PREVENTING SOFTWARE PIRACY WITH CRYPTO-MICROPROCESSORS

Robert M. Best
16016 - 9 NE
Seattle, WA 98155

Abstract

A crypto-microprocessor executes a program
which is stored in cipher to prevent it from
being altered, disassembled, or copied for use
in unauthorized processors. Each instruction,
just before it is executed, is deciphered by the
crypto-microprocessor under control of one or more
secret encryption keys which are different for
each program. Micraoprocessors lacking these keys
cannot execute an enciphered program or process
enciphered data. Valuable proprietary programs
and data files can thus be distributed in cipher
along with dedicated crypto-microprocessors for
use by numerous and anonymous people, without risk
of piracy or unauthorized alteration of programs.

The Piracy Problem

Protecting computer software from piracy is
becoming crucial for sustained growth in the mini-
and microcomputer industries. Declining hardware
costs coupled with increasing software caosts have
made piracy increasingly attractive, which has
made development of large, comprehensive software
systems increasingly risky. Developers of popular
software find it difficult to protect their
software investment, while manufacturers of small
computers needing software often find it difficult
to justify the risks in developing their own.

Conventional methods of software protection
such as copyright and licensing, while useful for
mainframe systems, are often ineffective for small
computers, especially when the cost of defending
a proprietary software system exceeds its value.
Publishing of software as if it were a copyrighted
book and pricing it low enough to make piracy
financially unattractive, makes heavy investment
in high-quality software equally unattractive.
Instead, what is needed is a protection method
that is cheap and effective, and which prevents
piracy automatically before it happens, rather
than belatedly providing remedies after the damage
is done.

Fortunately, there are essential differences
between a computer program and a book. The book
must ultimately be revealed to the eyes of a
reader, which makes it difficult to both publish
and conceal it. But a program is peculiar in that
it need never be revealed to the end user who
owns and uses a copy of it. Only the internal

CH1491-0/80/0000-0466$00.75 © 1980 |EEE

466

circuitry of the microprocessor need access
the program instructions. Paradoxically, the
internals of a proprietary program can be sold
and yet kept secret at the same time.

Crypto-Microprocessors

Programs can be protected from piracy by
distributing them to users in cipher. An
enciphered program is meaningless to anyone who
tries to analyze it and is also meaningless to
ordinary microprocessors. To execute enciphered
programs a new type of microprocessor is needed:
a "crypto-microprocessor" (henceforth called CMP)
which contains deciphering circuitry and
encryption keys needed to make sense of the
cipher.

An enciphered program can be executed only by
a CMP that contains encryption keys that match the
keys used by the software developer to encipher
the program. These keys are stored by the
developer into a limited number of authorized
CMP's which are sold with copies of the enciphered
programs. A user who has a copy of an enciphered
program and a matching CMP can execute the program
but cannot access the program instructions or the

DATA ADDRESS

8US 8US
BLOCK COMPUTE
BUFFER EFFECTIVE
ADDRESS

BLOCK T i
DECIPHERING |—]—] ws :uugCJéON ADDRESS
CIRCUIT REGISTER

FILE

N———1 SECONDARY
DATA KEY KEY

==l | | L
=

REGISTER
FILE

WNSTRUCTION
DECODE 8
N ADDRESS
t SCRAMBLER [* EXECUTE
DATA
RANDOM ACCESS MEMORY ALy REGSTER

Figure 1. Crypto-microprocessor chip

keys. Although anyone can make copies of an
enciphered program, only CMP's with matching keys
can execute it. Hence, copies of enciphered
programs have no value to a pirate.

CMP's are similar to ordinary microprocessors
except for additional circuitry on each chip which
deciphers instructions and data. A CMP deciphers
each instruction as it fetches it for execution.
but these instructions are not output by the
CMP chip. Hence, they cannot be copied nor
disassembled for use in competing software
products. Unauthorized alteration of the program
is also prevented because such alteration will
cause a CMP to erase its keys and thereby
permanently disable itself.

Figure 1 shows a typical CMP which includes
conventional registers, ALU, an adder for
calculating memory addresses, a fetch-ahead
instruction queue, an instruction decoder, and
execution control circuitry. (The decoder is not
a cryptographic unit, but is rather a conventional
logic array which relates instruction op-codes
to microinstructions in a control store). The
instruction set of a CMP can be identical to that
of an ordinary microprocessor, so that the same
development system can be used for both.

CMP's should not be confused with data
encryption chips such as the Intel 8294 which
are used for secure data communications. Unlike
enciphered messages which are disclosed by
deciphering, enciphered software (cipherware)
is deciphered by a CMP solely for execution
within that CMP and is not disclosed to anyone.
Conventional encryption chips are not suitable
for cipherware because of the ease with which
the owner of an encryption chip can probe the
deciphered information which the chip outputs.

The cryptographic circuitry included on a CMP
chip deciphers blocks of enciphered instructions
as they are being read into the chip and stores

DISK
READER
MEMORY
MANAGEMENT
uNIT
MAGNETIC
M?MORBBLYE MEMORY
Q&%En r" ADDRESSING
Access' l
MEMORY ‘E’:‘é‘l‘;:g: le—s] EXECUTE
CMP
Figure 2. Cipherware system using dedicated CMP

467

plain deciphered instructions into a fetch-ahead
instruction queue. Instructions and data should
be enciphered differently using different keys to
prevent a program from reading and deciphering
itself as data. Different keys should be used for
different programs so that disclosure of the key
for one program will not endanger other programs.
Selective activation of keys can be done by
technicians using passwords without revealing
either the keys or the deciphered instructions.

In multi-Tevel security systems, each Tevel should
use different keys to enforce separation of
levels.

Cipherware Circuit Boards

Dedicated CMP's can be packaged on the same
circuit board (see Figure 2) with read-only memory
or magnetic bubble memory in which an enciphered
program is stored. A dedicated CMP, which
executes a cipherware program stored on the same
circuit bo>rd, need not replace an ordinary
microprocessor, but rather can coexist in the same
computer with other microprocessors which execute
plain unenciphered programs. The CMP/cipherware
package can provide to these other microprocessors
a self-contained proprietary system such as a data
base management system.

An enciphered program can also be distributed
on disc or tape along with a module containing
a CMP which has a matching encryption key. The
program can then be loaded into main memory (still
in cipher) for execution in the CMP.

Proprietary data can also be securely
distributed in cipher on an optically-readable
videodisc or magnetic disc along with the program
that processes it. The program for processing
this enciphered data must itself be in cipher to
prevent a pirate from patching the program to
decipher and output all of the data on the disc.

Encryption Methods

There are several requirements which an
encryption method should satisfy to be suitable
for a CMP. It should be sufficiently fast so that
execution speed is comparable to that of ordinary
microprocessors. Since a program generally
contains loops and jumps, the encryption method
should work in a random-access sequence. The
encryption method should also be impractical to
break. A simple method might deter an amateur,
but a determined pirate could be expected to spend
many hours trying to break the cipher.

Pirates will study the external operation
of an executing program for clues as to what it
contains internally. Reconstructing the program
from these clues should be made just as costly
and time-consuming for them as coding a similar
program independently. Pirates will also
try to trick the processor into disclosing its
instructions by altering bits in the enciphered
program. This can be thwarted by including one or
more self-disabling op-codes in the instruction
set which erase the keys if they are executed. A
pirate attempting to patch an enciphered program

will create random-bit garbage in the instruction
queue. Some of this garbage will include a
self-disabling op-code which will permanently
disable the CMP.

Simple substitution and transposition

There are several encryption methods which
are not suitable for CMP's because they can be
easily broken. Modifying the instruction decoder,
for example, to use op-codes which are different
fram the published op-codes, is easy to break
and does not protect address and data bytes.
Similarly, crisscrossing traces to scramble the
bits in each byte is a transposition method which
is easily broken.

Block ciphers

Very high security can be achieved by
enciphering a program in blocks of 8 bytes using
the 1BM-developed Data Encryption Standard {DES).
Since DES is practically unbreakable, using DES
to encipher programs has the strong advantage of

RANDOM
ACCESS
ADDRESS MEMORY
BUS
DATA
BUS
L BLOCK BUFFER }
P F
MASTER
ADDRESS A
REGISTER KEY
S
A z__l SECONDARY |
@] KEY
+ F
F

ODRESS
REGISTER

SCRAMBLED J‘
Al
D-— |

A A
L
1&
F W
INSTRUCTION
BLOCK BUFFER —— QUEVE

Figure 3. Block cipher for program encryption

468

established credibility. Unfortunately, microcode
implementations of DES are much too slow for
deciphering instructions as they are being fetched
for execution. Random logic implementations of
DES using 16 cycles to decipher each 8 bytes of
program are also too slow:-if CMP performance is to
approximate that of ordinary microprocessors. A
block cipher using fewer cycles is needed.

A block cipher which deciphers 8 bytes in
8 cycles is shown in Figure 3. This design is
similar to DES and uses many of the features of
DES. The boxes labelled "F" are described in
detail in the Federal standard. Each half-block
(4 bytes) is exclusive-ORed to a complicated
function of the other half-block. This is done
alternately right to left, then left to right
for 8 iterations. Each iteration takes one clock
cycle and is controlled by one of two keys. To
change from deciphering to enciphering the two
keys are interchanged. By overlapping bus
addressing, fetch, and deciphering cycles, the
delay introduced by this 8-cycle deciphering
process can be minimized.

At Teast one of the iterations should be
controlled by the address of the block being
deciphered, so that each block is deciphered
differently depending on where in memory it is
stored. This is necessary to prevent a pirate
from rearranging the blocks to execute valid
blocks in an unauthorized sequence or to decipher
unauthorized data in lieu of authorized data.

If block encryption is used for data as well
as program instructions, cache buffering of
deciphered blocks is desirable to avoid repeated
deciphering of the same blocks. Once a block of
data has been deciphered and stored into.a cache
buffer on the microprocessor chip, further reads
and writes to that blaock can be done directly to
the cache buffer instead of deciphering the block
again for each byte. Cache buffering of data can
be avoided by using a polyalphabetic substitution
cipher.

Polyalphabetic ciphers

In polyalphabetic stream ciphers such as
the Vernam, each bit of a message stream is
exclusive-ORed to a bit in a long stream of
quasi-random key bits. Such a system is not
suitable for CMP's because a program must be able
to process data in a random-access sequence.
However, a similar cipher can be produced for any
address sequence by exclusive-ORing each fetched
byte to a scrambled function of that byte's
address. This "scrambled-address cipher" has the
advantages of simplicity and high-speed, and does
not require cache buffering. It is also highly
secure when used with read-only .memory and a good
scrambling function.

This scrambling function can consist of
several alternating stages of half-byte
substitution {similar to the S-boxes used in DES)
and columnar bit transposition. If each addressed
location is used for only one byte value, such a
cipher is effectively a random-access version of

a one-time~key Vernam cipher. This method (which
is used in Figure 1 for deciphering data) is very
fast because cycles used for scrambling addresses
can overiap the external bus addressing cycles.
Exclusive-ORing a scrambled address to a byte can
be done as the byte is being read from the data
bus. Hence no additional cycles are needed and
performance is not degraded.

Uses for Crypto-Microprocessors

CMP's can protect proprietary programs and
data sold to the general public, which have
high development costs, which are difficult for
competitors to reverse engineer, and which do
not require customizing. Such software includes
microcomputer operating systems, data base
management systems, advanced compilers, small
business systems, interactive systems which
access proprietary databases, speech recognition
systems, video graphics systems, etc. In general,
microprocessor software which is likely to be
pirated without protection can benefit from CMP's.

One example of a new application that can
benefit from software protection is an interactive
encyclopedia which is distributed on videodiscs
to users who have videodisc players. A Philips
disc can store a billion bytes which is more
than enough to store 4 sets of the Encyclopedia
Britannica. A billion bytes of software obviously
requires a very heavy investment, especially if
it includes a substantial percentage of program
instructions along with the data. Companies
that currently make databases available through
time-sharing networks, may want to distribute
their data products on videodiscs for restricted
access in microcomputers. CMP's can be used to
insure that such proprietary data is accessible
only for piecemeal inguiries and not for
indiscriminate duplication.

CMP's can also be used to prevent alteration
of sensitive programs by maintenance personnel.
Programs used in automated teller machines
(ATM's), security kernels, secure operating
systems, etc., are not very secure if anyone who
has legitimate access to the wiring connected to a
processor can alter the programs or the hardware
with unauthorized patches and firmware trapdoors.
Such alteration can be prevented by cipherware
executed in a CMP.

Conclusions

The current debate over whether microprocessor
software should be protected by copyright,
trade-secret law, or non-disclosure contracts

may eventually become moot. Anyone who wants to
protect a new program or proprietary data from
anonymous users may choose to encrypt it, thus
gaining protection which is safe and effective and
which prevents piracy automatically before it can
occur. CMP's, by preventing piracy, may encourage
accelerated investment in microcomputer software.
It is simply good business to minimize risk from
piracy so that software can be priced for an
attractive return on investment, and so that sales
volume is not reduced by unfair competition.

469

References

1. Sinkov, Abraham, Elementary Cryptanalysis,
The Mathematical Association of America, 1966.

2. Kahn, David, The Codebreakers, MacMillan,
New York, 1967.

3. Feistel, Horst, W. A. Notz, and J. L. Smith,
"Some Cryptographic Techniques for Machine-to-
Machine Data Communications”, Proceedings IEEE,
Vol 63, No 11, Nov. 1975,

4. Hellman, Martin, R. Merkle, R. Schroeppel,

L. Washington, W. Diffie, "Results of An Initial
Attempt to Cryptanalyze the NBS Encryption
Standard", Stanford University, Sept.-Nov, 1976.

5. "Data Encryption Standard", National Bureau of
Standards, Federal Information Processing Standard
(FIPS) Publication 46, 15 Jan. 1977.

6. Mooers, Calvin N., "Preventing Software Piracy"
COMPUTER, IEEE Computer Society, March 1977,
pp29-30.

7. Pittman, Thomas, "Making it in Hobby Software”,
COMPUTER, June 1977, ppl01-102.

8. DeMillo, Richard A., R. J. Lipton, and

L. McNeil, "Proprietary Software Protection",
Foundations of Secure Computation, R. A. DeMillo,
et al (eds), Academic Press, 1978, ppll15-131.

9. Meyer, Carl H., "Ciphertext/plaintext and
ciphertext/key dependence vs number of rounds
for the data encryption standard", Nat. Computer
Conf. 1978, ppll119-1126.

10. Durniak, Anthony and W. Arnold, "Suits Muddy
Software", Electronics, Jan. 18, 1979, pp88-92.

11. Diffie, Whitfield and M. Hellman, "Privacy and
Authentication: An Introduction to Cryptography",
Proceedings IEEE, March 1979, pp397-427.

12. Goetz, Martin A., "At Stake: Competition,
Growth, Survival", in "The hard fight for software
protection”, Computerworld, Sept. 10, 1979,
In-Depth pages 15-33.

13. Gilligan, John M, "Security Design Issues
for Microprocessor Based Systems", Compcon 79,
Sept. 5, 1979, ppl60-164.

14. Best, Robert M., "Microprocessor for Executing
Enciphered Programs", U.S. Patent 4,168,396,
Sept. 18, 1979.

