AltiVec™: Bringing Vector Technology to the PowerPC™

Processor Family

Jon Tyler, Jeff Lent and Anh Mather, Huy Nguyen
Motorola Incorporated
6200 Bridgepoint Pkwy,

Bldg.4, Austin, TX 78730, USA

Abstract

Motorola’s AltiVec™ Technology provides a new,
SIMD vector extension to the PowerPC™ architecture.
AltiVec adds 162 new instructions and a powerful
new 128-bit datapath, capable of simultaneously execut-
ing up to 16 operations per clock. AltiVec instructions
allow parallel operation on either 8, 16 or 32-bit inte-
gers, as well as 4 IEEE single-precision floating-point
numbers. AltiVec technology includes highly flexible
“Permute” instructions, which give the data re-organi-
zation power needed to maintain a high level of data
parallelism. Fine grained data prefetch instructions are
also included, which help hide the memory latency of
data hungry multimedia applications.

All of these features add up to a dramatic perfor-
mance improvement with the first implementation of
AltiVec technology: routines written with AltiVec
instructions can execute significantly faster, sometimes
by a factor of 10 or more, than traditional scalar Pow-
erPC code. Yet AltiVec technology is flexible enough to
be useful in a wide variety of applications.

1: Introduction

Microprocessor performance has always been a dif-
ficult metric to measure. Clock frequency is often corre-
lated to, and confused as, microprocessor performance.
But, as clock frequency increases, this correlation
becomes less clear. If a microprocessor can run at twice
the frequency, but has twice the pipeline stages, the per-
formance gain is hazy at best. Often a microprocessor
architect has to make a trade-off between the clock fre-
quency, and the number of instructions per cycle(ipc).

In addition to clock frequency, design teams have
come up with numerous ways of increasing micropro-
cessor performance. One popular way is to add multiple
execution units. Motorola has increased the perfor-
mance of PowerPC Microprocessors with the addition
of a vector execution unit. The vector execution unit
enables the processor to execute Single Instruction Mul-
tiple Data (SIMD) extensions of the PowerPC architec-
ture and is called AltiVec technology [1].

The first microprocessor to include the AltiVec

0-7803-5258-0/99 $10.00 © 1999 IEEE

technology is Motorola’s fourth generation PowerPC
microprocessor[2]. The addition of AltiVec technology
enables the PowerPC microprocessors to concurrently
address high bandwidth data-processing and algorithmi-
cally intensive applications.

2: Organization

AltiVec Technology adds 162 new instructions and
a new 32 entry, 128 bit vector register file to the Pow-
erPC microarchitecture. The operands of these new
instructions are 128-bit wide vectors, and can be subdi-
vided into either 16, 8-bit integers, eight, 16-bit integers,
four, 32-bit integers, or four, 32-bit single-precision
floating-point numbers as seen in Figure 1. The instruc-
tions operate on either one, two, or three operand input
vectors from the Vector Register File (VRF). Vector
instructions are dispatched to the Vector Execution Unit
in parallel with instructions dispatched to the scalar
fixed-point, scalar floating-point, or load/store units.
Data for dispatched vector instructions is stored in the
VRE, separate from the scalar register files, and results
are placed on separate Vector Rename Buses.

Motorola’s fourth generation PowerPC micropro-
cessor has a short pipeline and dual dispatch design sim-

ilar to the current PowerPC 750™ microprocessors [3].
It adds to that a powerful new memory subsystem, a
faster floating point unit, and the new vector execution
unit and register file. By including a separate register
file, AltiVec technology supports a 128-bit datapath
without sacrificing the total number of registers avail-
able to the vector execution units. This simplifies com-
piler instruction scheduling, minimizes stalls in the
pipeline caused by resource limitations, and eliminates
context switching performance penalties when mixing
vector and scalar instructions.

AltiVec operations include integer addition and
subtraction (with and without carry-out); multiply odd
and even (eight and 16 bit only); multiply and add (high
or low, with or without rounding, 16 bit only); multiply
sum (eight or 16 bit only); average; sum across (32 bit
only); sum across partial; logical AND, OR, XOR, AND
with complement, and NOR; element rotate left; ele-

437

ment shift left or right; 128-bit shift left or right; com-
pare equal-to; compare greater-than; conditional select;
shift left or right by octet, shift left double (two 128-bit
concatenated vectors) by octet; maximum; and mini-
mum. In addition, many of the operations can act on
signed or unsigned operands and can produce modulo or
saturated results. The multiply and add high can be used
for fractional fixed-point numbers instead of integers.
128 bits »!

e
Lt ittt

Figure 1: Vector Operand Format

Operations on single-precision, floating-point num-
bers include addition and subtraction; multiply-add;
compare equal-to; compare greater-than; compare
greater-than or equal-to; compare bounds; maximum,;
minimum,; reciprocal estimate; reciprocal square root
estimate; log2 estimate; 2 raised to the exponent esti-
mate; negative multiply-subtract; round to floating-point
integral (with selective rounding modes); convert from
fixed-point word; and convert to fixed-point word with
saturation. Because there is no separate multiply instruc-
tion, in order to perform multiply-only operations, a reg-
ister with zeros must be used for the add operand of a
multiply-add instruction.

The vector execution unit, as implemented, can be
thought of as two additional execution units of the Pow-
erPC microprocessor: the Permute Unit and the Vector
Arithmetic Logic Unit (Vector ALU) as shown in Figure
2. The Vector ALU can be further divided into three sep-
arate execution units: the Vector Simple-fixed Unit
(VSFX), the Vector Complex-fixed Unit (VCFX), or the
Vector Floating-point Unit (VFPU). Vector load and
stores are handled by the existing scalar load/store unit.

Vector instructions are assigned one of six Vector
Rename Buses at dispatch time, and sent to either the
Permute Unit, or Vector ALU. The Permute and Vector
ALU may both be dispatched to simultaneously. If a
required vector register is not available for the dis-
patched instruction, the instruction is held in one of two,
single entry reservation stations. One reservation station
is for the Permute unit, while the other handles the Vec-
tor ALU. When the needed resources become available,
the instruction is then sent to the corresponding execu-
tion unit.

Both the Permute and Simple Fixed unit will then
execute the instruction in one cycle, while the Complex
unit will execute in three cycles, and the VFPU will exe-
cute in four. Each execution unit places its results on the
assigned Rename Bus. These rename buses have
“keeper” circuits that allow them to act as rename regis-
ters. Data on a rename bus has two possible destina-
tions: it can either be transferred back to the register file
for later computations or memory accesses, or it may be
forwarded directly to the inputs of one of the four vector
execution units for subsequent instruction execution,
thereby decreasing the latency time for data dependen-
cies between instructions.

Vector
Register
- File

Store Data

To
Load/Store Unit

—_—— =] —_ —_—— b - =
I-Perm ute —{ T Vector 1
I" unit | ALy |
I |
l 'Yy Vv ! YYYY I
Operand A | b Operand A

I Operand B [Operand B I
| Operand C | Operand C |
| —J - — 4 |
| : |
|| vector § 1 ysex]| veex | veru | !
| Permute | |
I R I IS S R

Load data

From

Load/Store

Unit

A \/

Vector Rename Buses

Figure 2: Vector Execution Unit Block Diagram

3: The Vector Permute Unit (VPERM)

As vector units get wider, more work must be done
to line up data before the vector unit can operate on it.
Here the permute unit provides all the power necessary.
Permute instructions shuffle data from any of 32 byte

438

locations in 2 operands to any of 16 byte locations in the
destination register. Permute instructions all have a one
cycle latency, and can be dispatched and executed in
parallel with other execution units.

It can be seen in Figure 3 that a major portion of the
Permute unit is a 32 byte to 16 byte crossbar switch net-
work. Each byte of the result vector can receive a data
byte from any of the bytes of Operand A or B depending
on the executing instruction. The result mux is used to
determine whether the instruction being executed gets
its result from the crossbar network, a saturated value, or
from a pixel operation. Saturated values are derived
from pack instructions having source data-size that is
not representable in the target. Pixel pack and unpack
instructions are bit-level operations that can not be gen-
erated by the crossbar network; dedicated pixel logic is
present that bypasses the crossbar network to the result
mux.

Instruction

VA Operand
VB Operand

Decode

) VC Operand

Y ¥

Crosisbar 32 byte to 16 byte
Gesni ‘re:ttion crossbar switch
network
/
Byte and
pixel Saturated
saturation values
detection l
, Y
\——\ Result MUX 7

To rename bus
Figure 3: Permute Unit Block Diagram

The vector permute unit has many powerful appli-
cations. For example, the vperm instruction can be used
by itself as a small parallel table lookup, as shown in
Figure 4. The instruction vperm, for each destination
byte, selects a byte in VA or VB, depending on the value
in the control vector VC. (See the AltiVec Programming
Environments Manual for a completé description of all
AltiVec technology instructions [4]).

32 entry table T[0..31] in 2 vector registers vl and v2

Vi1 V2
o T e] -.- | IGER | G U D
]

L“—,n...

V3 foJuJz Jo [Is Jie J7 Js Jo Jaofshufriafuefns]

T

16 parallel indices

vperm V4,V1,V2,V3

T4 .-

V4 [Jwn [t] ...

[Tiis1)

- 16 parallel table lookups done in one cycle

- This can be extended to larger tables by chaining together a series of
vperm instructions.

Figure 4: Parallel Table Lookup

Although there is no explicit Matrix Transpose
instruction, Figure 5 shows how the permute unit can do
a 4x4 word transpose with just 8 single-cycle instruc-
tions.

The permute unit is frequently used in almost all
AltiVec technology code, setting up data for other pow-
erful vector operations.

/* Initial matrix in V1..V4 */

vmrghw V5,V1,V3
vmrglw V6,V1,V3

vl hlja2ia3 a4
v2 blp2p3b4

v3 clc2k3c4 vmrghw V7,V2,V4
v4 d1id2d3ld4 vmrglw V8,V2,V4
vSjalkl@a2ic2 vmrghw V9,V5,V7
V6 h3lc3hd k4 vmrglw V10,V5,V7
v7 bldib2ld2 vmrghw V11,V6,V8
V8 b3ld3b4ld4 vmrglw V12,V6,V8

vO hib1k1 k] /* transposed matrix in V9..V12 */

v10@2b2ic2id2
v11@a3p3k3d3
v12h4pdkcaid4

Figure 5: Matrix Transpose

4.The Vector Simple Fixed-point Unit
(VSFX)

Except for vector multiply and sum across instruc-
tions, the VSFX implements all integer instructions as
defined by the AltiVec technology. In addition, it imple-
ments the vector floating-point compare and vector min-
imum/maximum floating-point instructions because
these instructions can use the same dataflow as used for

439

their vector integer counterparts. All instructions exe-
cute in the VSFX in a single cycle. Figure 6 shows a
block diagram of one 32-bit slice of the VSFX unit (the
unit is implemented as four separate 32-bit datapaths).

The VSFX unit shares the reservation station with
the VCFX and VFPU units. The VSFX unit comprises a
Shift/Rotate block which executes vector integer bit-
wise shift/rotate instructions, a Logic block which exe-
cutes vector integer logical instructions, and an Add/
Compare block which executes the remaining add, sub-
tract, and compare instructions. Once all operands are
available in the reservation station, the VSFX unit exe-
cutes the instruction in one of the three blocks and
writes the result to one of the six vector rename buses at
the end of the execution cycle.

instruction
dispatch buses

vector
rename buses
VRF
Vector ALU
Reservation Station
;' Tvsex — [j,
| | Shift/Rotate |
Y
[l Logic '
I Y I
| rAdd/Compare |
L — e e — e — —_ = -] J
+ v
to Vector ALU v
to other units Complex Fixed-point to/from

and Floating-point units other units
Figure 6: VSFX Block Diagram

A challenge associated with the VSFX hardware
design is the ability to handle different data lengths
(byte, half-word, word) as defined by the AltiVec tech-
nology. To handle different data lengths, the Shift/
Rotate block uses separate 8-bit, 16-bit, and 32-bit
shifters for byte, half-word, and word operations respec-
tively, because different data portions in vector integer
shift/rotate instructions can have different shift amounts.
Depending on the data length of the current vector inte-
ger shift/rotate instruction, the results from the separate
shifters are multiplexed producing the final result of the
Shift/Rotate block.

The Logic block does not require any special extra
hardware to handle different data lengths because all
vector integer logical instructions are bit-wise opera-
tions.

In the Add/Compare block, it is possible to use sep-

arate 8-bit, 16-bit, and 32-bit adders for byte, half-word,
and word operations respectively, but the required chip
area would be expensive. To meet area constraints, each
word slice of the Add/Compare block uses a single 36-
bit adder to handle different data lengths. The 36-bit
adder inputs are divided into four segments of nine bits
each as shown in Figure 7. Each 9-bit segment contains
the 8-bit A or B operand data and an extra bit used to
either block or propagate the carry to the next segment,
depending on which data length the instruction operates
on.

For example, if the instruction operates on byte
data, then the extra bit, forced to a binary 0, blocks the
carry from one byte segment to the next; if the instruc-
tion operates on word data, then the extra bit on the
intra-word byte boundaries, forced to a binary 1, propa-
gates the carry. The extra bits are also used to force car-
ries into a data segment in subtraction or comparison
operations. The extra bits are easily and quickly gener-
ated at instruction dispatch time.

2627 28 35

01 8910 171819
&l A(oﬂ;;] A@.15)][ace.29) | A(24..31)‘|
To1 8910 171819 262728 35
- [B0.7) [ﬁ lB(S..15)[] B(16..23) EE(24..3ﬂ
01 8910 171819 262728 35

M S(0..7) HS(B.JS) H S(16..23)[i S(24..31)]

Figure 7: 36-bit Addition for Byte, Half-Word, and
Word Operations (One Word Slice)

To meet the chip cycle-time design constraint, the
36-bit adder is designed using dynamic circuitry. In
addition, it is fully customized to generate very fast
carry outputs at segment borders needed in timing-criti-
cal saturation and greater-than/less-than detection logic.
The critical timing path of the VSFX hardware is one
which passes through the Add/Compare block.

The VSFX unit performs many intra-element oper-
ations such as addition, subtraction, average, minimum,
maximum, comparison, shift, rotate, and logical opera-
tions. These operations support both saturation and
modulo arithmetic. They also support both signed and
unsigned integers. These flexibilities, along with wide
datapaths and wide field operations, help make VSFX
instructions powerful in many 3D graphics, audio and
video kernels.

One programming example of using VSFX instruc-

440

tions is the sum of absolute differences (SAD) function,
which is used in several video coder implementations
such as MPEG2 and H.263. This function compares the
similarity of two blocks of pixels in the motion estima-
tion algorithms. When the sum of absolute differences
between the respective pixels in two blocks is zero, the
blocks are then identical, and a motion vector is estab-
lished to indicate where to obtain this block from the
previous frame. In video coding, motion estimation is
often very computationally intensive; therefore, reduc-
ing the time to compare two blocks can significantly
increase the application performance. For 16x16 blocks
of 8-bit pixels, the SAD is computed by

15 15

SAD(U, V) = 3 Y |U(x,y)-V(x,y)l

x=0y=0

where
X, y are spatial coordinates in the pixel domain,
U, V are arbitrary 16x16 blocks in adjacent
picture frame.

Although AltiVec technology does not provide a
dedicated instruction for SAD, it can be computed very
quickly by using a few general purpose VSFX instruc-
tions as follows:

/* V1 contains SAD */

/* V2 contains U(x, y) */

/* V3 contains V(x, y) */

/* Repeat this 16 times for a 16x16 block */

vmaxub V4,V2,V3 /*largerof U, V */
vminub V5,V2,V3 /*smallerof U, V */
vsububm V6, V4, VS /* absolute difference */
vsumdubs V1, V6, V1 /* accumulate result */

This is graphically illustrated in figure 3.

vz v3
o ot o2 Joa Jos Jos Juo o7 s oo it ifurdurturdhond foJor fo2 [os Jos Jos Tvs [s oo v fridvigfridng
o

max min
V4 ‘ V§
folt 2 Jus b5 fus o7 bs o Judvvipidvcidug [ofurvo s e s fro B e oo Fudot fordvidhid

subtract

Figure 8: Sum of Absolute Differences

Alternatively, motion estimation can be done using
a sum of absolute differences squared algorithm. In this
case, vmsumubs can be used to do the multiplication
and summation, providing a faster overall function [5].

Another programming example of using VSFX
instructions in video coder implementations is the quan-
tization function. Quantization for a H.263 video
encoder can be implemented as follows:

q = sign(prev_q)*((abs(prev_q)-ql/2)/(2*ql)
= (prev_g-sign(prev_q)*ql/2)/(2*ql)
= prev_g/(2*ql)-sign(prev_g)/4

where

q is the quantized value (-127 <= q <= 127),

prev_q is the output of the previous DCT stage
multiplied by 4,

ql is the quantization level,

sign(prev_q) is -1 if prev_q <=0; otherwise, it
is 1.

The above quantization function can be imple-
mented with VSFX instructions as follows:

/* V2 contains gl value */

/* V3 contains input vector */

/* V5 contains constant 2 */

/* V12 contains the constant -128 */
/* V10 contains constant 0 */

/* VO contains constant 1 */

/* Repeat this 8 times for 8 lines */

vsubshs V20,V10,V3

vmaxsh V21,V20,V3 /* V21=abs(V3) */
vmhraddshs V7,V21,V2,V10 /* prev_qg*(2/ql) */
vempgtuh Vv22,V7,V10

vaddshs V7,V7,V22 /* add -1 for non-zero */
vempgtsh V4,V10,V3

vsubshs V1,V4,V0

vor V4,V4,V1 /* V4=sign(prev_q) */
vsrah V9,V1,V5 /* scale result by 4 */

vmladduhm V9,V9,V4,V10 /* mul with sign */

Another powerful usage of VSFX instructions is the
combination of compare and select instructions to mask
and replace data elements across the entire 16-byte field
of vector registers. For example:

/* V10=V0>V1 */
/* V11=V1>V2 */

vempgtfp V10, VO, V1
vempgtfp V11, V1, V2

/* V20=(VO>V1)? V1, V2 */
/* V21=(V1>V2)? V1, VO ¥/
vsel V20, V2, V1, V10
vsel V21, V0, V1, V11

441

This is graphically illustrated in figure 4.

Vo Vi V2
| I ST PR (N I TR TR N R T | T |
VO >V1? Vi>Vv2?
V10 Vi1
‘e ‘me we | Falie | [fue”_ Jralsc Jime | False
Vi Vi
y3 1 y3
v2 Vo
20 1 b2 |3 1]} 1 [x2 [x3

x0>y0] at>yl} x>y} xi<myd| ymaof yicent| y2or2| y3<ms3

V20 V21

0 1 22 I x0 1 x2 y3

Figure 9: Combination of compare and select

This technique can be used for video masking and
3D clipping functions. In addition, compilers can also
use this to eliminate some branch instructions by com-
puting both paths of the branch in parallel. Then, the
correct results can be selected using the select instruc-
tion.

5: The Vector Complex Fixed-point Unit
(VCFX)

The VCFX unit performs the SIMD multiply, mul-
tiply-add, multiply-sum and sum across type operations.
These instructions operate on eight, 16, and/or 32 bit
widths and execute with a three-cycle latency and a one-
cycle throughput. The inter-element operations, includ-
ing multiply-sum and sum across, allow for elements
within a single register to be summed in combination
with a separate accumulation register, useful in many
common vector code sequences, including dot-product
algorithms.

The VCFX is implemented as four 32-bit datapaths.
Each of these datapaths contains a separate multiply-add
structure for the even and odd halfwords. Figures 10 and
11 show the odd and even data paths, respectively, for
one word of the complex unit. All four words are simi-
lar, with the exception that words one and three have
extra inputs for operand A, used in the sum across func-
tion.

Each of the halfword multiply structures is able to
perform simultaneous dual even and odd byte multiplies
(8x8) or a full halfword multiply (16x16). The results of
the multiplies are selectively added together with several
other terms to give the many combinations of multiply,
multiply-add and sum functions. The partial product
array within each halfword multiply structure is assem-
bled as set forth in [6]. Carry save adder (CSA) trees

combine these partial products for all three data paths.
Partial results are shared between halfwords, allow-

ing operations such as summation. Final results can be

either saturated or modulated, depending on instruction

type.

Booth encoder

8 even partial products

] Other Terms:
[| opC [word]
CSAs CSAs / CSAs 7 opA [word 0]
(8x8) / (8x8) / (16x16) opA [word 1]
constant/
correction
— —

E mux / add /
Resuilt to odd

mux: halfword structure

8x8 select

To result select
Figure 10: Even Halfword Structure

Booth encoder
Other terms: |

- opC [word . , opC [word]
- ogB [[word]] 8 odd partial prod’s
- opA [word 2] l_L—l_l
- opA [word 3] 7
CSAs CSAs CSAs
- constant/ Lﬂﬁﬂ 6 / / (8x8) / (8x8)]
correction
Result from
even half

mux / add

mux:
8x8 select

To result select
Figure 11: Odd Halfword Structure

The complex unit provides a wide variety of
instructions, many of which take the place of a large
number of scalar instructions: vmsumubm can do the
work of 16 multiplies and 16 adds! This sort of power
allows entire routines to be replaced by one or two
instructions. In the sum of absolute differences example
described earlier, 256 values needed to be summed in
the scalar version. With AltiVec technology, this can be
computed with just 17 instructions (16 vsum4ubs

442

instructions to accumulate the partial sums, and one
vsumsws to combine them at the end). Since the com-
plex unit has the ability to sum across elements of the
same vector, it eliminates the need for permute instruc-
tions for many common operations.

6: The Vector Floating Point Unit (VFPU)

The VFPU can perform four simultaneous single-
precision floating point operations. Similar to the scalar
floating point unit, the VFPU is organized around a
Multiply-Add Fused primitive [7]. The unit has a four
cycle latency for all instructions except compares, and it
is fully pipelined for a one cycle throughput. Floating
point compares are done in the VSFX unit and have only
a one cycle latency and throughput.

The VFPU operates according to a subset of the
IEEE floating point standard [8]. It treats all arithmetic
results as round to nearest, and it disables all special
floating point exceptions. Denormalized numbers are
properly handled in Java-mode by a special trap routine,
at the cost of extra execution time. However, for most
media and graphics applications, the level of accuracy
provided by denormalized numbers is not necessary. For
these cases, a non-Java mode is provided, which treats
denormalized inputs as zero and forces denormalized
results to zero. In non-Java mode, all VFPU instructions
take exactly 4 cycles to execute, and there are no special
trap or stall conditions.

Wait for Operand(s)

r,— - - - = :—7F2 'Il'3 "II"4 1

1 -

| \ N T R .
| Mult Il [[I
|Bvpass((1) EH o
| stir o
| 2) (add) w10 111
| s
| g
] Norm I I I |
| e
| T
| rit T
[ac [I T Y
| N I N B
L e e e e = — Je - JL em dJdL —J

Figure 12: VFPU execution stages

Most of the arithmetic instructions are performed in
the Multiply-Add-Normalize-Write Back dataflow
engine. The remaining floating-point instructions and
special cases are handled outside of the MAF flow. The |
state diagram of the VFPU is shown in Figure 12.

Floating point code is generally more regular than
integer code, and it usually operates on larger data sets
and matrices. For these reasons, converting floating
point code to vector form is often an easier task than
with integer code.

As an example, 4x4 matrix multiplied by a vector
can be implemented with vspltw and vmaddfp, and
gives a performance gain of over 3.5 times its scalar

443

counterpart.
vs Vl 200 01 202 a0
VZ alo al al2 3
m_ _m x V3 20 21 a2 23
V4 30 a3l 32 33

Which is equivalent to the following four sums:

b0 * a00 b0 * a0l b0 * a02 b0 * a03

+ (bl * al0) + (bl *all) + (bl *al2) + (bl *al3)

+ (b2 *a20) +(b2*a2l) +(b2*2a22) +(b2*a23)

+(b3%*a30) +(b3*a3l) +(b3*a32) +(b3*a33)
cl c2 c3 c4

/* VO contains the constant zero */

/* V5 contains the vector b */

/* V1..V4 contain the rows of the matrix a */
/* result will be in V20 */

vspltw V10, V5, 0 /* make vec b0 b0 b0 b0*/
vmaddfp V20,V10,V1,V0

vspltw V11, V5, 1 /* make vec bl bl bl bl*/
vmaddfp V20,V11,V2,V20

vspltw V12, V5, 2 /* make vec b2 b2 b2 b2*/
vmaddfp V20,V12,V3,V20

vspltw V13, V5, 3 /* make vec b3 b3 b3 b3*/
vmaddfp V20,V13,V4,V20

Figure 13: Multiply Vector x Matrix

The vector floating point unit also has several other
instructions very useful to graphics: Reciprocal esti-
mate has only a 4 cycle latency. Only one Newton-
Raphson iteration is required to produce a full precision
answer [9]. Thus vector divide provides a much faster
alternative than its scalar counterpart.

27x and log2(x) estimate functions are expected to
be useful in fast estimation of lighting effects in many
3D graphics applications. These operations are all very
low latency. This coupled with the fact that four opera-
tions execute in parallel for each instruction make them
extremely powerful.

7: Conclusion

AltiVec technology can speed up many applica-
tions. It has been tested with great success in many
desktop computer applications, including MPEG-type
video encoding, Dolby AC-3 audio, 3D graphics and
video/graphics manipulation routines. Vector loads and
stores, along with new data stream touch instructions,
provide a more powerful way for the processor to move
data around, and can speed up functions such as mem-
ory copies, string compares and page clears.

AltiVec technology is designed to perform very

well in embedded systems, where one PowerPC micro-
processor with AltiVec technology can potentially
replace banks of DSPs or custom ASIC chips. Applica-
tions such as IP telephony gateways, multi-channel
modems, speech processing systems, echo cancelers,
image and video processing systems, scientific array
processing systems, internet routers and virtual private
network servers will all benefit from the additional pro-
cessing capabilities possible from AltiVec technology.

References

[1] Fuller, Sam, “Motorola’s AltiVec Technology,”
http://mot-sps.com/sps/General/altivec_wp.pdf

[2] 1. Alvarez, E. Barkin, C.-C. Chao, B. Johnson, M.
D’Addeo, F. Lassandro, C. Nicoletta, P. Patel, P.
Reed, D. Reid, H. Sanchez, J. Siegel, M. Snyder,
S. Sullivan, S. Taylor, M. Vo, “A 450MHz Pow-
erPC Microprocessos with Enhanced instruction
Set and Copper Interconnect,” ISSCC, Feb. 1999.

[3] Gwennap, Linley, “G4 Is First PowerPC with
AltiVec,” Microprocessor Report, pp 17-19, Nov
16, 1998.

[4] AltiVec Programming Environments Manual, http:/
/mot-sps.com/sps/General/altivec_pem.pdf

[5]1 Mips Extention for Digital Media with 3D, http://
www.mips.com/Documentation/
isa5_tech_brf.pdf, pp 20-21.

[6] S. Vassiliadis, M. Schwarz, B. M. Sung, “Hard-
Wired Multipliers with Encoded Partial Products,”
IEEE Trans. on Comp., pp. 1181-1197, Nov. 1991.

[7] E. Hokenek, R. K. Montoye, and P. W. Cook, “Sec-
ond-Generation RISC Floating Point with Multi-
ply-Add Fused,” IEEE Journal of Solid-State
Circuits, Vol. 25, No. 5, pp. 1207-1213, Oct. 1990.

[8] IEEE Standard for Binary Floating-Point Arith-
metic, ANSIIEEE Standard 754-1985.

[91 M. J. Schulte, J. Omar, and E. E. Swartzlander, Jr.,
“Optimal Initial Approximations for the Newton-
Raphson Division Algorithm,” Computing, vol.53,
pp- 233-244,199%4.

AltiVec is a trademark of Motorola, Inc. PowerPC
and PowerPC 750 are trademarks of the International
Business Machines Corporation, used under license
therefrom. Other company, product, and service names
may be trademarks or service marks of others.

444

