[4] Tom B. Brown, Dandelion Mané, Aurko Roy, Martín Abadi, and Justin Gilmer.

2017. Adversarial patch. In Advances in neural information processing systems

workshops (NeurIPS Workshops).

[5] Nicholas Carlini and David A. Wagner. 2017. Adversarial Examples Are Not

Easily Detected: Bypassing Ten Detection Methods. In Proceedings of the 10th

ACM Workshop on Artificial Intelligence and Security (AISec@CCS). 3–14.

[6] Nicholas Carlini and David A. Wagner. 2017. Towards Evaluating the Robustness

of Neural Networks. In 2017 IEEE Symposium on Security and Privacy (S&P).

39–57.

[7] Shang-Tse Chen, Cory Cornelius, Jason Martin, and Duen Horng Polo Chau. 2018.

Shapeshifter: Robust physical adversarial attack on faster r-cnn object detector.

In Joint European Conference on Machine Learning and Knowledge Discovery in

Databases. Springer, 52–68.

[8] Ping-yeh Chiang, Michael Curry, Ahmed Abdelkader, Aounon Kumar, John

Dickerson, and Tom Goldstein. 2020. Detection as Regression: Certified Object

Detection with Median Smoothing. In Advances in Neural Information Processing

Systems (NeurIPS) 2020, Vol. 33.

[9] Ping-Yeh Chiang, Renkun Ni, Ahmed Abdelkader, Chen Zhu, Christoph Studor,

and Tom Goldstein. 2020. Certified defenses for adversarial patches. In 8th

International Conference on Learning Representations (ICLR).

[10] Jeremy M. Cohen, Elan Rosenfeld, and J. Zico Kolter. 2019. Certified Adversarial

Robustness via Randomized Smoothing. In Proceedings of the 36th International

Conference on Machine Learning (ICML). 1310–1320.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. 2009. Ima-

geNet: A large-scale hierarchical image database. In 2009 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR). 248–255.

[12] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-

based algorithm for discovering clusters in large spatial databases with noise.. In

Kdd, Vol. 96. 226–231.

[13] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John M. Winn, and

Andrew Zisserman. 2010. The Pascal Visual Object Classes (VOC) Challenge.

International Journal of Computer Vision 88, 2 (2010), 303–338.

[14] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Florian

Tramer, Atul Prakash, Tadayoshi Kohno, and Dawn Song. 2018. Physical ad-

versarial examples for object detectors. In 12th USENIX Workshop on Offensive

Technologies (WOOT 18).

[15] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. 2013. Vision

meets robotics: The kitti dataset. The International Journal of Robotics Research

32, 11 (2013), 1231–1237.

[16] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and

Harnessing Adversarial Examples. In 3rd International Conference on Learning

Representations (ICLR).

[17] Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli

Qin, Jonathan Uesato, Relja Arandjelovic, Timothy Arthur Mann, and Pushmeet

Kohli. 2019. Scalable Verified Training for Provably Robust Image Classification.

In 2019 IEEE/CVF International Conference on Computer Vision (ICCV). 4841–4850.

[18] Jamie Hayes. 2018. On Visible Adversarial Perturbations & Digital Watermarking.

In 2018 IEEE Conference on Computer Vision and Pattern Recognition Workshops

(CVPR Workshops). 1597–1604.

[19] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. 2017. Mask

R-CNN. In IEEE International Conference on Computer Vision, (ICCV 2017). IEEE

Computer Society, 2980–2988.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). 770–778.

[21] Danny Karmon, Daniel Zoran, and Yoav Goldberg. 2018. LaVAN: Localized and

Visible Adversarial Noise. In Proceedings of the 35th International Conference on

Machine Learning (ICML). 2512–2520.

[22] Mathias Lécuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman

Jana. 2019. Certified Robustness to Adversarial Examples with Differential Privacy.

In 2019 IEEE Symposium on Security and Privacy (S&P). 656–672.

[23] Mark Lee and Zico Kolter. 2019. On physical adversarial patches for object

detection. arXiv preprint arXiv:1906.11897 (2019).

[24] Alexander Levine and Soheil Feizi. 2020. (De)randomized Smoothing for Certifi-

able Defense against Patch Attacks. arXiv preprint arXiv:2002.10733 (2020).

[25] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. 2017.

Focal Loss for Dense Object Detection. In IEEE International Conference on Com-

puter Vision, (ICCV) 2017. IEEE Computer Society, 2999–3007.

[26] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common

Objects in Context. In European Conference on Computer Vision (ECCV), Vol. 8693.

Springer, 740–755.

[27] Aishan Liu, Xianglong Liu, Jiaxin Fan, Yuqing Ma, Anlan Zhang, Huiyuan Xie,

and Dacheng Tao. 2019. Perceptual-Sensitive GAN for Generating Adversarial

Patches. In The 33rd AAAI Conference on Artificial Intelligence, (AAAI) 2019. AAAI

Press, 1028–1035.

[28] Aishan Liu, Jiakai Wang, Xianglong Liu, Bowen Cao, Chongzhi Zhang, and Hang

Yu. 2020. Bias-Based Universal Adversarial Patch Attack for Automatic Check-

Out. In European conference on computer vision (ECCV), Vol. 12358. Springer,

395–410.

[29] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed,

Cheng-Yang Fu, and Alexander C. Berg. 2016. SSD: Single Shot MultiBox Detector.

In European conference on computer vision (ECCV), Vol. 9905. Springer, 21–37.

[30] Xin Liu, Huanrui Yang, Ziwei Liu, Linghao Song, Yiran Chen, and Hai Li. 2019.

DPATCH: An Adversarial Patch Attack on Object Detectors. In AAAI Conference

on Artificial Intelligence Workshop (AAAI workshop) 2019, Vol. 2301.

[31] Jiajun Lu, Hussein Sibai, and Evan Fabry. 2017. Adversarial examples that fool

detectors. arXiv preprint arXiv:1712.02494 (2017).

[32] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and

Adrian Vladu. 2018. Towards Deep Learning Models Resistant to Adversarial

Attacks. In 6th International Conference on Learning Representations (ICLR).

[33] Michael McCoyd, Won Park, Steven Chen, Neil Shah, Ryan Roggenkemper, Min-

june Hwang, Jason Xinyu Liu, and DavidWagner. 2020. Minority Reports Defense:

Defending Against Adversarial Patches. arXiv preprint arXiv:2004.13799 (2020).

[34] Dongyu Meng and Hao Chen. 2017. MagNet: A Two-Pronged Defense against

Adversarial Examples. In Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security (CCS). 135–147.

[35] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. 2017.

On Detecting Adversarial Perturbations. In 5th International Conference on Learn-

ing Representations (ICLR).

[36] Jan Hendrik Metzen and Maksym Yatsura. 2021. Efficient Certified Defenses

Against Patch Attacks on Image Classifiers. In 9th International Conference on

Learning Representations (ICLR). https://openreview.net/forum?id=hr-3PMvDpil

[37] Matthew Mirman, Timon Gehr, and Martin T. Vechev. 2018. Differentiable

Abstract Interpretation for Provably Robust Neural Networks. In Proceedings of

the 35th International Conference on Machine Learning (ICML). 3575–3583.

[38] Muzammal Naseer, Salman Khan, and Fatih Porikli. 2019. Local Gradients Smooth-

ing: Defense Against Localized Adversarial Attacks. In IEEE Winter Conference

on Applications of Computer Vision (WACV). 1300–1307.

[39] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael P Wellman.

2018. SoK: Security and privacy in machine learning. In 2018 IEEE European

Symposium on Security and Privacy (EuroS&P). 399–414.

[40] Nicolas Papernot, Patrick D. McDaniel, Xi Wu, Somesh Jha, and Ananthram

Swami. 2016. Distillation as a Defense to Adversarial Perturbations Against Deep

Neural Networks. In IEEE Symposium on Security and Privacy (S&P). 582–597.

[41] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. 2018. Certified Defenses

against Adversarial Examples. In 6th International Conference on Learning Repre-

sentations (ICLR).

[42] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You

only look once: Unified, real-time object detection. In Proceedings of the IEEE

conference on computer vision and pattern recognition. 779–788.

[43] Joseph Redmon and Ali Farhadi. 2017. YOLO9000: better, faster, stronger. In

Proceedings of the IEEE conference on computer vision and pattern recognition.

7263–7271.

[44] Joseph Redmon and Ali Farhadi. 2018. Yolov3: An incremental improvement.

arXiv preprint arXiv:1804.02767 (2018).

[45] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:

Towards real-time object detection with region proposal networks. In Advances

in neural information processing systems. 91–99.

[46] Aniruddha Saha, Akshayvarun Subramanya, Koninika Patil, and Hamed Pir-

siavash. 2020. Role of Spatial Context in Adversarial Robustness for Object

Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops (CVPR Workshops). 784–785.

[47] Hadi Salman, Jerry Li, Ilya P. Razenshteyn, Pengchuan Zhang, Huan Zhang,

Sébastien Bubeck, and Greg Yang. 2019. Provably Robust Deep Learning via

Adversarially Trained Smoothed Classifiers. In Annual Conference on Neural

Information Processing Systems 2019 (NeurIPS). 11289–11300.

[48] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian J. Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks.

In 2nd International Conference on Learning Representations (ICLR).

[49] Mingxing Tan, Ruoming Pang, and Quoc V Le. 2020. EfficientDet: Scalable and

Efficient Object Detection. In 2020 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR 2020). 10781–10790.

Session 11D: Data Poisoning and Backdoor Attacks in ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3190

https://openreview.net/forum?id=hr-3PMvDpil

[50] Simen Thys, Wiebe Van Ranst, and Toon Goedemé. 2019. Fooling automated

surveillance cameras: adversarial patches to attack person detection. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern RecognitionWorkshops.

[51] Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry.

2020. On adaptive attacks to adversarial example defenses. arXiv preprint

arXiv:2002.08347 (2020).

[52] Abdul Vahab,Maruti S Naik, Prasanna G Raikar, and Prasad SR. 2019. Applications

of Object Detection System. International Research Journal of Engineering and

Technology (IRJET) 6, 4 (2019), 4186–4192.

[53] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. 2020. Scaled-

YOLOv4: Scaling Cross Stage Partial Network. arXiv preprint arXiv:2011.08036

(2020).

[54] Derui Wang, Chaoran Li, Sheng Wen, Xiaojun Chang, Surya Nepal, and Yang

Xiang. 2019. Daedalus: Breaking non-maximum suppression in object detection

via adversarial examples. arXiv (2019), arXiv–1902.

[55] Xingxing Wei, Siyuan Liang, Ning Chen, and Xiaochun Cao. 2019. Transferable

Adversarial Attacks for Image and Video Object Detection. In Proceedings of the

Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI) 2019,

Sarit Kraus (Ed.). ijcai.org, 954–960.

[56] Eric Wong and J. Zico Kolter. 2018. Provable Defenses against Adversarial

Examples via the Convex Outer Adversarial Polytope. In Proceedings of the 35th

International Conference on Machine Learning (ICML). 5283–5292.

[57] Zuxuan Wu, Ser-Nam Lim, Larry S. Davis, and Tom Goldstein. 2020. Making

an Invisibility Cloak: Real World Adversarial Attacks on Object Detectors. In

European Conference on Computer Vision (ECCV) 2020, Vol. 12349. 1–17.

[58] Chong Xiang, Arjun Nitin Bhagoji, Vikash Sehwag, and Prateek Mittal. 2021.

PatchGuard: A Provably Robust Defense against Adversarial Patches via Small

Receptive Fields and Masking. In 30th USENIX Security Symposium (USENIX

Security).

[59] Chong Xiang and Prateek Mittal. 2021. PatchGuard++: Efficient Provable Attack

Detection against Adversarial Patches. In ICLR 2021 Workshop on Security and

Safety in Machine Learning Systems.

[60] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan L.

Yuille. 2017. Adversarial Examples for Semantic Segmentation and Object De-

tection. In IEEE International Conference on Computer Vision (ICCV) 2017. IEEE

Computer Society, 1378–1387.

[61] Kaidi Xu, Gaoyuan Zhang, Sijia Liu, Quanfu Fan, Mengshu Sun, Hongge Chen,

Pin-Yu Chen, Yanzhi Wang, and Xue Lin. 2020. Adversarial T-Shirt! Evading

Person Detectors in a Physical World. In European Conference on Computer Vision

(ECCV) 2020, Vol. 12350. 665–681.

[62] Weilin Xu, David Evans, and Yanjun Qi. 2018. Feature Squeezing: Detecting

Adversarial Examples in Deep Neural Networks. In 25th Annual Network and

Distributed System Security Symposium (NDSS).

[63] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. 2019. Adversarial examples:

Attacks and defenses for deep learning. IEEE transactions on neural networks and

learning systems 30, 9 (2019), 2805–2824.

[64] Haichao Zhang and Jianyu Wang. 2019. Towards Adversarially Robust Object

Detection. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV)

2019. IEEE, 421–430.

[65] Zhanyuan Zhang, Benson Yuan, Michael McCoyd, and David Wagner. 2020.

Clipped BagNet: Defending Against Sticker Attacks with Clipped Bag-of-features.

In 3rd Deep Learning and Security Workshop (DLS).

[66] Yue Zhao, Hong Zhu, Ruigang Liang, Qintao Shen, Shengzhi Zhang, and Kai

Chen. 2019. Seeing isn’t Believing: Towards More Robust Adversarial Attack

Against Real World Object Detectors. In Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security. 1989–2004.

A OBJECT SIZE AND PATCH SIZE
Recall that in Section 5.4, we use a 32×32 patch on 416×416 (or

224×740) images to evaluate the provable robustness. In this section,

we provide additional details of object sizes and patch sizes in

PASCAL VOC, MS COCO, and KITTI datasets.

Small objects are the majority of all three datasets. In Fig-

ure 8, we plot the histogram of object sizes (in the percentage of

pixels) in the test/validation sets of PASCAL VOC, MS COCO, and

KITTI. As shown in the plots, small, or even tiny, objects are the

majority of three datasets. A 32×32 patch takes up 0.6% pixels of a

416×416 (or 224×740) image, and our further analysis shows that

15.2% objects of PASCAL VOC are smaller than 0.6% image pixels;

44.5% of MS COCO and 44.6% KITTI objects are smaller than 0.6%.

Moreover, more than 36.5% of PASCAL VOC objects, more than

66.3% of MS COCO objects, and 75.9% KITTI objects are smaller

than a 64×64 square. These numbers explain why the absolute num-

bers of certified recall in Table 3 are low. In Figure 9, we further

provide visualization of a 32×32 patch on the 416×416 image to

demonstrate the challenge of perfect robust detection even when a

small patch is presented. In the left two examples, the person and

the cow are completely blocked by the adversarial patch and thus

are unrecognizable. In the rightmost example, the head of the dog

is patched and it is even hard for humans to determine if it is a dog

or cat.

Additional evaluation results for different patch sizes. In Fig-

ure 10, we vary the patch size to see how the provable robustness is

affected given different attacker capabilities (i.e, patch sizes). If we

consider a smaller patch of 8×8 pixels, we can have a 2.0% higher CR

for close-patch, and a 2.8% higher CR for over-patch compared with

our CRs for a 32×32 patch. Furthermore, we note that in the far-

patch model, the patch size has a limited influence on the provable

robustness. From Figure 10, We can also see that the CR decreases

as the patch size increases. This analysis demonstrates the limit of

DetectorGuard as well the challenge of robust object detection with

larger patch sizes. We aim to push this limit further in our future

work.

B ADDITIONAL DISCUSSION OF ROBUST
CLASSIFIER IMPLEMENTATION

As introduced in Section 2.4, state-of-the-art provable robust image

classifiers [36, 58] 1) use DNN with small receptive fields to bound

the number of corrupted features and then 2) do secure aggregation

on the partially corrupted feature map for robust classification. In

DetectorGuard, we choose BagNet [3] for small receptive fields and

feature clipping for secure aggregation. In this section, we provide

additional details of BagNet and clipping aggregation. Furthermore,

we discuss alternative aggregation mechanisms and implement

robust masking [58] to demonstrate the generality of our Detec-

torGuard framework.

BagNet [3]. BagNet was originally proposed for interpretable ma-

chine learning. It inherits the high-level architecture of ResNet-

50 [20] and replaces 3x3 convolution kernels with 1x1 ones to

reduce the receptive field size. The authors designed three Bag-

Net architectures with a small receptive field of 9×9, 17×17, and
33×33, in contrast to ResNet-50 having a receptive field of 483×483.

Session 11D: Data Poisoning and Backdoor Attacks in ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3191

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

0.
22

0.
24

0.
26

0.
28

0.
30

0.
32

0.
34

0.
36

0.
38

0.
40

0.
42

0.
44

0.
46

0.
48

Object size (%)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
%

 O
bj

ec
ts

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

0.
22

0.
24

0.
26

0.
28

0.
30

0.
32

0.
34

0.
36

0.
38

0.
40

0.
42

0.
44

0.
46

0.
48

Object size (%)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

%
 O

bj
ec

ts

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

0.
22

0.
24

0.
26

0.
28

0.
30

0.
32

0.
34

0.
36

0.
38

0.
40

0.
42

0.
44

0.
46

0.
48

Object size (%)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

%
 O

bj
ec

ts

Figure 8: Histogram of object sizes (left: PASCAL VOC; middle: MS COCO; right: KITTI)

Table 5: Comparison between masking-based and clipping-based defenses of DetectorGuard (using a perfect clean detector)

clipping-based DetectorGuard masking-based DetectorGuard

AP FAR CR-far CR-close CR-over AP FAR CR-far CR-close CR-over

PASCAL VOC 99.3% 0.9% 28.6% 20.7% 8.3% 98.9% 1.1% 26.2% 17.2% 4.7%

MS COCO 99.0% 1.2% 11.5% 7.0% 2.2% 98.7% 1.4% 11.4% 5.4% 1.6%

KITTI 99.0% 1.5% 31.6% 11.0% 2.1% 99.4% 1.1% 17.4% 4.9% 1.2%

Figure 9: Visualization of patches on small objects (upper:
original 416×416 images; lower: images with a 32×32 black
patch)

Brendel and Bethge showed that BagNet-17 with a 17×17 recep-
tive field can achieve a similar top-5 accuracy as AlexNet [3]. In

recent works [58, 65] on adversarial patch defense, BagNet has

been adopted to bound the number of corrupted features to achieve

robustness.

Clipping. In addition to the use of CNNswith small receptive fields,

we also need a secure aggregation mechanism to ensure that a small

number of corrupted features only have a limited influence on the

final prediction/classification. Recall that in our provable analysis

(Algorithm 2; Section 4), we need the lower bound of classification

logits to reason about the worst-case objectness map output. In

order to impose such a lower bound, we clip all feature values into

[0,∞] such that an adversarial patch cannot decrease the values of

10 20 30 40 50 60 70
Patch size (px)

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5
C

R
 (%

)
CR-over-patch
CR-close-patch

Figure 10: Effect of patch size on provable robustness of De-
tectorGuard with a perfect clean detector

object classes significantly. It is easy to calculate the lower bound

of classification logits: we only need to zero out all features within

the patch location(s) and aggregate the remaining features.

Alternative aggregation. We propose DetectorGuard as a gen-

eral framework that is compatible with any provably robust image

classification technique. To further support this claim, we imple-

ment Objectness Predictor using a PatchGuard classifier with robust

masking secure aggregation [58], which achieves the best clean

classification accuracy and provable robust classification accuracy

on high-resolution ImageNet [11] dataset. We compare the perfor-

mance of defenses with clipping-base and robust-making-based

secure aggregation in Table 5. As we can see from the table, two

defenses achieve high clean performance and non-trivial provable

robustness, demonstrating that DetectorGuard is compatible with

different provably robust image classifiers. We note that we do not

Session 11D: Data Poisoning and Backdoor Attacks in ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3192

choose robust masking in our main evaluation because 1) it has a

looser lower bound compared with clipping while 2) it introduces a

slightly higher computation overhead. Furthermore, robustmasking

of PatchGuard only has limited robustness against the multiple-

patch attacker. In contrast, as demonstrated in Appendix C, the

clipping-based DetectorGuard can handle multiple patches.

C DISCUSSION ON MULTIPLE PATCHES
In our main body, we focus on the one-patch threat model be-

cause building a high-performance provably robust object detector

against a single-patch attacker is an unresolved and open research

question. In this section, we discuss DetectorGuard’s robustness

against multiple patches.

Quantitative analysis of clipping-basedDetectorGuard against
multiple patches. One advantage of the clipping-based robust

classifier is its robustness against multiple patches. As long as the

sub-procedure RCH-PA(·) of the clipping-based robust classifier

can return non-trivial bounds of classification logits, we can di-

rectly plug the sub-procedure into our Algorithm 2 to analyze the

robustness against multiple patches.

We note that despite the theoretical possibility to defend against

attacks with multiple patches, its quantitative evaluation for prov-

able robustness is extremely expensive due to the large number of

all possible combinations of multiple patch locations. Consider a

32×32 patch on a 416×416 image. There are 148k possible patch

locations (or 1.6k feature-space locations). If we are using 2 patches

of the same size, the number of all location combinations becomes

higher than 10
10

(or 1.4M feature-space location combinations)!

In order to provide a proof-of-concept for defense against multi-

ple patches, we perform an evaluation on 50 PASCAL VOC images

using a subset of patch locations (1/16 of all location combinations).

The results are reported in Table 6. As shown in the table, Detec-

torGuard is able to defend against multiple patches. Moreover, if we

compare provable robustness against one 32×32 (1024 px) and two

24×24 patches (1152 px), which have a similar number of pixels, we

can find that using two smaller patches (two 24×24 patches) is only
more effective for over-patch threat model but not for far-patch and

close-patch threat models. This observation leads to the following

remark.

Remark: multiple patches need to be close to each other and
the victim object for a strongermalicious effect. Unlike image

classification where the classifier makes predictions based on all

image pixels (or extracted features), an object detector predicts

each object largely based on the pixels (or features) around the

object. As a result, patches that are far away from the object only

have a limited malicious effect, and this claim is supported by

our evaluation results in Section 5.4 (i.e., DetectorGuard is more

effective against the far-patch threat model). Therefore, multiple

patches should be close to the victim object and hence close to each

other for a more effective attack. In this case, the multiple-patch

threat model becomes similar to the one-patch model since patches

are close to each other and can merge into one single patch. That is,

we can use one single patch of a larger size to cover all perturbations

in multiple small patches.

Table 6: Provable robustness (CR) of DetectorGuard (using a
perfect clean detector) against multiple patches (evaluated
on 50 PASCAL VOC images with a subset of patch locations)

far-patch close-patch over-patch

one 32×32 patch (1024 px) 27.3% 22.4% 8.7%

two 32×32 patches (2048 px) 27.3% 18.0% 3.1%

two 24×24 patches (1152 px) 27.3% 18.6% 3.1%

two 16×16 patches (512 px) 27.3% 19.3% 5.0%

D EXPERIMENT RESULTS FOR DIFFERENT
THREAT MODELS AND DATASETS

In this section, we include additional plots for per-class analysis as

well as DetectorGuard’s clean/provable performance on MS COCO

and KITTI. The observation is similar to that in Section 5.

Per-class Analysis. In Figure 11, we provide additional per-class

analysis results. The observation is similar to Figure 6 in Section 5.

Additional plots for MS COCO and KITTI. We plot the clean

performance and the provable robustness for MS COCO in Fig-

ure 12 and Figure 13, and for KITTI in Figure 14 and Figure 15.

The observation is similar to that on PASCAL VOC (Figure 4 and

Figure 5).

E JUSTIFICATION FOR DEFENSE OBJECTIVE
In Section 2.3, we allow DetectorGuard to only detect part of the

object or to trigger an attack alert on adversarial images. In this

section, we discuss why this is a reasonable defense objective and

how to extend DetectorGuard for a stronger notion of robustness.

Partially detected bounding box. We note that we allow the

patch to be anywhere, even over the salient object. As a result, the

patch likely covers a large portion of the object (visualization exam-

ples include the right part of Figure 1 and Figure 9; see Appendix A

for more details of object sizes and patch sizes). Therefore, it is

reasonable to allow the model to output a smaller bounding box. If

we consider the application scenario of autonomous vehicles (AV),

partially detecting a pedestrian or a car is already sufficient for an

AV to make a correct decision.

Moreover, we can tune hyper-parameters such as binarizing

threshold 𝑇 to increase the objectness in the output of Objectness

Predictor. More objectness will force the adversary to let Base De-

tector predict a larger bounding box in order to reduce unexplained

objectness that will otherwise lead to an attack alert. However,

we note that more objectness also makes it more likely for Detec-

torGuard to trigger a false alert on clean images. This trade-off

between robustness and clean performance should be carefully

balanced.

F ADDITIONAL DISCUSSION ON “FREE"
PROVABLE ROBUSTNESS

As shown in our evaluation, DetectorGuard achieves the first prov-

able robustness for object detectors again patch hiding attacks at a

negligible cost of clean performance. Intriguingly, we have demon-

strated that we can use a module with limited clean performance

(i.e., provably robust image classifier in Objectness Predictor) to

build a provably robust system with high clean performance (i.e.,

Session 11D: Data Poisoning and Backdoor Attacks in ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3193

ae
ro

pla
ne

bic
yc

le
bir

d
bo

at
bo

ttl
e

bu
s

ca
r

ca
t
ch

air co
w

din
ing

tab
le do

g
ho

rse

moto
rb

ike

pe
rso

n

po
tte

dp
lan

t

sh
ee

p
so

fa
tra

in

tvm
on

ito
r

0

10

20

30

40

50

60

70

C
R

 (%
)

0

5

10

15

20

25

30

O
bj

ec
t s

iz
e

(%
)

PCD-far
Average object size

ae
ro

pla
ne

bic
yc

le
bir

d
bo

at
bo

ttl
e

bu
s

ca
r

ca
t
ch

air co
w

din
ing

tab
le do

g
ho

rse

moto
rb

ike

pe
rso

n

po
tte

dp
lan

t

sh
ee

p
so

fa
tra

in

tvm
on

ito
r

0

10

20

30

40

50

60

70

C
R

 (%
)

0

5

10

15

20

25

30

O
bj

ec
t s

iz
e

(%
)

PCD-close
Average object size

ae
ro

pla
ne

bic
yc

le
bir

d
bo

at
bo

ttl
e

bu
s

ca
r

ca
t
ch

air co
w

din
ing

tab
le do

g
ho

rse

moto
rb

ike

pe
rso

n

po
tte

dp
lan

t

sh
ee

p
so

fa
tra

in

tvm
on

ito
r

0

10

20

30

40

50

60

70

C
R

 (%
)

0

5

10

15

20

25

30

O
bj

ec
t s

iz
e

(%
)

PCD-over
Average object size

Figure 11: Per-class analysis of PASCAL VOC (left: far-patch; middle: close-patch; right: over-patch)

10 20 30 40 50 60 70 80 90 100
Recall (%)

0

10

20

30

40

50

60

70

80

90

100

Pr
ec

is
io

n
/ F

AR
 (%

)

Precision-PCD-vanilla
Precision-PCD-defended
Precision-YOLO-vanilla
Precision-YOLO-defended
Precision-FRCNN-vanilla
Precision-FRCNN-defended
FAR-PCD-defended
FAR-YOLO-defended
FAR-FRCNN-defended

Figure 12: Clean performance of DetectorGuard on MS
COCO

10 20 30 40 50 60 70 80 90 100
Clean Recall (%)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

C
er

tif
ie

d
R

ec
al

l (
%

)

PCD-far
PCD-close
PCD-over
YOLO-far
YOLO-close
YOLO-over
FRCNN-far
FRCNN-close
FRCNN-over

Figure 13: Provable robustness of DetectorGuard on MS
COCO

DetectorGuard). In this section, we provide additional discussion

on this intriguing behavior.

One major difference between image classification and object

detection is their type of error. For an image classifier, the only

error is misclassification. In contrast, an object detector can have

10 20 30 40 50 60 70 80 90 100
Recall (%)

0

10

20

30

40

50

60

70

80

90

100

Pr
ec

is
io

n
/ F

AR
 (%

)

Precision-PCD-vanilla
Precision-PCD-defended
Precision-YOLO-vanilla
Precision-YOLO-defended
Precision-FRCNN-vanilla
Precision-FRCNN-defended
FAR-PCD-defended
FAR-YOLO-defended
FAR-FRCNN-defended

Figure 14: Clean performance of DetectorGuard on KITTI

10 20 30 40 50 60 70 80 90 100
Clean Recall (%)

5

10

15

20

25

30

C
er

tif
ie

d
R

ec
al

l (
%

)

PCD-far
PCD-close
PCD-over
YOLO-far
YOLO-close
YOLO-over
FRCNN-far
FRCNN-close
FRCNN-over

Figure 15: Provable robustness of DetectorGuard on KITTI

two types of errors, false-negative (FN; missing object) and false-

positive (FP; predicting incorrect objects). Intriguingly, despite the

difficulty to have a low FN and a low FP at the same time, it is

easy to have a low FN (but with a potentially high FP) or a low FP

(but with a potentially high FN). For example, if an object detector

predicts all possible bounding boxes, the FN is zero (all possible

boxes are retrieved, including the ground-truth box) but the FP is

extremely high (most bounding boxes are incorrect). This intrinsic

Session 11D: Data Poisoning and Backdoor Attacks in ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3194

Clean images Adversarial images The output of robust

Objectness Predictor

Worst-case objectness

map prediction

Figure 16: Visualization of DetectorGuard. From left to right: 1) clean images – conventional detectors correct detect all objects; 2)

adversarial images with patches (marked with red dash boxes) – conventional detectors miss all objects; 3) objectness map generated on these

adversarial images – Objectness Predictor robustly predicts high objectness and eventually leads to an attack alert; 4) worst-case objectness

map – DetectorGuard can certify the provable robustness of these objects. Note that visualizations in this figure only consider one random

patch location for each image, while results reported in Section 5 consider all possible locations and attack strategies within the threat model.

property of the object detection task allows us to achieve “free"

provable robustness.

Recall that in the clean setting, our design of prediction match-

ing strategy (Section 3.4) enables DetectorGuard to tolerate FN of

Objectness Predictor (i.e., Clean Error 3: predicts objects as back-

ground). Therefore, we can safely and easily optimize for a low FP

(i.e., Clean Error 2: predicts background as objects) to achieve a high

clean performance.

G PIXEL-SPACE AND FEATURE-SPACE
WINDOWS

Recall that in Section 3.3, we used a BagNet to extract a feature

map for the entire image and perform robust window classification

in the feature space. This design allows us to reuse the extracted

feature map and reduce computational overhead. In this section,

we discuss how to map the pixel-space bounding box to the feature

space.

Box mapping. For each pixel-space box (𝑥min, 𝑦min, 𝑥max, 𝑦max),
we calculate the feature-space coordinate 𝑥 ′

min
= ⌊(𝑥min − r +

1)/s⌋, 𝑦′
min

= ⌊(𝑦min − r + 1)/s⌋, 𝑥 ′
max

= ⌊𝑥max/s⌋, 𝑦′max
= ⌊𝑦max/s⌋,

where r, s are the size and stride of the receptive field size. The

new feature-space coordinates indicate all features that are affected

by the pixels within the pixel-space bounding box. We note that

the mapping equation might be slightly different given different

implementation of CNNs with small receptive fields. In our BagNet

implementation, we have r = 33, s = 8.

H VISUALIZATION OF DETECTORGUARD
In this section, we give a simple visualization for DetectorGuard

with YOLOv4 as Base Detector (Figure 16). To start with, we select

three random images with larger objects and visualize the detection

output of YOLOv4 in the first column. Second, we pick a random

patch location on the image and perform an empirical patch hid-

ing attack. The attack aims to optimize the pixel values within the

adversarial patch to minimize the objectness confidence score of ev-

ery possible bounding box prediction, which is a common strategy

used in relevant literature [57, 61]. As shown in the second column,

our patch attacks are successful, and YOLOv4 fails to detect any

objects. Note that we use red dash boxes to illustrate the patch

locations, and they are not the outputs of YOLOv4. Third, we feed

this adversarial image to Objectness Predictor, and we visualize

the predicted objectness maps in the third column. As shown in

the figure, although the adversarial patch makes YOLOv4 miss all

objects, Objectness Predictor still robustly outputs high objectness.

Session 11D: Data Poisoning and Backdoor Attacks in ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3195

As discussed in Section 3, DetectorGuard will eventually issue an

attack alert. Fourth, we reason about the worst-case objectness map

prediction for these particular random patch locations used in the

visualization, and plot the worst-case output in the fourth column.

As shown in our visualization, Objectness Predictor can still output

high objectness in the worst case. Therefore, we can certify the

robustness of DetectorGuard for this patch location.

Finally, wewant to note that this appendix is merely a simple case

study for an empirical patch attack at one single random location

of each image. In contrast, robustness results reported in Section 5

are derived from Algorithm 2 and Theorem 1 holds for any possible

patch attack strategy at any valid patch location.

Session 11D: Data Poisoning and Backdoor Attacks in ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3196

	Abstract
	1 Introduction
	2 Background and Problem Formulation
	2.1 Object Detection
	2.2 Attack Formulation
	2.3 Defense Formulation
	2.4 Provably Robust Image Classification

	3 DetectorGuard
	3.1 Defense Overview
	3.2 Instantiating Robust Image Classifiers
	3.3 Objectness Predictor
	3.4 Objectness Explainer

	4 End-to-end Provable Robustness
	5 Evaluation
	5.1 Dataset and Model
	5.2 Metric
	5.3 Clean Performance
	5.4 Provable Robustness
	5.5 Detailed Analysis of DetectorGuard

	6 Discussion
	6.1 Future Work
	6.2 Defense Extension.

	7 Related Work
	7.1 Adversarial Patch Attacks
	7.2 Defenses against Adversarial Patches
	7.3 Other Adversarial Example Attacks and Defenses

	8 Conclusion
	Acknowledgments
	References
	A Object Size and Patch Size
	B Additional Discussion of Robust Classifier Implementation
	C Discussion on Multiple Patches
	D Experiment Results for Different Threat Models and Datasets
	E Justification for Defense Objective
	F Additional Discussion on ``Free" Provable Robustness
	G Pixel-space and Feature-space Windows
	H Visualization of DetectorGuard

