
Bicoordinate Descent for the LASSO∗

In Song Kim† John Londregan‡ Marc Ratkovic§

Version 0.3 – December 25, 2014

Abstract

We propose an estimator for the LASSO that converges faster than the standard coordinate

wise descent algorithm.

Key Words: variable selection, LASSO

Introduction

We offer an improvement to the coordinate wise descent method for estimating the LASSO pioneered

by Tibshirani (1996), Fu (1998), and by Friedman, Hastie and Tibshirani (2010a). Our bicoordinate

descent method generalizes the one parameter at a time soft thresholding embodied in Fu’s “shooting

algorithm” by updating the parameter values two at a time. When the regressors are orthogonal

our algorithm coincides with Tibshirani’s one coordinate at a time soft thresholding, but when

the explanators are correlated our algorithm exploits this to more efficiently update the coefficient

estimates in pairs. This results in a substantial reduction in the number of passes through the data

that the algorithm takes on its path to convergence. The time required by our method for each pass

through the data increases relative to unicoordinate descent by much less than the number of passes

falls, resulting in an overall improvement in the time to convergence.

Tibshirani (1996) promulgated the LASSO model as a practical sparse estimator. He noted that

in the special case of orthogonal regressors a remarkably straightforward solution can be found by

∗The proposed methods can be implemented via the open-source statistical software, bcd: Bicoordinate Descent

for the LASSO, available through the Comprehensive R Archive Network (http://cran.r-project.org/package=bcd).
†Assistant Professor, Department of Political Science, Massachusetts Institute of Technology, Cambridge, MA,

02139. Email: insong@mit.EDU, URL: http://web.mit.edu/insong/www/
‡Professor of Politics and International Affairs, Woodrow Wilson School, Princeton University, Princeton NJ 08544.

Phone: 609-258-4854, Email: jbl@princeton.edu
§Assistant Professor, Department of Politics, Princeton University, Princeton NJ 08544. Phone: 608-658-9665,

Email: ratkovic@princeton.edu, URL: http://www.princeton.edu/∼ratkovic

http://cran.r-project.org/package=bcd
mailto:insong@mit.edu
http://web.mit.edu/insong/www/
mailto:jbl@princeton.edu
mailto:ratkovic@princeton.edu
http://www.princeton.edu/\protect \unhbox \voidb@x \penalty \@M \ {}ratkovic

individually soft thresholding each of the estimated coefficients. Fu (1998) developed a “shooting”

algorithm that generalizes this approach to any set of regressors–at each pass through the data the

algorithm successively updates the parameters one at a time using soft thresholding. Convergence

of Fu’s algorithm is quick, and Friedman, Hastie and Tibshirani (2010a) make the algorithm even

faster by arraying solutions to a sequence of LASSO problems in a trellis, and using each solution

as a starting value for the next problem, their glmnet software, which embodies a brace of best

programming practices, has defined the computational frontier for the LASSO model.

Our exposition proceeds as follows. The next section introduces our bicoordinate descent al-

gorithm for LASSOed regression, and provides graphical intuition about its workings. Proofs are

provided in the appendix. The subsequent section discusses some algorithmic adaptations that

accelerate computation. We then turn our attention to the speed with which the respective algo-

rithms converge using various data sets of different sizes. A final section concludes and discusses

ongoing directions of research, including the extension of our algorithm to weighted least squares

and to generalized linear models such as the logit and the probit. The open-source software, bcd:

Bicoordinate Descent for the LASSO, for fitting the proposed method is available through the

Comprehensive R Archive Network (http://cran.r-project.org/package=bcd).

1 Estimating the LASSO

Starting with data of the form
{
Yi, {Xij}

k
j=1

}n

i=1
we first center the observations, and normalize the l2

norm of each of the explanators to equal one, leaving us with:
{
yi, {xij}

k
j=1

}n

i=1
satisfying

n∑
i=1

yi = 0,

and for each j ∈ {1, ..., k} we also have
n∑
i=1

xij = 0, and
n∑
i=1

x2ij = 1. If any pairs of explanators

are perfectly correlated we arbitrarily remove one element of the perfectly correlated pair, until no

perfectly correlated pairs of explanators remain1.

The LASSO estimator introduced by Tibshirani (1996) is the solution to a problem of the form:

P1 : min
{βj}

k
j=1

RSS
(
{βj}

k
j=1|

{
{yi, {xij}

k
j=1

}n

i=1

)
subject to

k∑
j=1

|βj| ≤ t (1)

where:

1Of course for each perfectly correlated pair for which at least one element is selected by the LASSO there will in

general be a continuum of equivalent solutions to our problem.

1

http://cran.r-project.org/package=bcd

RSS
(
{βj}

k
j=1|

{
yi, {xij}

k
j=1

}n

i=1

)
=

n∑
i=1

(
yi −

k∑
j=1

βjxij

)2
(2)

Next, recalling that we have culled all of the perfectly correlated observations, let’s arrange our

data into C =
⌊
k
2

⌋
pairs, with at most one singleton observation, which remains when k is odd.

Now suppose that we take successive passes through the data. At iteration s we turn to each

pair of coefficients in turn, taking the others as given at their current values. We seek to minimize

the constrained residual sum of squares with respect to {β2c−1, β2c} only, while of course continuing

to satisfy the constraint. We can formalize this problem as:

P2sc : min
β2c−1,β2c

RSSc
(
β2c−1, β2c|

{
vsic, xi,2c−1, xi,2c

}n

i=1

)
subject to |β2c−1|+ |β2c| ≤ θsc

where:

RSSc
(
β2c−1, β2c|

{
vsic, xi,2c−1, xi,2c

}n

i=1

)
=

n∑
i=1

(vsic − β2c−1xi,2c−1 − β2cxi,2c)
2

and:

vsic =
(
yi −

∑
j<2c−1

βs,lasso
j xij −

∑
2c<j

βs−1,lasso
j xij

)
while θsc = t−

∑
j<2c−1

|βs,lasso
j |−

∑
2c<j

|βs−1,lasso
j |

We denote the solutions to P2sc by (βs,lasso
2c−1 , βs,lasso

2c).

Finally, if k is odd, there remains a singleton observation that is not encompassed by any of the

pairs. Define:

P3s : min
βk

n∑
i=1

(
vsik − βkxi,k

)2
subject to |βk| ≤ θsp

where:

vsik =
(
yi −

∑
j<k

βs,lasso
j xij

)
and θsk = t−

∑
j<k

|βs,lasso
j |

and we denote the solutions to P3s by βs,lasso
k .

The Bicoordinate Descent Algorithm

Our algorithm for calculating (βs,lasso
2c−1 , βs,lasso

2c) proceeds as follows. Let (βs,ols
2c−1, β

s,ols
2c) solve:

2

POLSsc : min
β∗
2c−1

,β∗
2c

RSSc
(
β∗
2c−1, β

∗
2c|
{
vsic, xi,2c−1, xi,2c

}n

i=1

)
so:

βs,ols
2c−1

βs,ols
2c

 =
1

1− R2
c


n∑
i=1

vsic(xi,2c−1 − Rcxi,2c)

n∑
i=1

vsic(xi,2c − Rcxi,2c−1)


where:

Rc =

n∑
i=1

xi,2c−1xi,2c (3)

Next define:

Rs∗
c = sign(βs,ols

2c−1)× sign(βs,ols
2c)× Rc (4)

We let λ denote the Lagrange multiplier associated with the constraint in P1. We will treat this

as a “tuning parameter” shared by all of the P2sc.

Couched in terms of λ, when:

λ

2(1+ Rs∗
c)

< min{|βs,ols
2c−1|, |β

s,ols
2c |} (5)

our estimates are calculated as:

βs,lasso
2c−1

βs,lasso
2c

 =

sign(βs,ols
2c−1)

(
|βs,ols

2c−1|−
λ

2(1+Rs∗
c)

)
sign(βs,ols

2c)
(
|βs,ols

2c |− λ
2(1+Rs∗

c)

)
 (6)

When condition (5) fails, but

|βs,ols
2c−1| > |βs,ols

2c | (7)

then the update step for (βs,lasso
2c−1 , βs,lasso

2c) is:

(
βs,lasso
2c−1 , βs,lasso

2c

)
= sign(βs,ols

2c−1)max

{
|βs,ols

2c−1|+ R∗s
2c|β

s,ols
2c |−

λ

2
, 0

}
(8)

whereas if (5) fails but the inequality in condition (7) is reversed, then:

(
βs,lasso
2c−1 , βs,lasso

2c

)
= sign(βs,ols

2c)max

{
0, |βs,ols

2c |+ R∗s
2c|β

s,ols
2c−1|−

λ

2

}
(9)

3

Notice that when Rc = 0 the bicoordinate descent algorithm coincides with the soft thresholding

embodied in the “shooting” algorithm of Fu (1998).

Of course, the solution to P3s is simply given by the soft thresholding result returned by Fu’s

algorithm:

βs,lasso
p = sign(βs,ols

p)max

{
|βs,ols

p |−
λ

2
, 0

}
(10)

where:

βs,ols
p =

n∑
i=1

vsicxik

Why it Works

Let’s take a closer look at the objective function for P2sc. First it’s useful to define a few terms. For

comparison let’s start with the sum of squared errors corresponding to the solution to POLSsc:

ssec,s0 =

n∑
i=1

(
vsic − βs,ols

2c−1xi,2c−1 − βs,ols
2c xi,2c

)2
(11)

Next consider the following quadratic function Q(β2c−1−βs,ols
2c−1, β2c−βs,ols

2c , Rc) of the correlation

Rc between x2C−1 and x2C that was defined in (3) and of the distance between the coefficients

(β2c−1, β2c) and the OLS coefficients (βOLS
2c−1, β

OLS
2c) with:

Q(β2c−1 − βs,ols
2c−1, β2c − βs,ols

2c , Rc) = (β2c−1 − βs,ols
2c−1, β2c − βs,ols

2c)

 1 Rc

Rc 1

β2c−1 − βs,ols
2c−1

β2c − βs,ols
2c

 (12)

It turns out that we can reconceive the objective function for P2sc in terms of Q. We state this

formally as:

Lemma 1: RSSc
(
β2c−1, β2c|

{
vsic, xi,2c−1, xi,2c

}n

i=1

)
= ssec,s0 +Q(β2c−1 − βs,ols

2c−1, β2c − βs,ols
2c , Rc)

Proof of Lemma 1: See the appendix.

Notice that ssec,s0 is constant with respect to β2c−1 and β2c, so Lemma 1 allows us to reformulate

P2sc as a quadratic programming problem:

P2s′c : min
β2c−1,β2c

Q(β2c−1 − βs,ols
2c−1, β2c − βs,ols

2c , Rc) subject to |β2c−1|+ |β2c| ≤ θsc

4

The constraint is in the form of a diamond, while the level sets of the objective function for P2s′c

are ellipses. This is illustrated in the lefthand panel of figure 1, where the hollow dot corresponds

to (βs,ols
2c−1, β

s,ols
2c) while (βs,lasso

2c−1 , βs,lasso
2c) is represented by the solid dot.

β2c

β2c−1

z2c

z2c−1

Figure 1: Optimization P2s′c vs PZ

There is an isomorphic relationship amongst solutions in distinct quadrants. To see this, define

δsj ≡ sign(βs,ols
j) and let zj = δjβj, and then rewrite problem P2s′c as:

min
z2c−1,z2c

Q
(
δs2c−1z2c−1 − δs2c−1|β

s,ols
2c−1|, δ

s
2cz2c − δs2c|β

s,ols
2c |, Rc

)
subject to |z2c−1|+ |z2c| ≤ θsc

recalling our definition of Rs∗
c from expression (4) this can be reexpressed as:

PZ : min
z2c−1,z2c

Q
(
z2c−1 − |βs,ols

2c−1|, z2c − |βs,ols
2c |, Rs∗

c

)
subject to |z2c−1|+ |z2c| ≤ θsc

If (ẑs2c−1, ẑ
s
2c) solve PZ then

(βs,lasso
2c−1 , βs,lasso

2c) = (δs2c−1ẑ
s
2c−1, δ

s
2cẑ

s
2c) (13)

is a solution to P2s′c . The righthand panel of figure 1 depicts the reformulation of P2s′c as PZ. The

orientation of the ellipse shifts with the translation to the first quadrant, this corresponds to the

change from Rc to Rs∗
c . The hollow dot in the right panel corresponds to (|βs,ols

2c−1|, |β
s,ols
2c |) whereas

the solid dot indicates the solution values (zs2c−1, z
s
2c) for PZ.

It turns out that the solution to PZ are non-negative. In fact, if the constraint binds the solution

is to be found along the first quadrant simplex S:

5

S =
{
(z2c−1, z2c)|z2c−1 + z2c = θsc and z2c−1 ≥ 0 and z2c ≥ 0

}
(14)

We state this important result as:

Lemma 2: The solutions to PZ satisfy ẑ2c−1 ≥ 0 and ẑ2c ≥ 0, while if θsc ≤ |βOLS
2c−1| + |βOLS

2c |, then

(ẑ2c−1, ẑ2c) ∈ S.

Proof: See the appendix.

Now let’s take a graphical approach to the solution. Consider the objective function:

Q
(
z2c−1 − |βs,ols

2c−1|, z2c − |βs,ols
2c |, Rs∗

c

)
(15)

for PZ. The lefthand panel of figure 2 shows the level curves for Q. At an interior solution for

(z2c−1, z2c) the highest level curve that makes contact with the constraint will be tangent to S, and

so it will have the same slope, −1, as the simplex, several points at which the slope of a level curve

matches −1 are depicted in the lefthand panel of figure 2. The level curve slopes are given by:

dz2c

dz2c−1

= −

∂Q
∂z2c−1

∂Q
∂z2c

(16)

Setting this slope to −1 and solving we recover the locus of points at which the level curves of

Q share the same slope as S, see the central panel of figure 2:

z2c = |βs,ols
2c |− |βs,ols

2c−1|+ z2c−1 (17)

Putting this formally, we have:

Lemma 3: The locus of points at which the level curves of Q share the same slope as S is given by

(17).

Proof: See the appendix.

If the line (17) intersects S we have a tangency solution for PZ, such a solution is depicted in the

righthand panel of figure 2, where it corresponds to the solid dot whose coordinates are given by:

(z2c−1, z2c) =

(
θsc + |βs,ols

2c−1|− |βs,ols
2c |

2
,
θsc + |βs,ols

2c |− |βs,ols
2c−1|

2

)
(18)

A tangency solution will only exist if the locus of tangencies intersects S, and expression (17) tells

us that this set of tangencies always corresponds to a line with slope 1 passing through
(
|β2c−1|, |β2c|

)
.

6

y

x

y

x

y

x

Figure 2: Right: Tangencies Center: Locus of Tangencies Left: Interior Solution

|βs,ols
2c |

|βs,ols
2c−1|

θsc

θsc T

U

R

Figure 3: Solutions relative to θsc

This tells us that that whenever (β2c−1, β2c) lie in the region of figure 3 that is marked T in figure

3 southeast of the line through (|β2c−1|, |β2c|) = (0, θsc) with slope equal to one:

z2c = θsc + z2c−1 (19)

and northwest of the line with unit slope that passes through (|βs,ols
2c−1|, |β

s,ols
2c |) = (θsc, 0):

z2c = −θsc + z2c−1 (20)

we will have a tangency solution. Combining expressions (19) and (20) we have a tangency solution

given by (18) whenever:

7

|βs,ols
2c |− |βs,ols

2c−1| ≤ θsc (21)

In contrast, if |βs,ols
2c−1|, and |βs,ols

2c | lie outside region T in figure 3, and so fail to satisfy condition

(21), then Lemma 3 implies we cannot have a tangency solution.

If we have a (βs,ols
2c−1, β

s,ols
2c) pair above the line (19), in the region marked U in figure 3, so that:

|βs,ols
2c |− |βs,ols

2c−1| ≥ θsc (22)

then we cannot have a first quadrant tangency with S. However, the only remaining alternatives are

a solution at the upper corner of the constraint set (0, θsc) and a solution at the righthand corner,

(θsc, 0). It is straightforward to show that in such a case the upper corner of the constraint set:

(βs,ols
2c−1, β

s,ols
2c) = (0, θsc) (23)

provides a better solution. Likewise, if (βs,ols
2c−1, β

s,ols
2c) lie below (20), in the region of figure 3 marked

R, so that:

|βs,ols
2c |− |βs,ols

2c−1| ≥ θsc (24)

the solution comes at the right corner:

(z2c−1, z2c) = (θsc, 0) (25)

These results on corner solutions are an immediate consequence of the following lemma:

Lemma 4: whenever θsc > 0

sign
(
Q(θsc − |βs,ols

2c−1|,−|βs,ols
2c |, R∗

c) −Q(−|βs,ols
2c−1|, θ

s
c − |βs,ols

2c |, R∗
c)
)
= sign

(
|βs,ols

2c−1|− |βs,ols
2c |

)
Proof: See the appendix2.

It follows that:

2Notice that the case in which θs
c = 0 is trivial, as the only possible solution is (ẑ2c−1, ẑ2c) = (0, 0) in which case

distinctions among tangencies and various corner solutions are vacuous.

8

Corollary A: (|βs,ols
2c−1|, |β

s,ols
2c |) ∈ U

implies

Q(−|βs,ols
2c−1|, θ

s
c − |βs,ols

2c |, R∗
c) > Q(θsc − |βs,ols

2c−1|,−|βs,ols
2c |, R∗

c)

Proof: By the definition of U, (|βs,ols
2c−1|, |β

s,ols
2c |) ∈ U implies |βs,ols

2c | > |βs,ols
2c−1|+ θ > |βs,ols

2c−1|, and so by

Lemma 4 we have Q(−|βs,ols
2c−1|, θ

s
c − |βs,ols

2c |, R∗
c) > Q(θsc − |βs,ols

2c−1|,−|βs,ols
2c |, R∗

c). □

Corollary B: (|βs,ols
2c−1|, |β

s,ols
2c |) ∈ R

implies

Q(θsc − |βs,ols
2c−1|,−|βs,ols

2c |, R∗
c) > Q(−|βs,ols

2c−1|, θ
s
c − |βs,ols

2c |, R∗
c)

The proof of Corollary B is completely analogous.

It remains for us to solve for θsc.

Given that the constraint is binding, which it will be when λ > 0, we will have (z2c−1, z2c) ∈ S,

and we can reposit PZ as:

PZ′ : min
z2c−1,z2c

Q
(
z2c−1 − |βs,ols

2c−1|, z2c − |βs,ols
2c |, Rs∗

c

)

subject to z2c−1 + z2c ≤ θsc

z2c−1 ≥ 0

z2c ≥ 0

Formulating the Lagrangian we have:

min
z2c−1,z2c

L = Q
(
z2c−1 − |βs,ols

2c−1|, z2c − |βs,ols
2c |, Rs∗

c

)
+ λ

(
z2c−1 + z2c − θsc

)
− µ2c−1z2c−1 − µ2cz2c (26)

Now let’s consider the possible solutions.

Lemma 5: At an interior solution to (26) with with both z2c−1 > 0 and z2c > 0 we have:

θsc = |βs,ols
2c−1|+ |βs,ols

2c |−
λ

1+ Rc
(27)

9

Proof: See the Appendix.

Substituting from (27) into (21) and rearranging terms we have our conditions for a tangency

solution in terms of |βs,ols
2c−1|, |β

s,ols
2c |, and λ:

λ

2(1+ Rc)
≤ min

{
|βs,ols

2c−1|, |β
s,ols
2c |

}
(28)

when (28) is satisfied we can substitute from (27) into (18) to obtain our tangency solution:

(z2c−1, z2c) =

(
βs,ols
2c−1 −

λ

2(1+ Rs∗
c)

, βs,ols
2c −

λ

2(1+ Rs∗
c)

)
(29)

The lefthand panel of figure (4) depicts the solutions when Rs∗
c > 0, while the right hand panel shows

the case of Rs∗
c < 0. In each figure, the region marked T , for “tangency”, corresponds to condition

(28). Notice that for a given value of λ this area is more extensive when Rs∗
c > 0, as shown in the

left panel, than it is for negatively correlated pairs of regressors, as depicted in the righthand panel.

|βs,ols
2c |

|βs,ols
2c−1|

λ
2

λ
2

TU

RZ

λ
2(1+Rc)

λ
2(1+Rc)

|βs,ols
2c |

|βs,ols
2c−1|

λ
2

λ
2(1+Rc)

λ
2

λ
2(1+Rc)

TU

RZ

Figure 4: Left: Solutions with Rs∗
c > 0, Right: Solutions with Rs∗

c < 0

Now suppose we have a corner solution with z2c−1 > 0 but z2c = 0.

Lemma 6: At a corner solution to (26) with with z2c−1 > 0 but z2c = 0 we have:

θsc = |βs,ols
2c−1|+ Rs∗

c |βs,ols
2c |−

λ

2
(30)

Proof: See the Appendix.

Of course, this only works provided θsc ≥ 0, that is, if:

10

λ

2
≤ |βs,ols

2c−1|+ Rs∗
c |βs,ols

2c | (31)

Substituting θsc from (30) into ∂L
∂z2c

≥ 0 we have:

∂L

∂z2c
= 2Rs∗

c (z2c − |βs,ols
2c−1|) + 2(0− |βs,ols

2c |) + λ

= 2Rs∗
c (|βs,ols

2c−1|+ Rs∗
c |βs,ols

2c |−
λ

2
− |βs,ols

2c−1|) + 2(0− |βs,ols
2c |) + λ

= −2|βs,ols
2c |+ 2Rs∗2

c |βs,ols
2c |+ λ(1− Rs∗

c) ≥ 0

that is, we need:

λ

2
≥ (1+ R∗

c)|β
s,ols
2c | (32)

Combining conditions (31) and (32), we have:

(1+ R∗
c)|β

s,ols
2c | ≤ λ

2
≤ |βs,ols

2c−1|+ Rs∗
c |βs,ols

2c |

The set of (|βs,ols
2c−1|, |β

s,ols
2c |) pairs satisfying this condition corresponds to the region labeled R in

figure 4. This region is larger when Rs∗
c < 0, as shown in the right hand panel, than it is when

the regressors are positively correlated–the bicoordinate descent LASSO update is more likely to

eliminate one of the coefficients at the update step when the correlation between the regressors is

negative.

Substituting from (30) into (25) we have:

(z2c−1, z2c) =

(
|βs,ols

2c |+ Rs∗
c |βs,ols

2c−1|−
λ

2
, 0

)
(33)

Likewise, we have a solution at the top corner, with:

(z2c−1, z2c) =

(
0, |βs,ols

2c |+ Rs∗
c |βs,ols

2c−1|−
λ

2

)
(34)

provided:

(1+ R∗
c)|β

s,ols
2c−1| ≤

λ

2
≤ |βs,ols

2c |+ Rs∗
c |βs,ols

2c−1|

Notice that when Rs∗
c < 0 a wider range of parameter estimates results in one parameter, as

in regions R and U, or both coefficients, corresponding to region Z, being updated to zero, see the

11

lefthand panel of figure 4, than in the case shown in the left panel of Rs∗
c > 0. In either case, with

Rs∗
c ̸= 0 at each pass through the data the bicoordinate descent algorithm allocates slack across the

variables more efficiently than does unicoordinate descent, while in the “knife’s edge” case of Rs∗
c = 0

unicoordinate and bicoordinate descent update identically conditional on the remaining parameter

estimates.

2 Computational Mechanics

The payoff to our algorithm is the speed with which it computes the LASSO estimates. While

bicoordinate descent provides savings in the number of passes to be taken through the data, we need

also to be abstemious in the computations required at each pass through the data set. We highlight

three areas in which we have attempted to apply best practice programming.

Warm Starts

Firstly, glmnet Friedman, Hastie and Tibshirani (2010b) takes advantage of “warm starts.” FHT

first find the smallest value for λ that will still set all of the coefficients equal to zero. Their algorithm

descends from this value of λ in a sequence of steps, each of which takes its predecessor as a source

of a starting value.

We emulate this approach. Let ry,j be given by:

ry,j =

n∑
i=1

yixj,i

Now define:

λmax ≡ 2max
{
ry,j

}p

j=1

Next we choose a multiple ϵ of λmax to define the smallest λ value we will consider, λmin = ϵλmax.

Next we choose a number of “cross pieces”, M, for the trellis. Finally, we construct a “shrinkage

factor” σ = ϵ−
1
M such that λmin = σMλmax. At each iteration we shrink λ from it’s previous value:

λm = σλm−1. We then start our calculations with lagged values for β⃗ of β⃗1 = β⃗2 = 0⃗. Our starting

value for round m ∈ {1, ...,M} of our descent to the next cross piece of the trellis is:

β⃗start
m = (1+ σ)β⃗m−1 − σβ⃗m−2

12

At each iteration we then update the first and second lags of β⃗. We find that these interpolated

“warm starts” provide more advantageous starting values than do the unalloyed elements of β⃗1.

Sufficient Statistics

Our algorithm calls for us to calculate (βs,ols
2c−1, β

s,ols
2c) at each iteration step. While these calculations

depend on the status quo values for the coefficients, they also rely on various cross products from

the data. We eschew recalculation of the latter.

Let rj,j′ be defined analogously with ry,j:

rj,j′ =

n∑
i=1

xj,ixj′,i

Notice that in this notation Rc ≡ r2c−1,2c.

To be comprehensive, let’s suppose there are k = 2k∗ + 1 explanators. The case of an even

number is yet easier. Now formulate the k× (k + 1) matrix S. For c ≤ k∗, we’ll denote row 2c − 1

of S, as s⃗′2c−1. It’s elements are:

S2c−1,j =



−rj,2c−1 + r2c,2c−1rj,2c

1− r2c,2c−1
c

j /∈ {2c− 1, 2c, k+ 1}

0 j ∈ {2c− 1, 2c}

ry,2c−1 − r2c,2c−1ry,2c

1− r22c,2c−1

j = k+ 1

(35)

Likewise, the elements of row 2c of S, s⃗′2c, are:

S2c,j =



−rj,2c + r2c,2c−1rj,2c−1

1− r2c,2c−1
c

j /∈ {2c− 1, 2c, k+ 1}

0 j ∈ {2c− 1, 2c}

ry,2c − r2c,2c−1ry,2c−1

1− r22c,2c−1

j = k+ 1

(36)

the kth and final row of S, s⃗′k, is:

Sk,j =


−rj,k 1 ≤ j < k

0 j = k

ry,k j = k+ 1

(37)

Starting from the initial (k+ 1)× 1 vector α⃗s,c,ols, where:

13

αs,c,ols
j =


βs,ols
j j ≤ 2c− 2

βs−1,ols
j 2c− 1 < j ≤ k

1 j = k+ 1

(38)

we update (βs,ols
2c−1, β

s,ols
2c):

βs,ols
2c−1 = s⃗′2c−1α⃗

s,c,ols and βs,ols
2c = s⃗′2cα⃗

s,c,ols (39)

While:

βs,ols
k = s⃗′kα⃗

s,k∗,ols (40)

We note that this algorithm yields the same results as reiterated solution of Pc
2, a claim we

formalize as:

Lemma 7: Given
{
βs,ols
j

}
j≤2c−2

,
{
βs−1,ols
j

}
2c−1<j≤k

}
, and

{
yi, {xij}

k
j=1

}n

i=1
, the left hand side values

of (39) and (40) correspond to solutions for P2sc and P3sc respectively.

Proof: See the appendix.

Notice that as we move toward a solution the α⃗s,c,ols change, but S remains the same. For large

values of n this can represent a substantial computational saving. Hastie3 describes using a similar

procedure, which he calls “covariance updating’, for glmnet. Indeed, we suspect that, adjusting for

differences in notation, the row of S that deals with the odd singleton variable in our framework

coincides exactly with the algorithmic artfulness described by Hastie.

Managing the Active Set

Another important source of computational speed is the management of the “active set” used in the

estimation. The idea is to restrict our attention to only variables that have a chance of surviving

the LASSO process, and for this we have a straightforward screening procedure.

Firstly we identify the explanator max for which rmax,y ≥ rj,y∀j, this is our starting value λmax

for λ. Our “active set” of variables consists solely of {xmax,i}
n
i=1. At λ = rmax,y the LASSO with

xmax as our sole potential explanator will produce a coefficient of zero, just barely censoring xmax.

We then reduce λ by successive increments.

Now suppose that corresponding to the current value of λ we have an active set Aλ of variables

{xk}k∈Aλ
, we have estimated the LASSO coefficients corresponding to λ, and we are about to move

3See http://web.stanford.edu/ hastie/TALKS/glmnet.pdf

14

on to the next lower value, λ′, in our sequence. Before we move on, for each variable xj that is

excluded from the active set we calculate:

bλshadow

j = ry,j −
∑
k∈Aλ

rj,kβ̂
LASSO
k (λ)

Next, we add any variable xj∗ for which bλshadow

j > λ′ to the active list Aλ′ corresponding to λ′.

This simple rule screens out any variable that would not earn a positive LASSO coefficient at the

next iteration if it was evaluated first using unicoordinate descent. This guarantees that there are

always more observations than variables in the active set, and it keeps the remaining calculations to

a minimum. We found that when we added this step it resulted in a nearly three fold acceleration

of our algorithm.

Analytical inflection points and the Active Set

All of the preceding computational procedures are easily adapted to cases in which some of the

variables are exempted from the LASSO, as might arise when one knows that a certain list of

variables from a “reference model” need to be included in the specification. However, when all the

variables are subject to the LASSO, we have one more computational arrow in our quiver–we can

solve for the first two inflection points after λmax at very low computation cost, bringing analytical

formulas to bear. This enables us to jump quickly through the first segment of the LASSO trellis,

providing another substantial boost to the speed of our algorithm.

The First Jump

On the interval between λmax and the smallest λ value, λsidekick, that leaves but one nonzero LASSO

coefficient we know that the coefficient for the nonzero LASSO coefficient is a linear function of λ:

βmax = sign(rmax,y)
(
|rmax,y|−

λ
2

)
= amax + cmaxλ

where amax = rmax,y and cmax = − 1
2
sign(rmax,y).

Over the same interval, the remaining OLS coefficients, conditional on βmax, are themselves

linear in βmax:

βj = rj,y − rmax,jβmax

and hence they are also linear in λ:

15

βj = (rj,y − rmax,jamax) + rmax,jcmaxλ = aj + cjλ

where aj = rj,y − rmax,jrmax,y and cj = − 1
2
sign(rmax,y)rmax,j.

Every variable except xmax will satisfy the following condition for λ ∈ (λsidekick, λmax):

−λ < aj + cjλ < λ

Now let:

λ−j =
aj

1− cj
and λ+j =

−aj

1+ cj

while:

λ∗j =


λ−j if max{0, λ+j } < λ−j ≤ λmax

λ+j if max{0, λ−j } ≤ λ+j ≤ λmax

0 otherwise

It follows that:

λsidekick = maxj{λ
∗
j }j ̸=max

If we let xsidekick denote the variable associated with this maximum value we see that at λsidekick

we have:

βLASSO
max = amax + cmaxλsidekick

while all the other beta values are equal to zero. Notice that Alambdasidekick = {sidekick,max}.

The Second Jump

Now let’s consider what happens for λ ∈ (λnext, λsidekick), where λnext corresponds to the next

inflection point after λsidekick. Let (α̂max, α̂sidekick} denote the coefficients from an OLS regression

of y on xmax and xsidekick. Along this interval we will have an interior solution for the LASSO

coefficients corresponding to xmax and xsidekick, which will thus be linear functions of λ:

αLASSO
max = α̂max−sign(α̂max)

λ

2(1+ rmax,sidekick)
and αLASSO

sidekick = α̂sidekick−sign(α̂sidekick)
λ

2(1+ rmax,sidekick)

16

while the conditional least squares estimator for each of the remaining coefficients is linear in αLASSO
max

and αLASSO
sidekick:

β̂j = ryj − αLASSO
max rj,max − αLASSO

sidekickrj,sidekick

Substituting from our expressions for the two active coefficients this becomes:

β̂j = ãj + c̃jλ

where:

ãj = ryj − α̂maxrj,max − α̂sidekickrj,sidekick

and:

c̃j =
sign(α̂max)rj,max + sign(α̂sidekick)rj,sidekick

2(1+ rmax,sidekick)

We now proceed in parallel with the first update, every variable except xmax and xsidekick will

satisfy the following condition for λ ∈ (λnext, λsidekick):

−λ < ãj + c̃jλ < λ

Now let:

λ̃−j =
ãj

1− c̃j
and λ̃+j =

−ãj

1+ c̃j

while:

λ̃∗j =


λ̃−j if max{0, λ̃+j } < λ̃−j ≤ λ̃max

λ̃+j if max{0, λ̃−j } ≤ λ̃+j ≤ λ̃max

0 otherwise

It follows that:

λnext = maxj{λ̃
∗
j }j /∈{max,sidekick}

If we let xnext denote the variable associated with this maximum value we see that at λnext we

have:

17

αLASSO
max = α̂max−sign(α̂max)

λnext

2(1+ rmax,sidekick)
and αLASSO

sidekick = α̂sidekick−sign(α̂sidekick)
λnext

2(1+ rmax,sidekick)

while all the other beta values are equal to zero4. Notice that Alambdanext = {next, sidekick,max}.

Comparative Timing

Our estimator is still at the developmental stage, and all of our code is written in R, whereas

it’s glmnet competitor is written in optimized FORTRAN. We expect the usual computational

acceleration to emerge when we “translate” our code into C++. However, we do want to provide the

reader with a clearer understanding of the practical advantages of bicoordinate descent, and so we

benchmark our estimator against unicoordinate descent using a variety of datasets that vary in size,

and in the severity of the collinearity observed among their component variables.

4In the very unlikely event that λnext < λdrop = 2sign(α̂max)(1 + rmax,sidekick)α̂max we instead stop at λdrop, at

which point the “max” variable goes dormant, and we repeat the second jump using sidekick in place of max, and

λdrop instead of λsidekick.

18

Speed Comparisons

Data First Third

Passes Min. Quintile Mean Median Quintile Max.

RED

Bicoord. 121 15.82811 17.01458 18.62527 17.43571 18.32009 45.96997

Unicoord. 342 60.78047 62.07158 65.92969 62.99484 66.20146 125.62298

SOIL

Bicoord. 245 43.91919 45.29539 46.01222 45.85828 46.47594 49.01433

Unicoord. 647 138.48964 143.93945 146.69634 144.66505 145.93290 173.56228

WHITE

Bicoord. 253 51.66146 52.67688 53.69331 53.02394 53.33742 82.76253

Unicoord. 520 100.26352 102.47824 104.02415 102.89359 103.92719 131.41892

Unit: milliseconds Trials: 100

RED Wine quality data from Cortez et al. (2009)

https://archive.ics.uci.edu/ml/datasets/Wine+Quality

SOIL Soil Quality data from Bondell and Smith (2008) http://www.biometrics.tibs.org

WHITE Wine quality data from Cortez et al. (2009)

https://archive.ics.uci.edu/ml/datasets/Wine+Quality

Results of several time trials appear in the accompanying table. We used the microbenchmark

package in R for the speed tests, with 100 trials. Estimation times for bicoordinate and unicoordinate

descent are given in microseconds. We employ our warm starts for both unicoordinate and for

bicoordinate descent, whereas we only apply the LARS updates and the management of the active

set for bicoordinate descent.

The first column counts complete “passes” through the data, with each pass corresponding to

a full set of parameter updates. Notice that this count is unaffected by the fact that bicoordinate

descent updates parameters two at a time. If we have twenty parameters in our model, one data

pass by bicoordinate descent consists of updating each of the ten pairs of parameters, whereas one

data pass for unicoordinate descent involves twenty single parameter updates, either way twenty

parameters are updated, and either way we count but a single pass through the data. Managing the

active set also leaves our accounting for iterations unaffected (though it reduces the number of data

passes we need to take), if we have twenty parameters with six active and fourteen dormant, then

one round of updates to the six active parameters counts as a “data pass”.

19

We observe a dramatic reduction in data passes moving from unicoordinate descent to bicoordi-

nate descent, and a comparable reduction in the time required to conduct the calculations, with the

bicoordinate algorithm working between two and three and a half times as fast. We note that this

speed advantage comes despite the extra “overhead” costs of bicoordinate descent, which recalibrates

the parameter matches every time a new parameter enters the active set.

3 Discussion

Given the advantages offered by exploitation of the correlations among the explanators, why should

one stop at bicoordinate descent? Why not coordinate across even more variables at each step?

Indeed, when the design matrix is of full rank the standard formula for calculating regression coeffi-

cients converges in but a single step. However, with a large number of explanators the constraint set

of the LASSO becomes a high dimensional polytope with myriad corners, edges, and faces to check

for possible solutions. Also, of course, the matrix inversion problem can be computationally intense

when the design matrix is of full rank but large, while it becomes impossible when the matrix is

nonsingular, as it is guaranteed to be for a sufficiently large number of explanators.

The huge appeal of one at a time coordinate wise descent is its robustness to the rank of the

design matrix. Tibshirani’s soft thresholding vastly streamlines the updating process, and it relies

on the convenient result that the signs of the LASSO coefficient updates will never be opposite those

of the signs of the unconstrained coordinate wise regression update steps.

The analogy to this “no sign reversal” condition in our formulation is that our pairwise LASSO

updates are guaranteed to remain in the closure of the same quadrant as the pairwise regression

coefficient updates. The cost of moving to bicoordinate descent is that it will only work for pairs

of explanatory variables that are not perfectly correlated. But this is a scant price to pay, as the

analyst has a variety of options; one of the perfectly correlated pair of variables could simply be

dropped from the specification, or one could simply rematch the perfectly correlated pairs with other

variables, or one could apply ordinary coordinate wise descent to the offending pairs.

Could this approach be extended to encompass tricoordinate descent? Perhaps, but the very

convenient result that the LASSO updates will always be found in the same quadrants as the un-

constrained updates does not generalize. In his figure 3a, Tibshirani (1996) p.271 shows that with

three variables the LASSO coefficients may constitute interior solutions in a different quadrant than

the regression coefficients. An interesting subject for ongoing research is to identify whether there

are conditions on the correlations among triples of variables that guarantee that the LASSO updates

20

will be contained in the same octant as the least squares coefficient update steps.

Our currently active research extends the results in this paper to the case of weighted least

squares. The case of weighted least squares is more challenging, because when the variances of the

paired explanatory variables differ it is possible for the conditional LASSOed estimates to “escape”

into the second or fourth quadrants. However, we are extending the results here to encompass those

cases in a computationally efficient manner. The extension to weighted least squares is vital in part

because we can formulate LASSOed logit and probit estimates as cases of iterated weighted least

squares.

Appendix

Proof of Lemma 1

Proof.

RSSc
(
β2c−1, β2c|

{
vsic, xi,2c−1, xi,2c

}n

i=1

)
=

n∑
i=1

(
vsic − β2c−1xi,2c−1 − β2cxi,2c

)2
=

n∑
i=1

(
vsic − βs,ols

2c−1xi,2c−1 − βs,ols
2c xi,2c − (β2c−1 − βs,ols

2c−1)xi,2c−1 − (β2c − βs,ols
2c)xi,2c

)2
=

n∑
i=1

((
vsic − βs,ols

2c−1xi,2c−1 − βs,ols
2c xi,2c

)2
+2
(
vsic − βs,ols

2c−1xi,2c−1 − βs,ols
2c xi,2c

)(
(β2c−1 − βs,ols

2c−1)xi,2c−1 + (β2c − βs,ols
2c)xi,2c

)
−
(
(β2c−1 − βs,ols

2c−1)xi,2c−1 + (β2c − βs,ols
2c)xi,2c

)2)

=

n∑
i=1

(
vsic − βs,ols

2c−1xi,2c−1 − βs,ols
2c xi,2c

)2
+2(β2c−1 − βs,ols

2c−1)
(n∑
i=1

(
vsic − βs,ols

2c−1xi,2c−1 − βs,ols
2c xi,2c

)
xi,2c−1

)
+2(β2c − βs,ols

2c)
(n∑
i=1

(
vsic − βs,ols

2c−1xi,2c−1 − βs,ols
2c xi,2c

)
xi,2c

)
+

n∑
i=1

(
(β2c−1 − βs,ols

2c−1)xi,2c−1 + (β2c − βs,ols
2c)xi,2c

)2
but the least squares estimates are chosen to guarantee that:

21

n∑
i=1

(
vsic − βs,ols

2c−1xi,2c−1 − βs,ols
2c xi,2c

)
xi,2c−1 = 0 and

n∑
i=1

(
vsic − βs,ols

2c−1xi,2c−1 − βs,ols
2c xi,2c

)
xi,2c = 0

so our expression simplifies to:

RSSc
(
β2c−1, β2c|

{
vsic, xi,2c−1, xi,2c

}n

i=1

)
=

n∑
i=1

(
vsic − βs,ols

2c−1xi,2c−1 − βs,ols
2c xi,2c

)2
+

n∑
i=1

(
(β2c−1 − βs,ols

2c−1)xi,2c−1 + (β2c − βs,ols
2c)xi,2c

)2
= ssec,s0 +Q(β2c−1 − βs,ols

2c−1, β2c − βs,ols
2c , Rc)

Proof of Lemma 2

Proof. When the constraint is not binding, the result is trivial and the OLS and LASSO estimates

coincide, whereas if θsc = 0 then the result again holds trivially, as the LASSO estimates must both

equal zero. Now consider what happens when 0 < θsc < |βs,ols
2c−1| + |βs,ols

2c |. Any pair z⃗0 = (z2c−1, z2c)

such that z2c−1 + z2c = α < θsc is dominated by z⃗′ = (z2c−1 +
θsc−α
2

, z2c +
θsc−α
2

):

z2c

z2c−1

z⃗′

z⃗0

Figure 5: The unit simplex dominates the constraint set.

22

Q
(
z2c−1 +

θsc−α
2

− |βs,ols
2c−1|, z2c +

θsc−α
2

− |βs,ols
2c |, Rs∗

c

)
−Q

(
z2c−1 − |βs,ols

2c−1|, z2c − |βs,ols
2c |, Rs∗

c

)
=

(θsc−α
2

,
θsc−α
2

) 1 Rs∗
c

Rs∗
c 1

θsc−α
2

θsc−α
2

+ 2
(θsc−α

2
,
θsc−α
2

) 1 Rs∗
c

Rs∗
c 1

z2c−1 − βs,ols
1

z2c − βs,ols
2


= 2(1+ Rs∗

c)
(θsc−α

2

)2
+ 2(1+ Rs∗

c)
(θsc−α

2

){
z2c−1 + z2c − βs,ols

1 − βs,ols
2

}
= (1+ Rs∗

c)(θsc − α)
{θsc−α

2
+ α− θsc

}
= −(1+ Rs∗

c)
{(θsc − α)2

2

}
< 0

Thus the only portion of the constraint that is not dominated according to this argument is the line

segment S:

S = {(z1, z2)|z1 ≥ 0, z2 ≥ 0, z1 + z2 = θsc} (41)

hence the solution to PZ: (ẑ2c−1, ẑ2c) ∈ S.

Finally we need to check that if z2c−1 + z2c = α < θsc is inside the constraint set, then so

is (z2c−1 + θsc−α
2

, z2c + θsc−α
2

). We know that the constraint |z1| + |z2| ≤ θsc can be rewritten in

terms of the two conditions: C1 : −θsc ≤ z1 + z2 ≤ θsc and C2 : −θsc ≤ z1 − z2 ≤ θsc. The pair

(z2c−1 +
θsc−α
2

, z2c +
θsc−α
2

) satisfy C1 by construction, while z2c−1 +
θsc−α
2

− (z2c +
θsc−α
2

) = z2c−1 − z2c

so that if −θsc ≤ z2c−1 − z2c ≤ θsc it follows that θsc ≤ z2c−1 +
θsc−α
2

− (z2c +
θsc−α
2

) ≤ θsc

Proof of Lemma 3

Proof. Differentiating our expression for Q, (15), we have:

∂Q

∂z2c−1

= 2(z2c−1 − |β2c−1|) + 2Rs∗
c (z2c − |β2c|) and

∂Q

∂z2
= 2(z2c − |β2c|) + 2Rs∗

c (z2c−1 − |β2c−1|)

substituting into (16) this yields:

dz2c

dz2c−1

= −
2(z2c−1 − |β2c−1|) + 2Rs∗

c (z2c − |β2c|)

2(z2c − |β2c|) + 2Rs∗
c (z2c−1 − |β2c−1|)

= −
(z2c−1 − |β2c−1|) + Rs∗

c (z2c − |β2c|)

(z2c − |β2c|) + Rs∗
c (z2c−1 − |β2c−1|)

23

Proof of Lemma 4

Proof. Substituting from 12) we have:

Q(θsc − |βs,ols
2c−1|,−|βs,ols

2c |, R∗
c)

=
(
θsc − |βs,ols

2c−1|,−|βs,ols
2c |

) 1 Rs∗
c

Rs∗
c 1

θsc − |βs,ols
2c−1|

−|βs,ols
2c |


= −2θsc(|β

s,ols
2c−1|+ Rs∗

c |βs,ols
2c |) +

(
θs2c +

(
−|βs,ols

2c−1|,−|βs,ols
2c |

) 1 Rs∗
c

Rs∗
c 1

−|βs,ols
2c−1|

−|βs,ols
2c |

) (42)

likewise:

Q(−|βs,ols
2c−1|, θ

s
c − |βs,ols

2c |, R∗
c)
)

=
(
−|βs,ols

2c−1|, θ
s
c − |βs,ols

2c |
) 1 Rs∗

c

Rs∗
c 1

 −|βs,ols
2c−1|

θsc − |βs,ols
2c |


= −2θsc(R

s∗
c |βs,ols

2c−1|+ |βs,ols
2c |) +

(
θs2c +

(
−|βs,ols

2c−1|,−|βs,ols
2c |

) 1 Rs∗
c

Rs∗
c 1

−|βs,ols
2c−1|

−|βs,ols
2c |

) (43)

Calculating the difference between (42) and (43) we have:

Q(θsc − |βs,ols
2c−1|,−|βs,ols

2c |, R∗
c) −Q(−|βs,ols

2c−1|, θ
s
c − |βs,ols

2c |, R∗
c)
)

= 2θsc

(
|βs,ols

2c−1|+ Rs∗
c |βs,ols

2c |−
(
Rs∗
c |βs,ols

2c−1|+ |βs,ols
2c |

))
= n2θsc(1− Rs∗

c)
(
|βs,ols

2c−1|− |βs,ols
2c |

)
However, |Rs∗

c | < 1, recall that our data contain no perfectly correlated pairs. Likewise θsc > 0 by

assumption, and so 2θsc(1− Rs∗
c > 0, hence we have:

sign

(
Q(θsc − |βs,ols

2c−1|,−|βs,ols
2c |, R∗

c) −Q(−|βs,ols
2c−1|, θ

s
c − |βs,ols

2c |, R∗
c)
))

= sign
(
|βs,ols

2c−1|− |βs,ols
2c |

)

Proof of Lemma 5

Proof. Considering cases for which λ > 0, at an interior solution the non-negativity constraints are

not binding, so that µ2c−1 = µ2c = 0. Differentiating (26) with respect to z2c−1, z2c, and λ we have:

24

∂L

∂z2c−1

= 2(z2c−1 − |βs,ols
2c−1|) + 2Rc(z2c − |βs,ols

2c−1|) + λ = 0

∂L

∂z2c
= 2Rc(z2c−1 − |βs,ols

2c−1|) + 2(z2c − |βs,ols
2c−1|) + λ = 0

∂L

∂λ
= z2c−1 + z2c − θsc = 0 (44)

If we add the first two equations:

2(1+ Rc)(z2c−1 − |βs,ols
2c−1|) + 2(1+ Rc)(z2c − |βs,ols

2c |) + 2λ = 0

rearranging terms this becomes:

2(1+ Rc)(z2c−1 + z2c) − 2(1+ Rc)|β
s,ols
2c−1|− 2(1+ Rc)|β

s,ols
2c |+ 2λ = 0 (45)

now substitute from ∂L
∂λ

= 0 to obtain:

2(1+ Rc)θ
s
c − 2(1+ Rc)|β

s,ols
2c−1|− 2(1+ Rc)|β

s,ols
2c |+ 2λ = 0 (46)

solving for θsc we have:

θsc = |βs,ols
2c−1|+ |βs,ols

2c |−
λ

1+ Rc

Proof of Lemma 6

Proof. Turning to our first order conditions for (26) we require:

∂L

∂z2c−1

= 2(z2c−1 − |βs,ols
2c−1|) + 2Rc(0− |βs,ols

2c |) + λ = 0

∂L

∂z2c
= 2Rc(z2c−1 − |βs,ols

2c−1|) + 2(0− |βs,ols
2c |) + λ ≥ 0

∂L

∂λ
= z2c−1 + 0− θsc = 0 (47)

Substituting z2c−1 from the third expression into the first and solving for θsc yields:

θsc = |βs,ols
2c−1|+ Rs∗

c |βs,ols
2c |−

λ

2

25

Proof of Lemma 7

Proof. Start with the update for (βs,ols
2c−1, β

s,ols
2c). We solve:

minβ∗
2c−1

,β∗
2c

n∑
i=1

(
yi −

∑
j /∈{2c−1,2c}

xj,iβ
0
j − x2c−1,iβ

∗
2c−1 − x2c,iβ

∗
2c

)2
where β0

j = βs,ols
j if j < 2c− 1, while for 2c < j we let β0

j = βs−1,ols
j .

This leads to the following first order conditions:

−2

n∑
i=1

(
yi −

∑
j /∈{2c−1,2c}

xj,iβ
0
j − x2c−1,iβ

∗
2c−1 − x2c,iβ

∗
2c

)
x2c−1,i = 0

−2

n∑
i=1

(
yi −

∑
j /∈{2c−1,2c}

xj,iβ
0
j − x2c−1,iβ

∗
2c−1 − x2c,iβ

∗
2c

)
x2c,i = 0

Using our newly developed notation we can rewrite these conditions as:

−2
(
ry,2c−1 −

∑
j /∈{2c−1,2c}

rj,2c−1β
0
j − β∗

2c−1 − r2c−1,2cβ
∗
2c

)
= 0

−2
(
ry,2c −

∑
j /∈{2c−1,2c}

rj,2cβ
0
j − r2c−1,2cβ

∗
2c−1 − β∗

2c

)
= 0

That is:

 1 r2c−1,2c

r2c−1,2c 1

β∗
2c−1

β∗
2c

 =


ry,2c−1 −

∑
j /∈{2c−1,2c}

rj,2c−1β
0
j

ry,2c −
∑

j /∈{2c−1,2c}

rj,2cβ
0
j


This simplifies to:

β∗
2c−1

β∗
2c

 =
1

1− r22c,2c−1

 1 −r2c−1,2c

−r2c−1,2c 1

−1

ry,2c−1 −

∑
j /∈{2c−1,2c}

rj,2c−1β
0
j

ry,2c −
∑

j /∈{2c−1,2c}

rj,2cβ
0
j


That is:

β∗
2c−1

β∗
2c

 =
1

1− r22c,2c−1


(ry,2c−1 − r2c,2c−1ry,2c) −

∑
j /∈{2c−1,2c}

(rj,2c−1 − rj,2cr2c−1,2c)β
0
j

(ry,2c − r2c,2c−1ry,2c−1) −
∑

j /∈{2c−1,2c}

(rj,2c − rj,2cr2c−1,2c)β
0
j


=

s⃗′2c−1α⃗
s,c,ols

s⃗′2cα⃗
s,c,ols

 (48)

26

But this is simply (39). Similar, and even more straightforward calculations show that (40) corre-

sponds to the solution for P3sc.

References

Bondell, Howard D. and Brian J. Smith. 2008. “Simultaneous Regression Shrinkage, Variable Selec-

tion, and Supervised Clustering of Predictors with OSCAR.” Biometrics 64:115–23.

Cortez, P., A. Cerdeira, F. Almeida, T. Matos and J. Reis. 2009. “Modeling wine preferences by

data mining from physicochemical properties.” Decision Support Systems 47:547–553.

Friedman, Jerome H., Trevor Hastie and Rob Tibshirani. 2010a. “Regularization Paths for Gener-

alized Linear Models via Coordinate Descent.” Journal of Statistical Software 33:1–22.

Friedman, Jerome, Trevor Hastie and Robert Tibshirani. 2010b. “Regularization Paths for Gener-

alized Linear Models via Coordinate Descent.” Journal of Statistical Software 33:1–22.

URL: http://www.jstatsoft.org/v33/i01/

Fu, Wenjiang. 1998. “Penalized Regressions: The Bridge vs the Lasso.” Journal of Computational

and Graphical Statistics 7:397–416.

Tibshirani, Robert. 1996. “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal

Statistical Society, Series B. 58:267–88.

27

	Title Page
	1 Estimating the LASSO
	2 Computational Mechanics
	3 Discussion

