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Abstract

We include here several technical appendices. First, we formally derive the expressions for

cvotel and bvotep that appear in section two of the paper. The next contains some details on the

choice theoretic model underlying the standard topic model. The remainder contain the details

for implementing the SFA model.

A The Legislator and Proposal Intercepts from the Voting Model

Let’s start with the legislator’s utility from the “aye”:

Ul({rpd}Dd=1) = −1

2

D∑
d=1

ad(rpd − xld)2 + ξ̃ayelp (1)

and “nay” alternatives:

Ul({qpd}Dd=1) = −1

2

D∑
d=1

ad(qpd − xld)2 + ξ̃naylp (2)

Next, let’s calculate the difference between these expressions to get the legislator’s preference inten-

sity for the “aye” outcome. Substituting from expressions (1) and (2) we have:
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V ∗lp = Ul({rpd}Dd=1)− Ul({qpd}Dd=1)

= −1

2

D∑
d=1

ad(rpd − xld)2 + ξ̃ayelp −
(
−1

2

D∑
d=1

ad(qpd − xld)2 + ξ̃naylp

)
=

D∑
d=1

ad
2

(q2pd − r2pd) +
D∑
d=1

ad
2
× 2xpd (rpd − qpd)︸ ︷︷ ︸

gvotepd

+ξ̃ayelp − ξ̃
nay
lp

=
( D∑
d=1

ad
2

(q2pd − r2pd) + E{ξ̃ayelp } − E{ξ̃
nay
lp }

)
︸ ︷︷ ︸

cvotel +bvotep

+
D∑
d=1

ad
2
× 2xpd (rpd − qpd)︸ ︷︷ ︸

gvotepd

−
(
ξ̃naylp − ξ̃

aye
lp + E{ξ̃ayelp } − E{ξ̃

nay
lp }

)︸ ︷︷ ︸
ε̃lp

(3)

Now let:

E{ξ̃ayelp } = πayel + ϕayep and E{ξ̃naylp } = πnayl + ϕnayp

substituting this into our expression for cvotel + bvotep we have:

D∑
d=1

ad
2

(q2pd − r2pd) + E{ξ̃ayelp } − E{ξ̃
nay
lp } =

D∑
d=1

ad
2

(q2pd − r2pd) + (πayel + ϕayep )− (πnayl + ϕnayp )

= πayel − πnayl︸ ︷︷ ︸
cvotel

+
D∑
d=1

ad
2

(q2pd − r2pd) + ϕayep − ϕnayp︸ ︷︷ ︸
bvotep

= cvotel + bvotep

Now let’s return to the last line of expression (3) and substitute:
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V ∗lp = Ul({rpd}Dd=1)− Ul({qpd}Dd=1)

=
( D∑
d=1

ad
2

(q2pd − r2pd) + E{ξ̃ayelp } − E{ξ̃
nay
lp }

)
︸ ︷︷ ︸

cvotel +bvotep

+
D∑
d=1

ad
2
× 2xpd (rpd − qpd)︸ ︷︷ ︸

gvotepd

−
(
ξ̃naylp − ξ̃

aye
lp + E{ξ̃ayelp } − E{ξ̃

nay
lp }

)︸ ︷︷ ︸
ε̃lp

= cvotel + bvotep +
D∑
d=1

adxpdg
vote
pd − ε̃lp (4)

Expression (4) matches expression (4) in the text.

B Choice Theoretic Underpinnings of Topic Models

While we opt for SFA, it is useful to consider the behavior that would lead one to adopt a topic model

for legislative speech. One way to do this is to suppose that a legislator’s speech is generated by the

random arrival of opportunities to speak. At each opportunity the legislator must choose one word

from a lexicon, which we represent by a W ×1 vector ω, with each entry corresponding to a different

word. Each word has a spatial location, which for the moment we place on a single dimension.

Legislator j ∈ {1 . . . V } would derive utility u(w̃l|xj) + ηj,t from uttering word j ∈ {1 . . .W} at time

t. Should the opportunity to speak at time t actually arise, the legislator utters the word offering

the greatest utility. To keep things simple we assume that ηj,t and ηr,s are independent if either

j 6= r or t 6= s.

Paralleling the development in Maddala (1983), we operationalize our model with a distributional

assumption for ηj,t ∈ R, which we take to follow a type I extreme value distribution, with probability

density:

f(η) = e−(η+e
−η)
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and by concretizing the utility function u(w̃l|xj):

u(w̃l|xj) = −1

2

(
w̃l − xj

)2
(5)

where xj is the preferred ideological signal that legislator j would like to convey, and w̃l is the

ideological connotation of word i.

Again following Maddala (1983) we see that the probability that at a randomly chosen time t

legislator j prefers word i to all other elements of the lexicon is:

qlj =
eu(w̃l|xj)

W∑
k=1

eu(w̃k|xj)

Let word 1 correspond to a “stop word”. We can rewrite the probability j uses word i if she has

the opportunity to speak at t as:

qlj =
eu(w̃l|xj)−u(w̃1|xj)

W∑
k=1

eu(w̃k|xj)−u(w̃1|xj)

substituting from equation (5) into our expression for qlj we have:

qlj(x,g,b) =
exjgl+bl

1 +
W∑
k=2

exjgk+bk
(6)

where gk = w̃k − w̃1 and bk = − w̃k+w̃1
2 for k ∈ {2 . . .W}.

The probability of an observed W × 1 vector c of word counts is:

W∏
w=1

qlj(x,g,b)cw (7)

With the right choice of Dirichlet priors this turns into the latent Dirichlet model of Blei, Ng

and Jordan (2003) if we set xj = gl = 0 for all i and j. In the ideal point setting, though, xj and
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gi correspond with precisely the preferred outcomes and term ideologies with which we are most

interested.

Estimation for these models are not straightforward, requiring a Metropolis algorithm or varia-

tional approximations. We favor SFA on theoretical grounds, as it allows legislators to select words as

a function of their preferred outcomes. We also favor it because it offers a tractable Gibbs sampling

scheme for most of the parameters, which we address in the next section.

C Estimation of SFA

We now shift to a more condensed notation. Hereafter, we reindex the vote and term outcomes

using a common index, j, which falls into two sets: J terms and Jvotes for whether the observed

outcome (now a common Ylj) is a term outcome or vote outcome, and J = |J terms| + |Jvotes|. We

will also supress the superscript for the θtermslw and θvoteslp while changing to the joint subscript j. The

likelihood is given by:

L
(
θvote·· , θterm·· , τ·|T̃··, Ṽ··

)
=

L∏
l=1

( P∏
p=1

Pr{Vlp = Ṽlp|·}
W+P
2P

W∏
w=1

Pr{Tlw = T̃lw|·}
W+P
2W

)
. (8)

where:

Pr{Tlw = T̃lw|·} =


Φ
(
θtermslw − τ0

)
Tlw = 0

Φ
(
θtermslw − τ

T̃lw

)
− Φ

(
θtermslw − τ

T̃lw−1

)
0 < Twl

(9)

Pr{Vlp = Ṽlp|·} = Φ
(
(2Ṽlp − 1)θvotelp

)
(10)

and the prior structure is given by:
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c·l, b
·
w

i.i.d.∼ N (µ, 1)

µ ∼ N (0, 1)

g·wd, xld
i.i.d.∼ N (0, 4)

log(β1), log(β2)
i.i.d.∼ N (0, 1)

Pr(ad) = 1
2λe
−λ|ad|

Pr(λ) = 1.78e−1.78λ

(11)

Combining the likelihood and prior gives us the posterior:

Pr(θlj , τ·, β1, β2|Y··) =
∏

1≤l≤L
1≤j≤J

{{
Φ (θlj)

Ylj (1− Φ (θlj))
1−Ylj

}1(j∈{jvotes})

×
{

Φ
(
τ Ylj − θlj

)
− Φ

(
θlj − τ Ylj−1

) }1(j∈{Jterms})}
× 1√

2π
e−

1
2
µ2 ×

∏
1≤l≤L

1√
2π
e−

1
2
(cl−µ)2 ×

∏
1≤j≤J

1√
2π
e−

1
2
(bj−µ)2

×
∏

1≤d≤D
1≤l≤L

1

2
√

2π
e−

1
8
(xld)

2 ×
∏

1≤d≤D
1≤l≤L

1

2
√

2π
e−

1
8
(gjd)

2 ×
∏

1≤d≤D

1

2λ
e−λ|ad|

× 1

β1
√

2π
e−

1
2
(log β1)2 × 1

β2
√

2π
e−

1
2
(log β2)2 × e−1.78λ

(12)

We implement two forms of data augmentation. In the first, for each observation we introduce

a normal random variable Z∗lj as is standard in latent probit models (Albert and Chib, 1993). This

transforms the likelihood into a least squares problem, as:

Pr(Ylj = k|Z∗lj , θlj , τ·, β1, β2) =
∏

1≤l≤L
1≤j≤J

1√
2π
e−

1
2
(Z∗lj−θlj)

2

(13)

The second form of augmentation involves representing the double exponential prior for ad to

maintain conjugacy. Following Park and Casella (2008), we introduce latent variables τ̃l, such that:
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d·|τ̃2· ∼ N (0D, D̃τ̃ ) (14)

D̃τ̃ = diag(τ̃21 , τ̃
2
2 , · · · , τ̃2D) (15)

τ̃21 , τ̃
2
2 , . . . , τ̃

2
D ∼

∏
1≤d≤D

λ2

2
e−λ

2τ̃2d/2dτ̃2d (16)

where, after integrating out τ̃2l , we are left with the LASSO prior. The proposed method differs

from the presentation in Park and Casella (2008) in that we know σ2 = 1, by assumption.

C.1 The Gibbs Sampler

Next, we outline the Gibbs sampler. All conditional posterior densities are conjugate normals except

λ, τ̃2, β1, and β2. For a derivation of the posterior densities of λ and τ̃2, see Park and Casella

(2008). We fit β1 and β2, which determine τ·, using a Hamiltonian Monte Carlo algorithm, but first

we describe the Gibbs updates.

The Gibbs updates occur in two steps. First, we place all data on the latent z scale. Second, we

update all of the remaining parameters. For the first step, we sample as:

Z∗lj |· ∼



T N (θlj , 1, 0,∞) ; Ylj = 1, j ∈ jvotes

T N (θlj , 1,−∞, 0) ; Ylj = 0, j ∈ jvotes

T N (θlj , 1, τk−1, τk) ; Ylj = k, j ∈ Jterms

N (θlj , 1) ; Ylj missing

(17)

Note that we have ignored missing values up to this point. In the Bayesian framework used here,

imputing is straightforward: the truncated normal is replaced with a standard normal, whether term

or vote data.

Next, we update all of θlj except for τ· using a Gibbs sampler, as:

6



µ|· ∼ N

(∑L
l=1

∑J
j=1 Z

∗
lj

LJ + 1
,

1

L2J2 + 1

)
(18)

cl|· ∼ N

(∑J
j=1 Z

∗
lj

J + 1
,

1

J2 + 1

)
(19)

bj |· ∼ N

(∑L
l=1 Z

∗
lj

L+ 1
,

1

L2 + 1

)
(20)

Z∗∗lj = Z∗lj − cl − bj + µ (21)

Update x··, w·, v·· from SVD of Z∗∗ (22)

a·|· ∼ N
(
A−1X̃>vec(Z∗∗), A−1

)
where

X̃ =
[
vec

(
x·1g

>
·1

)
: vec

(
x·2g

>
·2

)
: . . . : vec

(
x·Lg

>
·L

)]
and

A = X̃>X̃ + T−1 with T = diag(τ2l )

(23)

x
l̃d̃
|· ∼ N


∑J

j=1 Z
∗∗
l̃j,−d̃

a
d̃
g
jl̃√∑J

j=1

(
a2
d̃
g2
jd̃

+ 1
4J

) , 1∑J
j=1

(
a2
d̃
g2
jd̃

+ 1
4J

)
 (24)

g
j̃d̃
|· ∼ N


∑L

l=1 Z
∗∗
lj̃,−d̃

a
d̃
x
ld̃√∑L

l=1

(
a2
d̃
x2
ld̃

+ 1
4L

) , 1∑L
l=1

(
a2
d̃
x2
ld̃

+ 1
4L

)


where

Z∗∗
lj,−d̃ = Z∗∗lj −

∑
d 6=d̃

x
ld̃
gjdad

(25)

τ̃2l |· ∼ InvGauss

(√
λ2

a2d
, λ2

)
(26)

λ2|· ∼ Gamma

(
L+ 1,

L∑
l=1

τ̃2l /2 + 1.78

)
(27)

C.2 The Hamiltonian Monte Carlo Sampler

We have no closed form estimates for the conditional posterior densities of β1 and β2. To estimate

these, we implement a Hamiltonian Monte Carlo scheme adapted directly from Neal (2011). We
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adapt the algorithm in one important manner: rather than taking a negative gradient step, we

calculate the numerical Hessian and take a fraction (α) of a Newton-Raphson step at each. We

select α so that the acceptance ratio of proposed (β1, β2) is about .4.

Specifically, let d̂ev(β1, β2) denote the estimate deviance at the point (β1, β2). Define the

numerical gradients, ∇̂1dev(β1, β2) and ∇̂2dev(β1, β2) as the estimated gradient at (β1, β2) and

∇̂11dev(β1, β2), ∇̂22dev(β1, β2), and ∇̂12dev(β1, β2) as the cross derivative. Next, define the empiri-

cal Hessian as:

Ĥ(β1, β2) =

∇̂11dev(β1, β2) ∇̂12dev(β1, β2)

∇̂12dev(β1, β2) ∇̂22dev(β1, β2)

 (28)

We implement the algorithm in Neal (2011) exactly, except instead taking updates of the form:

β1
β2


+

:=

β1
β2


−

− α

∇̂1(β1, β2)

∇̂2(β1, β2)

 (29)

we instead do updates of the form:

β1
β2


+

:=

β1
β2


−

− α×
{
Ĥ(β1, β2)

}−1∇̂1(β1, β2)

∇̂2(β1, β2)

 (30)

where the Hessian and gradients are updated every third update of the parameters. The step

length parameter α is adjust every 50 iterations to by a factor of 4/5 if the acceptance rate is

below 10%, 5/4 if the acceptance rate is above 90%, and left the same otherwise. After the burn-in

period, the acceptance rate levels off around 45%. We implement twenty steps in order to produce

a proposal.
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C.3 Numerical Approximation of the Deviance

Calculating the gradient and Hessian terms, and assessing the proposal, in the Hamiltonian Monte

Carlo scheme requires evaluating functions of the form l(a, b) = log(Φ(a) − Φ(b)). Unfortunately,

for values of a and b much larger in magnitude than 5.3 produces returns values of 1 or 0, leaving it

impossible to evaluate the logarithm.

Extrapolating from the observed values yields the linear approximation:

l(a, b) =



1

a

b

a2

b2

log(|a− b|)

{log(|a− b|)}2

ab



>

γ (31)

where
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γ =



−1.82517672

0.51283415

−0.81377290

−0.02699400

−0.49642787

−0.33379312

−0.24176661

0.03776971



(32)

We derived the values for γ from fitting a model over the range 4 ≤ b < a ≤ 8. We get a

mean absolute error of 0.0165, or 0.08% error as a fraction of the value returned by R. We use this

approximation in order to extrapolate to values where R returns values of NA or Inf for f(a, b).

D How do Dimensions and Topics Differ?

As we noted in the introduction, there is an apparent inconsistency between Congress voting across

a broad array of topics (national defense, agriculture, social insurance, etc.) while roll call voting

over this range of substantive topics arranges into a single dimensional ideological space. This

seeming paradox is closely tied to the distinction between topics, as estimated by topic models, and

dimensions, as estimated by SFA. There is no actual contradiction. Which rendition of Congress a

researcher finds more useful: a collection of substantive legislative topics subject to Congressional

dispensation, or a low dimensional “radiography” of the ideological space that organizes Congress,

depends on the researcher’s objectives.

To differentiate topics from dimensions, consider the distinction between “surface” and “source”

traits. Factor analysis pioneer Raymond Cattell characterized a surface trait as “. . . an obvious

‘going together’ of this and that” while he defined the source trait as the “underlying contributor or
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Vote
 1

Vote
 2

Vote
 3

Vote
 4

Vote
 5

Vote
 6

Legislator 1

Legislator 2

Legislator 3

Legislator 4

Legislator 5

Legislator 6

Legislator 7

Legislator 8

Legislator 9

Legislator 10

Darker Color Means More Likely to Vote Yay

      Data Generating Process for Comparing SFA and Topic Models:
        Likelihood of Voting Yes For Each Legislator by Vote

Figure 1: Simulated data setup. Legislators are arrayed across rows and votes across columns.
The darker the square, the more likely the legislator to vote Aye on that particular vote.

determiner” of the observed surface traits (?, p. 45). As an example, he offered common symptoms

of schizophrenia as surface traits, while the underlying syndrome itself is the source trait.

We provide an example to illustrate the point. Assume ten legislators facing six votes. For

simplicity, the true underlying probability of voting Aye comes from an underlying process with

one ideological dimension, as presented in Figure 1. Legislators are arrayed across rows and votes

across columns. The darker the square, the more likely the legislator to vote Aye on that particular

proposal. Legislators 1 – 5 are more likely to vote Aye on the first 3 votes and more likely to vote

Nay on the last 3. Legislators 6–10 are more likely to vote Nay on the first 3 votes, and Aye on the

last 3. Legislators 5 and 6 are relative moderates, while bills 3 and 4 are relatively noncontroversial.1

We fit both SFA and a topic model to a draw of the vote data. In order to fit a topic model, we

assume each legislator uttered six “terms” representing their vote and the bill number. For example,

1 Specifically, let si = {−4.5,−3.5, . . . , 4.5} and wj = {−2.5,−1.5, . . . , 2.5}. We drew Ylj ∼ Bern (Φ(siwj/2)) .
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SFA Results Topic Model Results

Dimension Most Preferred Bill
Topic 1 Topic 2 Topic 3

Displacements Outcomes Weights

0.24 0.87 1.19 Nay on 2 Nay on 4 Aye on 1
0 1.02 0.84 Nay on 1 Nay on 6 Nay on 5
0 1.02 0.57 Aye on 4 Aye on 2 Aye on 2
0 1.02 -0.60 Aye on 6 Aye on 3 Aye on 3
0 0.36 -1.06
0 0.14 -1.03

-1.02
-0.95
-1.11
-1.35

Table 1: Results from SFA and a Topic Model on the Simulated Dataset.

if the legislator voted Nay on vote 4, we assume that they said “Nay on 4,” and enter that into

a topic model as a unique word. Each legislator then uttered six elements from the set {“Aye on

1”, “Nay on 1”, “Aye on 2”, “Nay on 2”, . . ., “Aye on 6”, “Nay on 6”}, one of either “Aye” or

“Nay” on votes 1-6. We implemented the EM version of SFA and also gave the same data to the a

Structural Topic Model, as implemented in stm. We fit a three-topic model to the data. Four-, five-,

and six-topic models returned qualitatively similar results.

The left three columns of Table 1 contain the results from SFA. The first column contains the

estimated posterior mode, and only the first dimension has a non-zero mode. The next two columns

contain each legislator’s ideal points and the bill estimates. SFA returns estimates of the underlying

structure, correctly recovering the unidimensional structure of the data generating process, and

identifying legislators 1-4 and 7-10 as relative extremists at opposite ends of the spectrum. SFA

also successfully identifies the relatively moderate legislators, 5 and 6, and correctly notes which

proposals will draw support from which legislators.

The rightmost three columns of Table 1 report the topic model estimates, presenting the first

four terms of the three fitted topics. Consider the first topic. Legislators that vote Nay on votes 1

and 2 are likely to vote “Aye” on votes 4 and 6. Similarly, considering the second topic, legislators

12



who vote “Nay” on votes 4 and 6 are likely to vote “Aye” on votes 2 and 3. The topic model is

returning surface traits–“symptoms” of an underlying ideological dimension, but not the dimension

itself.

Topic models provide an excellent tool for summarizing word co-occurrence if the goal is primarily

descriptive (e.g., ?). If, on the other hand, the researcher seeks to identify the underlying structure

of the source of the observed behavior, whether it is speech or voting, then SFA provides a clearer

picture.
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