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Abstract

Marginal structural models (MSMs) are becoming increasingly popular as
a tool to make causal inference from longitudinal data. Unlike standard regres-
sion models, MSMs can adjust for time-dependent observed confounders while
avoiding the bias due to the adjustment for covariates affected by the treat-
ment. Despite their theoretical appeal, a main practical difficulty of MSMs is
the required estimation of inverse probability weights. Previous studies have
found that MSMs can be highly sensitive to misspecification of treatment as-
signment model even when the number of time periods is moderate. To address
this problem, we generalize the Covariate Balancing Propensity Score (CBPS)
methodology of Imai and Ratkovic (2014) to longitudinal analysis settings. The
CBPS estimates the inverse probability weights such that the resulting covariate
balance is improved. Unlike the standard approach, the proposed methodol-
ogy incorporates all covariate balancing conditions across multiple time periods.
Since the number of these conditions grows exponentially as the number of time
period increases, we also propose a low-rank approximation in order to ease the
computational burden. Our simulation and empirical studies suggest that the
CBPS significantly improves the empirical performance of MSMs by making
the treatment assignment model more robust to misspecification. Open-source
software is available for implementing the proposed methods.
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1 Introduction

Since its introduction by Robins (1999), marginal structural models (MSMs) have

quickly gained popularity among applied researchers in biomedical and other fields as

a tool for making causal inference from longitudinal data in observational studies. The

paper that popularized MSMs in the field of epidemiology has more than 1,000 Google

Citations as of March 2014 (Robins et al., 2000) and the method has been introduced

to other disciplines (e.g., Blackwell, 2013). As explained by Robins et al. (2000),

when estimating the causal effects of time-varying treatments, standard regression

models fail to appropriately adjust for time-dependent observed confounders that are

affected by previous treatments. In contrast, MSMs allow one to estimate the causal

effects of different treatment sequences while avoiding this post-treatment bias.

Despite their theoretical appeal, a main practical difficulty of MSMs is the required

estimation of inverse probability weights. Using simulation and empirical studies, a

number of previous studies have found that MSMs can be highly sensitive to mis-

specification of treatment assignment model even when the number of time periods

is moderate (e.g., Cole and Hernán, 2008; Howe et al., 2011; Kang and Schafer, 2007;

Lefebvre et al., 2008; Mortimer et al., 2005). The effect of misspecification can prop-

agate across time periods because the inverse probability weights used for MSMs are

typically based on the product of propensity score estimated separately at each time

period.

To address this problem, we introduce the Covariate Balancing Propensity Score

(CBPS) methodology as an alternative estimation method for inverse probability

weights of MSMs. The CBPS was first introduced by Imai and Ratkovic (2014)

to improve the estimation of propensity score in the cross section settings. In this

paper, we generalize the CBPS methodology to longitudinal data. In the cross-
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sectional case, inverse probability weights reduce confounding bias through balancing

pre-treatment covariates between treated and untreated observations. We extend this

logic to the longitudinal setting. We show that, at every time period, MSM weights

must balance across all potential future treatment assignments, conditional on the

past treatment assignment. Therefore, unlike the standard approach, the proposed

methodology incorporates all covariate balancing conditions when estimating inverse

probability weights. We then use these balance conditions as estimating equations.

The resultant weights are robust in the sense that they improve covariate balance

even when the treatment assignment model is misspecified.

After briefly reviewing MSMs and their assumptions (Section 2), we describe the

proposed CBPS methodology (Section 3). We then conduct simulation studies to

show that the CBPS can dramatically improve the empirical performance of MSMs

when the treatment assignment model is misspecified (Section 4). In addition, we

present an empirical application to show that the CBPS achieves a greater degree

of covariate balance than the standard approach and yields substantively different

results (Section 5). The final section gives concluding remarks and discusses future

research agenda.

2 A Review of Marginal Structural Models

In this section, we briefly review the marginal structural models (MSMs) of Robins

(1999). See Robins et al. (2000) and Blackwell (2013) for more detailed introduction

of MSMs. Suppose that we have a simple random sample of size n from a population.

For each unit i = 1, 2, . . . , n, repeated measurements are taken at each of J time peri-

ods. Specifically, at each time period j = 1, 2, . . . , J , we observe the time-dependent

treatment variable Tij as well as the time-dependent confounders Xij that are possibly

affected by previous treatments. We assume that Xij is realized before the treatment
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at time j and therefore is not affected by Tij. We further assume that the treatment

variable is binary where Tij = 1 (Tij = 0) implies unit i receives (does not receive)

the treatment at time j. Next, for each unit, we denote the treatment and covariate

history up to time j by T ij = {Ti1, Ti2, . . . , Tij} and X ij = {Xi1, Xi2, . . . , Xij}, re-

spectively. We also denote the set of possible treatment and covariate values at time

j as T j and X j. Finally, we observe the outcome variable Yi for unit i at the end

of the study, i.e., time J , after the treatment for the same time period, i.e., TiJ , is

administered.

The potential outcome framework of causal inference was originally developed

by Neyman (1923) and Rubin (1973) in the cross-section setting, but Robins (1986)

generalized it to the longitudinal analysis. Under this framework, we use Yi(t̄J) to

represent the potential value of the eventual outcome variable for unit i measured

at time J under the entire treatment history T iJ = t̄J where t̄J ∈ T J . Thus, the

observed outcome is given by Yi = Yi(T J). Similarly, Xij(t̄j−1) denotes the potential

values of covariates for unit i at each time period j under the treatment history

up to time j − 1, i.e., T i,j−1 = t̄j−1. Therefore, the observed values of covariates

can be written as Xij = Xij(T i,j−1) for unit i at time j. This setup relies upon

the consistency assumption that the potential values of outcome and covariates for

each unit are only functions of its own treatment history up to that point in time.

The assumption excludes the possible interference between units (but not between

time periods), implying that the potential values of outcome and covariates are not

influenced by the treatment history of other units.

MSMs are based on the assumption of sequential ignorability, which states that

the treatment assignment of unit i at time j is exogenous given the treatment and

covariate history of the same unit up to that point in time. In other words, MSMs

assume no unmeasured confounding at each time period. This sequential ignorability
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assumption can be formally written as,

Yi(t̄J) ⊥⊥ Tij | T i,j−1 = t̄j−1, X ij = x̄j (1)

at any time period j for a given treatment history t̄J = {t̄j−1, tj, . . . , tJ} ∈ T J and co-

variate history x̄j ∈ X j. We also assume that the conditional probability of treatment

assignment is bounded away from zero and one at each time period. That is,

0 < Pr(Tij = 1 | T i,j−1 = t̄j−1, X ij = x̄j) < 1 (2)

at any time period j for a given treatment history t̄j−1 ∈ T j−1 and covariate history

x̄j ∈ X j.

Under these assumptions, Robins (1999) showed that the inverse-probability-of-

treatment weighting can be used to consistently estimate the marginal mean of any

potential outcome, i.e., E{Yi(t̄J)} for any treatment sequence t̄J ∈ TJ . For the reason

that will become clear later, we first define the potential value of this weight for unit

i under treatment history t̄J as,

wi(t̄J , X iJ(t̄J−1)) =
1

P (T iJ = t̄J | X iJ(t̄J−1))
=

J∏
j=1

1

P (Tij = tij | T i,j−1 = t̄j−1, X ij(t̄j−1))

(3)

This weight is typically small and therefore the estimates become highly variable.

Therefore, researchers commonly follow the suggestion given in the literature and use

the stabilized weights of the form, w∗i (t̄J , X iJ(t̄J−1)) = P (T iJ = t̄J)/P (T iJ = t̄J |

X iJ(t̄J−1)), when fitting the outcome model. We denote the observed values of these

weights as wi = wi(T iJ , X iJ) and w∗i = w∗i (T iJ , X iJ).

In an observational study, these weights are unknown and must be estimated. Typ-

ically, a parametric model is used to estimate the conditional probability of treatment

assignments given the set of covariates,

w−1
i = πβ(T iJ , X iJ) (4)
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where β is a finite dimensional vector of unknown parameters. A common choice of

parametric model is the logistic regression independently applied to each time period,

πβ(T iJ , X iJ) =
J∏
j=1

expit{(2Tij − 1)β>j V
∗
ij} (5)

where V
∗
ij = [T i,j−1 X ij], expit(z) = {1 + exp(−z)}−1, and βj is a vector of unknown

coefficients. The numerator of the stabilized weight is typically estimated using the

sample proportion for each treatment sequence.

Once the (stabilized) weights are estimated, the conditional expectation of out-

come is modeled as a function of treatment history alone without covariates, i.e.,

E(Yi | T iJ). For example, researchers may regress the outcome on the treatment

indicators from all periods. Robins (1999) has shown that this weighting approach

yields a consistent estimate of the mean potential outcome, i.e., E{Yi(t̄J)} thereby al-

lowing researchers to compute the average outcome under any sequence of treatment

assignments over time.

3 The Proposed Methodology

In this section, we propose an alternative estimation procedure for the inverse-probability-

treatment weight for MSMs. Specifically, unlike the standard approach, we estimate

the weight such that time-dependent covariates are balanced across all appropriate

sub-populations. The proposed methodology generalizes the the covariate balancing

propensity score (CBPS) of Imai and Ratkovic (2014) to the longitudinal data set-

tings. The key idea of the CBPS is to estimate the propensity score such that the

resulting covariate balance is improved. Therefore, the CBPS is robust in the sense

that even under a misspecified treatment assignment model the covariate balancing

conditions, which are used as estimating equations, are improved. In addition, since

the proposed methodology focuses on the estimation of the MSM weights, it can be

combined with other approaches to achieve the double-robustness property (Yu and

5



van der Laan, 2006) (see also Graham et al. (2012) who develop a doubly-robust

estimator in the cross-section setting). We begin by reviewing this methodology and

then show how to extend the CBPS to the causal analysis with panel data.

3.1 The Single Time Period Case: A Review

We first review the CBPS in the cross-section setting. Imai and Ratkovic (2014)

propose to estimate the propensity score model such that the following covariate

balance condition is satisfied,

E
{

TiXi

πβ(1, Xi)
− (1− Ti)Xi

πβ(0, Xi)

}
= 0. (6)

Imai and Ratkovic suggest that these moment conditions can be used to estimate

the propensity score model either via generalized method of moments or empirical

likelihood. Their simulation and empirical studies find that the CBPS significantly

improves the performance of standard propensity score estimation. Several other

methods have also been developed to improve covariate balance (e.g., Hainmueller,

2012; Graham et al., 2012), but to the best of our knowledge, none has dealt with

longitudinal data settings, to which we now turn.

3.2 The Two Time Period Case

To convey the intuition for the proposed methodology, we first present the CBPS for

the case of two time periods before discussing the general case of more than two time

periods. Suppose that for each unit i, we observe the outcome variable Yi measured

at the end of study, the binary treatment variable Tij, and a vector of confounders

Xij for each time period j = 1, 2. Further assume that we are interested in using

MSMs to estimate the marginal mean of potential outcome measured at the end of

the second period, E{Yi(t̄2)}, where t̄2 can take any of the four possible values, i.e.,

t̄2 ∈ T2 = {(0, 0), (0, 1), (1, 0), (1, 1)}.
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Covariate Balancing Conditions. We derive the moment conditions based on

the covariate balancing property of the weight for MSMs. To do this, we first express

these moment conditions as functions of the (potential) weight defined in equation (3).

Specifically, at the first time period, across all four possible treatment histories, the

weight should balance the mean of the baseline covariate, Xi1. Formally, for all

t̄2 = (t1, t2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, we have

E(Xi1) = E
[
1{Ti1 = t1, Ti2 = t2}wi(t̄2, X i2(t1))Xi1

]
. (7)

This gives the total of three moment conditions because the above equality holds

across four different treatment histories and one such equality is redundant.

While there exist numerous equivalent ways to represent these three moment

conditions, we choose the following orthogonal representation, which can be written

in a compact notation using the observed weight instead of its potential values,

E{(−1)Ti1wiXi1} = 0 (8)

E{(−1)Ti2wiXi1} = 0 (9)

E{(−1)Ti1+Ti2wiXi1} = 0 (10)

This orthogonal representation of covariate balancing conditions is summarized in

the first three rows of Table 1. In the table, if we treat + and − as +1 and −1, row

vectors for each time period are orthogonal to each other.

The covariate balancing conditions at the second time period are similar to those

at time 1, except that the covariates measured at time 2 are possibly functions of the

treatment at time 1, i.e., Xi2 = Xi2(Ti1). This means that the covariate balancing

conditions will be conditional on the observed treatment value at time 1. Using

the potential outcomes notation, for all t̄2 = {t1, t2}, we can write these covariate

balancing conditions as follows,

E{Xi2(t1)} = E
[
1{Ti1 = t1, Ti2 = t2}wi(t̄2, X i2(t1))Xi2(t1)

]
(11)
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Treatment history: (t1, t2)

Time period (0,0) (0,1) (1,0) (1,1) Moment condition

time 1

+ + − − E
{

(−1)Ti1wiXi1

}
= 0

+ − + − E
{

(−1)Ti2wiXi1

}
= 0

+ − − + E
{

(−1)Ti1+Ti2wiXi1

}
= 0

time 2
+ − + − E

{
(−1)Ti2wiXi2

}
= 0

+ − − + E
{

(−1)Ti1+Ti2wiXi2

}
= 0

Table 1: Orthogonal Representation of Covariate Balancing Moment Conditions in
the Two Time Period Case. The first and second time periods have three and two
moment conditions, respectively. There are four distinct values of treatment history
with tj representing the value of the treatment variable at time j. The symbols, “+”
and “−”, in these four treatment history columns show whether the weighted average
of covariates among units with a certain treatment history is added or subtracted
when formulating the moment condition. Within each time period, row vectors of
+’s and −’s for the treatment history combinations are orthogonal to one another.
The last column represents the corresponding moment condition.

Because Xi2(t1) is observed only when Ti1 = t1, the above covariate balancing equa-

tion implies that Xi2 should be balanced across treatment values at time 2 conditional

on the treatment value realized at time 1.

Similar to the baseline covariate case, we use the orthogonal representation, which

in this case yields the following two moment conditions,

E
{

(−1)Ti2wiXi2

}
= 0 (12)

E
{

(−1)Ti1+Ti2wiXi2

}
= 0 (13)

The bottom two rows of Table 1 summarize this result. While at time 1 both Ti1 and

Ti2 are varied to generate 3 moment conditions, only Ti2 is varied at time 2. By now,

readers may realize the benefit of our orthogonal representation: as shown in Sec-

tion 3.3, its compact notation allows one to easily extend the proposed methodology

to the general case of more than two time periods.

Estimation. Since the number of moment conditions exceeds the number of param-

eters to be estimated, we use the generalized method of moments (GMM; Hansen,

1982) estimation to combine the covariate balancing conditions derived above. Our
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optimal GMM estimator is given by,

β̂ = argmin
β∈Θ

vec(G)>W−1vec(G) (14)

where the sample moment conditions are given by,

G =
1

n

n∑
i=1

 (−1)Ti1wiXi1 (−1)Ti2wiXi1 (−1)Ti1+Ti2wiXi1

0 (−1)Ti2wiXi2 (−1)Ti1+Ti2wiXi2

 , (15)

and their covariance W is given by,

W =
1

n

n∑
i=1

E




1 (−1)Ti1+Ti2 (−1)Ti2

(−1)Ti1+Ti2 1 (−1)Ti1

(−1)Ti2 (−1)Ti1 1

⊗ w2
i

 Xi1X
>
i1 Xi1X

>
i2

Xi2X
>
i1 Xi2X

>
i2

 ∣∣∣ Xi1, Xi2


(16)

The expectation in equation (16) can be calculated analytically, for example, for the

logistic regression case (Imai and Ratkovic, 2014).

3.3 The General Longitudinal Case

We now extend the above formulation to the general case with more than two time

periods, i.e., j = 1, 2, . . . , J . We first generalize the covariate balancing conditions

derived above and then propose the optimal GMM estimator. We also consider its

low-rank approximation to address a computational challenge when the number of

time periods is large.

Covariate Balancing Conditions. We characterize the covariate balancing con-

ditions in the general case with an arbitrary number of time periods J ≥ 2. Recall

that in the two time period case, the weight for MSMs balances the covariates at

the first time period across all potential values of the entire treatment vector. At the

second time period, however, the weight only balances covariates across the treatment

values at that time period among the units who receive the same treatment value in
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the first time period. In general, the weight balances covariates at a given time period

across all potential combinations of the current and future treatment conditions given

the past treatment sequence.

Formally, for a given time period j and fixed past treatment sequence up to

that point t̄j−1, we can write the covariate balancing conditions across all treatment

sequences of the current and future time periods tj = {tj, tj+1, . . . , tJ} as,

E{Xij(t̄j−1)} = E[1{T j−1 = t̄j−1, T ij = tj}wi(t̄J , X iJ(t̄J−1))Xij(t̄j−1)] (17)

where T ij = {Tij, Ti,j+1, . . . , TiJ} represents a vector of observed current and future

treatment conditions.

In the two time period case, the balance conditions are characterized in terms of

the sums and differences of wiXij across all groups defined by a distinct value of the

entire treatment sequence. We generalize that formulation here. Specifically, for each

time period, we use the orthogonal representation of the covariate balancing condi-

tions given in equation (17) by aliasing the past treatment effects on the covariates

at time j. Since there exist a total of 2J−j+1 potential current and future treatments,

equation (17) implies 2J−j+1 − 1 orthogonal constraints given a particular history of

treatment up to time j − 1, i.e., t̄j−1. There are a total of 2j−1 possible treatment

histories and hence all together we have (2J − 2j−1) covariate balancing conditions

for each time period j.

To formalize this idea, we utilize the theoretical framework developed for analyzing

and designing randomized experiments based on the 2J full factorial design (see e.g.,

Box et al., 2005). In Table 2, we present a running example of the case with J = 3

where the first three columns present the design matrix in Yates order with +’s

and −’s indicating the presence and absence of the treatment at each time period,

respectively. It is well recognized that the full 2J factorial design can be represented

by Hadamard matrix of order 2J . Recall that Hadamard matrix of order n, denoted
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Treatment history: (t1, t2, t3)
Design matrix (0,0,0) (1,0,0) (0,1,0) (1,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,1) Time periods
Ti1 Ti2 Ti3 h0 h1 h2 h12 h13 h3 h23 h123 1 2 3
− − − + + + + + + + + 7 7 7

+ − − + − + − + − + − 3 7 7

− + − + + − − + + − − 3 3 7

+ + − + − − + + − − + 3 3 7

− − + + + + + − − − − 3 3 3

+ − + + − + − − + − + 3 3 3

− + + + + − − − − + + 3 3 3

+ + + + − − + − + + − 3 3 3

Table 2: Orthogonal Representation of Covariate Balancing Moment Conditions in
the Three Time Period Case Using the 23 Factorial Experiment Framework. The first
three columns show the design matrix of the factorial experiment in Yates order where
the symbol “+” (“−”) represents the presence (absence) of each treatment factor. The
next eight columns show the Hadamard matrix of this factorial experiment based on
this design matrix that corresponds to the eight distinct values of treatment history
with tj representing the value of the treatment variable at time j. The symbols,
“+” and “−”, in these eight treatment history columns also indicate the orthogonal
representation of covariate balancing moment conditions. Finally, the symbol 3(7) in
the last three columns indicates that the corresponding covariate balancing moment
condition is (not) binding for each time period.

by Hn, is an n×n matrix of +1’s and −1’s whose rows are orthogonal to one another,

implying that H>nHn = nIn.

To construct a Hadamard matrix that corresponds to the full 2J factorial design,

let D be the 2J × J “negative” design matrix of +1’s and −1’s sorted in Yates order,

D = [d0, d1, d2, d12, d3, d13, d23, d123, d4, d14, . . .]
> (18)

where d0 is a J dimensional column vector of 1’s and dj is a column vector of length

J where the elements of set j indicate the indexes of the elements of the vector with

−1 and the other elements of the vector are 1’s. For example, when J = 3, we have

d12 = (−1,−1, 1)>. Thus, +’s and −’s in Table 2 correspond to −1’s and +1’s in D,

respectively. Let cj be the jth column of D so that D = [c1, c2, . . . , cJ ].

Further, denote the common component of dj and ck by djk. For a subset t of

NJ = {1, . . . , J}, let the Hadamard product, denoted by ht, of columns ck with k ∈ t

be a 2J dimensional column vector with its jth element being
∏

k∈t djk. Then, the
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Hadamard matrix of order 2J can be constructed by collecting in Yates order all the

Hadamard products of the columns of D. The result is given by the following 2J ×2J

matrix,

H2J = [h0, h1, h2, h12, h3, h13, h23, h123, h4, h14, . . .] (19)

where h0 is a column vector of +1’s. This matrix in the case of J = 3 is given in the

middle columns of Table 2.

The Hadamard matrix representation allows us to enumerate all the covariate

balancing moment conditions in a systematic way regardless of the number of time

periods. Moreover, the successive multiplication procedure used for the construction

of this Hadamard matrix directly justifies the notation used in equations (12) and (13).

In fact, it has long been known that this Hadamard matrix representation can be

used to compute the mod 2 discrete Fourier transform (Good, 1958). For example,

the second and sixth rows of Table 2 corresponds to the following covariate moment

conditions,

E{(−1)Ti1wiXij} = 0 (20)

E{(−1)Ti1+Ti3wiXij} = 0 (21)

That is, one can use the design matrix to form the treatment variables that enter

the exponent of −1 in the compact expression of the covariate balancing moment

conditions. In sum, the 2J factorial experiment framework allows us to directly

generalize the orthogonal representation of the covariate moment conditions given in

Section 3.2 to the general case with more than two time periods.

Therefore, this full 2J factorial design framework clearly shows which covariate

balancing moment conditions are binding at any given time period for the estimation

of the weight for MSMs. As noted above, the stabilized weight balances covariates

measured at time j across all possible current and future treatments but it does
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not balance across past treatments. The covariate balancing moment conditions,

which correspond to the effects of past treatments and their interactions, are not

binding. These conditions can be easily identified by the design matrix. For example,

in Table 2, we see that the second row, corresponding to the main effect of time 1

treatment, i.e., Ti1, is not binding for time 2 covariates Xi2. Similarly, for time 3

covariates, the moment conditions corresponding to the effects of Ti1 and Ti2 as well

as their interaction are not binding. In general, for covariates measured at time j,

the first 2j−1 rows of Hadamard matrix H2J can be ignored when constructing the

covariate balancing moment conditions.

Estimation. As in the two time period case, we use the GMM to combine all

the covariate balancing conditions. We begin by defining the following matrices for

covariates,

X̃ =
[
X̃1, X̃2, . . . , X̃n

]>
(22)

where X̃i = [wiXi1, wiXi2, . . . , wiXiJ ]> is a (K × J) dimensional column vector of

covariates for unit i. Next, we construct the n× (2J − 1) model matrix based on the

design matrix D arranged in Yates’ order as

M = [M1, M2, . . . ,Mn] (23)

where Mi = [mi0,mi1,mi2,mi12,mi3,mi13,mi23,mi123,mi4,mi4, . . . ]
> is a (2J−1) di-

mensional column vector withmi0 = 1 andmit = (−1)
∑

k∈t Tik for t ∈ {1, 2, 12, 3, 13, 23, 123, 4, 14, . . . }.

For example, mi23 equals (−1)Ti2+Ti3 and mi123 equals (−1)Ti1+Ti2+Ti3 . In fact, the ith

row of M is given by the row of the Hadamard matrix in Table 2 that corresponds

to the treatment sequence of the ith observation.

Given this notation, our optimal GMM estimator is given by equation (14) with

the following generalized definitions of the sample balancing condition and their con-
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ditional covariance,

G =
1

n

n∑
i=1

(
M>

i ⊗ X̃i

)
R (24)

W =
1

n

n∑
i=1

E
(
MiM

>
i ⊗ X̃iX̃

>
i | Xi

)
(25)

where R represents the “selection” matrix which identifies the binding covariate bal-

ancing conditions for each time period and “zeros” them out. This matrix is formally

defined as,

R = [R1 R2 . . .RJ ] where Rj =

 02j−1×2j−1 02j−1×(2J−2j−1)

0(2J−2j−1)×2j−1 I2J−2j−1

 (26)

for each j = 1, . . . , J . As mentioned earlier, the expectation in equation (25) can be

evaluated analytically for the logistic regression case.

When the number of time periods is large, the inversion of W can be computa-

tionally expensive because its dimension, which is {(2J−1)×JK}×{(2J−1)×JK},

exponentially increases as a function of J . Here, we derive a low-rank approximation

to the full covariance matrix as a way to overcome this computational difficulty. To

do this, we assume that the correlation across balance conditions is zero. Note that

when this assumption does not hold the resulting GMM estimator is still consistent

but no longer efficient. In our simulation and empirical studies (see Section 4 and 5),

we find that the empirical performance is not greatly affected by this approximation

especially in a large sample size.

Specifically, our low-rank approximation to the covariance matrix is given by,

W̃ =
1

n

n∑
i=1

I⊗ X̃iX̃
>
i = I⊗ X̃>X̃. (27)

where the variances in this new matrix are identical to those in the original W matrix

of equation (25) but certain covariances are zero. Then, our GMM estimator is given

14



by,

β̂ = argmin
β∈Θ

vec(G)>{I⊗ X̃>X̃}−1vec(G) (28)

= argmin
β∈Θ

trace{R>M>X̃(X̃>X̃)−1X̃>MR} (29)

Thus, this approximation approach avoids the Kronecker product and the inversion

of a large matrix.

3.4 Extension to Multiple Binary Treatments

The method described above naturally extends to the setting where there exist mul-

tiple binary treatments. Indeed, dynamic treatment regimes considered in this paper

is essentially a special case of J multiple binary treatments. The only difference is

that for dynamic treatment regimes some of the covariate balancing conditions are

not binding as indicated by zero elements of G matrix in equations (15) and (24).

In contrast, for multiple binary treatments, all of these covariate balancing condi-

tions are binding. However, aside from this difference, the estimation for the case of

multiple binary treatments proceeds in an identical manner.

4 Simulation Studies

We conduct four sets of simulation studies in order to assess the empirical performance

of the proposed CBPS estimation. First, we show that when the treatment assignment

model is correctly specified, the proposed methodology does as well as the standard

maximum likelihood estimation. Second, we also examine several scenarios where the

treatment assignment model is misspecified in terms of either the lag structure or

the functional form of the covariates (or both). We find that the CBPS significantly

reduces the bias and mean squared error of the standard method in each of these

model misspecification scenarios.

In all four simulation scenarios, we consider the case of three time periods, i.e.,

15



Ti1 Ti2 Ti3

Xi1 Xi2 Xi3

(a) Simulation 1

Ti1 Ti2 Ti3

Xi1 Xi2 Xi3

(b) Simulation 2

Figure 1: Treatment Variable Data Generating Process in Simulation Studies. In the
first set of simulations summarized by the diagram of panel (a), a relatively simple
treatment assignment model is used and we only misspecify the functional form while
maintaining the correct lag structure. In the second set of simulations summarized
by the diagram of panel (b), a more complex data generating process is used and we
examine the impact of incorrectly specifying the lag structure. The results of these
simulations are given in Figure 2 and 3, respectively

J = 3, and use four different sample sizes n = 500, 1, 000, 2, 500, and 5, 000. Across

these four simulations, we vary both whether the lag structure and functional form

for the treatment assignment model are properly modeled. Figure 1 summarizes

the treatment variable data generating processes used in our simulations. In the

first set of simulations summarized by the diagram of panel (a), a relatively simple

treatment assignment model is used and we only misspecify the functional form while

maintaining the correct lag structure. The treatment-generating process in this setup

is a function of exogenous covariates and the immediately previous observed treatment

level.

In practice, however, both the treatment variables and the covariates may be

affected by more than the immediately previous time period. In the second set of

simulations, summarized by the diagram of panel (b), a more complex data generating

process is used and we examine the impact of incorrectly specifying the lag structure.

The treatment-generating process here is a function of exogenous covariates and all

previous observed treatment levels. All simulations use the identical outcome variable

model.
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Specifically, in the first set of simulations, for time j, we use the covariates Xij =

(Zij1·Uij, Zij2·Uij, |Zij3·Uij|, |Zij4·Uij|)> where each Zijk is an i.i.d. draw from the stan-

dard normal distribution, and Uij is constructed as Uij = 2+(2Ti,j−1−1)/3 for j = 2, 3

and Uij = 1 for j = 1. The treatment assignment model is given by Pr(Tij = 1) =

expit{−Ti,j−1 +γ>Xij+(−1/2)j} where γ = (1,−0.5, 0.25, 0.1)> and Ti0 = 0. Finally,

the outcome model is defined as Yi = 250−10 ·
∑3

j=1 Tij +
∑3

j=1 δ
>Xij +vi where δ =

(27.4, 13.7, 13.7, 13.7)> and vi is a normal disturbance with mean zero and standard

deviation five. To consider the functional form misspecification, we use the following

non-linear transformation of the covariates, X∗ij = (X3
ij1, 6 · Xij2, log(Xij3), 1/Xij4)>

and estimate the treatment assignment model with these covariates. The misspecifi-

cation was selected to induce skew in the transformed covariates. In our experience,

logistic regression estimated propensity scores can be particularly sensitive to mis-

specifications with skewed covariates.

In the second set of simulations, we consider a misspecification of lag structure.

The current treatment level is generated from a function of all previous observed

treatment levels and covariates, but only the covariates from the current period and

the treatment from the most immediately previous time period are used in esti-

mating the weights. As with the first two simulations, we also consider the mis-

specification of functional forms using a nonlinear transformation. Specifically, the

treatment assignment in the second set of simulations is given by Pr(Tij = 1) =

expit{
∑j

j′=1(Ti,j′−1 +γ>Xij′)/2
j−j′+(−1/2)j}. The true treatment assignment model

is a function of the entire covariate and treatment history for each observation, but

each method is applied using the most immediate covariates and treatment. In or-

der to generate our covariates for this set of simulations, we adjust Uij such that

Uij =
∏j−1

j′=1 {2 + (2Tij′ − 1)/3} for j = 2, 3 and Uij = 1 for j = 1. The new

set of covariates are then constructed as Xij = (Zij1Uij, Zij2Uij, |Zij3Uij|, |Zij4Uij|)>

17



so that they are a function of all past treatments. The outcome model is the

same as the one used for the first set of simulations except that the definition of

Xij is different. As before, we assess each methods’ performance when using the

correct covariates, Xij, and the covariates after a mild nonlinear transformation,

X∗ij = {(Zij1Uij)3, 6 · Zij2Uij, log |Zij3Uij|, 1/|Zij4Uij|}>.

To evaluate the performance of our proposed CBPS methodology, we simulate

2,500 data sets using the aforementioned data generating processes. We then fit a

logistic regression model (GLM) as the treatment assignment model independently for

each time period using correct and incorrect model specifications as discussed above.

We also fit the same exact logistic model using the proposed CBPS estimation but

in two ways: first with the fully efficient covariance matrix (CBPS) and with its low-

rank approximation (CBPS-Approximate). Finally, the marginal structural model

(MSM) weights are constructed from each of the fitted models and then we regress the

outcome variable on all three treatment variables using the stabilized MSM weights.

The resulting regression coefficients are then compared with the numerical estimates

of true regression coefficients obtained from a large number of simulations with the

true treatment assignment probabilities.

Figure 2 presents the results from the first set of simulations where the misspec-

ification of treatment assignment model is confined to the functional form and the

correct lag structure is maintained. The first three columns show that the bias (upper

two rows) and root mean squared error or RMSE (bottom two rows) for the estimated

regression coefficients of the three treatment variables (one for each of the three time

periods, i.e., β̂1, β̂2, and β̂3, respectively) from the MSM. That is, we use a weighted

linear regression where the outcome is regressed on three treatments using the MSM

weights. The final column presents the bias and RMSE for the estimated mean po-

tential outcome, E(Yi(t1, t2, t3)), averaged across eight unique treatment sequences.
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These estimates are obtained by calculating the weighted average of the outcome

using the subset of data for each treatment sequence.

When the treatment assignment model is correctly specified, all methods have

small bias (the first row) and small RMSE (third row) for all quantities of interest.

For one parameter in a small sample size, CBPS with the low-rank approximation

(thick dash line) has a greater bias than other methods. It is also interesting to note

that CBPS is slightly more efficient than the GLM. This finding is consistent with the

theoretical result of Hirano et al. (2003), which implies that overparameterizing the

propensity score model by adding moment conditions can sometimes lead to efficiency

gains. However, when the model is misspecified, the bias and RMSE are large and

even grow in sample size for GLM (thin dot-dash lines). In contrast, CBPS with

the fully efficient covariance matrix (thick solid line) and CBPS with the low-rank

approximation have much smaller bias and RMSE across parameters. Unlike the

GLM, both the bias and RMSE do not grow in sample size, thereby outperforming

the standard estimation technique.

In the first row of Figure 3, the misspecified lag structure induces noticeable bias

across all methods, with the CBPS methods showing modest gains in bias (first row)

and RMSE (third row). When the lag structure is misspecified and additionally the

covariates are transformed (second and fourth rows), the standard GLM estimation

leads to much larger bias and RMSE and this bias increases in the sample size. In

contrast, the CBPS methods minimize the impact of model misspecification and stays

within a reasonable range for bias and RMSE across all quantities of interest.

5 An Empirical Application

We now illustrate the proposed methodology through an empirical application. Black-

well (2013) has applied the MSM to the data from political science in order to estimate
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Figure 3: Impact of Treatment Assignment Model Misspecification based on Simula-
tions with Incorrect Lag Structure. Two cases are considered. In the first scenario,
the lag structure is incorrectly specified. In the latter scenario, additionally the func-
tional form is misspecified by transforming covariates. The first three columns show
that the bias and root mean squared error (RMSE) for the estimated regression coef-
ficients of the three treatment variables (one for each of the three time periods) from
the marginal structural model. The final column presents the bias and RMSE for
the estimated mean potential outcome, E(Yi(t1, t2, t3)), averaged across eight unique
treatment sequences. Overall, CBPS (thick solid lines) and CBPS-Approximate (thick
dash lines) outperform the GLM (thin dot-dash lines) when the model is misspecified.
The dotted lines represent the results for the estimates based on the true weights.

21



the impact of negative advertisements on election outcomes. Here, we analyze a sub-

set of his data. Specifically, we examine the five weeks leading to the elections, using a

total of 58 U.S. Senate and 56 gubernatorial candidates from 114 races that were held

during the years 2000, 2002, 2004, and 2006. During this time, there were 126 races

total in which ads were aired during the last five weeks. Five races are dropped due

to missing data, and, following the original author, seven additional non-competitive

races were dropped so as to make the common support assumption more credible.

In each week t = 1, . . . , 5 leading up to the election, candidate i may run negative

campaign (Tit = 1) or remain positive (Tit = 0). The time-varying covariates Xit

include the Democratic share of the polls, proportion of voters undecided, campaign

length, and the lagged and twice lagged treatment variables for each week. In addi-

tion, we use the time-invariant covariates including baseline Democratic voteshare,

baseline proportion undecided, and indicators for election year, incumbency status,

and type of office. The original study fit a single logistic regression model to all time

periods, including a linear time trend. In contrast, we allow the coefficients in the

model to be different for each time period. We find that the added flexibility yields

significantly better covariate balance.

We consider three approaches: the logistic regression, the CBPS based on the

optimal covariance matrix (CBPS), and the CBPS based on the low-rank approxi-

mation (CBPS-Approximate). For the CBPS and CBPS-approx approaches, we use

the two-step and continuously updating GMM estimators, respectively. Note that

the computational time for the CBPS was seven times as long as that for the CBPS-

Approximate.

We begin by assessing the degree of covariate balance achieved by the logistic

regression and the CBPS. Since there are twelve covariates per time period, we have

a total of 1548 =
∑5

j=1 12 × (25 − 2j−1) different covariate balancing conditions. As
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Figure 4: Absolute Imbalance for Each Covariate Balancing Condition by Time Pe-
riod. The results are compared between the logistic regression (vertical axis) and the
CBPS (horizontal axis). The imbalance for all balance conditions appear together in
the top left plot, and they are broken out by time period in the remaining five plots.
Points above the 45o line indicate that a better balance is achieved for the CBPS
than the logistic regression. Overall, the covariate balance achieved by the logistic
regression tends to be worse than the CBPS.

shown in Section 3, these moment conditions are implied by the fact that at each

time period, conditional on the past treatment history, the MSM weights should bal-

ance covariates across all future potential treatment sequences. We characterize the

imbalance as the absolute value of the balance conditions for each balance condition

G.

Figure 4 presents the absolute imbalance for each covariate balancing condition

based on the logistic regression (vertical axis) and the CBPS (horizontal axis). The

imbalance of all balance conditions appear together in the top left plot, and they are

broken out by week in the remaining five plots. Points above the 45o line indicate

that a better covariate balance is achieved for the CBPS than the logistic regression.
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GLM CBPS CBPS GLM CBPS CBPS
(Approximate) (Approximate)

(Intercept) 55.69∗ 57.14∗ 57.38∗ 55.61∗ 57.08∗ 57.31∗

(4.58) (1.83) (2.24) (3.06) (1.67) (1.96)
Negative 3.02 5.86 2.80

(time 1) (4.51) (5.27) (4.72)
Negative 3.54 2.71 4.81

(time 2) (9.61) (9.21) (9.80)
Negative −2.82 −3.93 −4.45

(time 3) (12.44) (10.89) (13.62)
Negative −8.22 −9.72 −8.69

(time 4) (10.19) (7.75) (10.81)
Negative −1.62 −1.98∗ −1.91

(time 5) (0.96) (0.95) (0.99)
Negative −1.18 −1.35∗ −1.43∗

(cumulative) (0.67) (0.38) (0.45)
R2 0.05 0.14 0.10 0.03 0.10 0.08
F statistics 1.03 3.44 2.49 3.08 12.43 10.06

Table 3: Estimated Average Causal Effects of Negative Advertising on Candidate’s
Voteshare. The left three columns present the estimated average causal effects of
the time-specific decision to engage in negative advertising. The right three columns
contain the estimated causal effects of the cumulative number of periods that the
candidate has gone negative. All results are based on weighted linear regressions.
The weights are estimated using the logistic regression (GLM), the CBPS with the
optimal covariance matrix, and the CBPS with low-rank approximation (CBPS-
Approximate). ∗ indicates statistical significance at the 0.05 level.

The logistic regression produces greater imbalance more than 78% of the time, and

this pattern is consistent over time, ranging from 75.6% in time 2 to 81.3% in time

4. Relative to the CBPS, the logistic regression has both a greater average absolute

imbalance (0.84 versus 0.24) and a larger spread in absolute imbalance (2.05 versus

0.65).

Table 3 presents the estimated impact of negative advertising on candidate’s vote-

share. The left three columns present the estimated average causal effects of the time-

specific decision to engage in negative advertising. The right three columns contain

the estimated causal effects of the cumulative number of periods that the candidate

has gone negative. All results are based on weighted linear regressions. The weights

are estimated using the logistic regression (GLM), the CBPS with the optimal co-
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variance matrix, and the CBPS with low-rank approximation (CBPS-Approximate).

While these results are somewhat similar across the methods, there are some dif-

ferences. In particular, when using the CBPS and CBPS-Approximate, the effects

of negative advertisement are estimated appear to be more strongly negative than

the GLM: the magnitude of estimates effects is larger and standard errors tend to be

smaller. The R2 and F statistics are also greater when the weights are estimated using

the CBPS and CBPS-Approximate. Finally, the low-rank approximation approach

for the CBPS does not alter the results significantly.

6 Concluding Remarks

In this paper, we have extended the CBPS methodology of Imai and Ratkovic (2014)

to the estimation of inverse probability weights for marginal structural models (MSMs),

a popular tool in the analysis of longitudinal data. The proposed methodology es-

timates these weights by improving the resulting covariate balance. This is an im-

portant advantage because checking covariate balance, after fitting the treatment

assignment models, is a difficult task even when the number of time periods is mod-

erate. As a result, detecting model misspecification is much more challenging in

longitudinal data settings than simple cross-section data settings.

In addition, because the MSM weights are constructed by multiplying the inverse

of the estimated propensity scores from each time period, MSMs can be highly sensi-

tive to the misspecification of treatment assignment models. In contrast, the CBPS

methodology provides a robust estimation method for inverse probability weights by

maximizing covariate balance. Our simulation and empirical studies illustrate the

effectiveness of the proposed method over the standard maximum likelihood estima-

tion.

One possible future research agenda is the extension of the proposed methodology
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to non-parametric estimation using empirical likelihood. The MSM weights are often

estimated using a parametric model but better covariate balance might be achieved

by using a more flexible estimation approach. Another important and yet unre-

solved question concerns the selection of covariate balancing conditions when there

exist many such conditions. As we have shown, the number of covariate balancing

conditions grow exponentially as the number of time periods increases. Under this

scenario, the data will become sparse and some treatment sequences have extremely

small number of observations. Here, the application of moment selection methods

may be useful. We plan to investigate how the proposed CBPS methodology per-

forms in such a situation and develop effective strategies for addressing this issue.
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