
Physics 203, Fall 2003—Final Exam, January 17, 2004

Instructions:

1. Work the problems in the booklets provided with the exam. If you use more than

one booklet, be sure to put your name on each one. Mark the booklets, “1 of

3”,“2 of 3”, etc.

2. There are five problems, all of the same weight.

3. It is possible to do some parts of the problems without doing others. Partial

credit will be given provided your work is shown and can be understood.

4. You may wish to refer to the attached list of useful formulae.

5. You will have three hours from the start of the exam.

6. Be sure to write and sign the pledge in the exam booklet: “I pledge my honor

that I have not violated the Honor Code during this examination.”
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Problem 1

A bead of mass m slides without fiction on a wire whose shape is

z(r) = a(
r

a
)4

The wire rotates about the z axis with constant velocity ω. Earth’s gravity causes

acceleration g along the −z axis.

1. By using cylindrical coordinates, write the Lagrangian of the system.

L = T − U = 1
2
mṙ2 + 1

2
mż2 + 1

2
mr2ω2 −mgz

2. Find the equation of motion for the bead in terms of the coordinate r.

ż = 4 (r/a)3 ṙ; L = 1
2
mṙ2 + 8m(r/a)6ṙ2 + 1

2
mr2ω2 −mga(r/a)4

∂L
dr

= 48mr5ṙ2/a6 + mrω2 − 4mg(r/a)3

∂L
dṙ

= mṙ + 16m(r/a)6ṙ

d
dt

∂L
dṙ

= mr̈ + 16m(r/a)6r̈ + 96mr5ṙ2/a6

r̈ + 16(r/a)6r̈ + 48r5ṙ2/a6 − rω2 + 4g(r/a)3 = 0

3. Find the radius of the circular orbit. Check whether this orbit is stable.

For circular orbit ṙ = 0, r̈ = 0; −r0ω
2 + 4g(r/a)3 = 0; r0 = ω

2
(a3/g)1/2

4. If it is stable, find the frequency of small oscillations about this orbit.

Take r = r0 + A sin Ωt

−[1+16((r0 +A sin Ωt)/a)6]AΩ2 sin Ωt+48(r0 +A sin Ωt)5A2Ω2 cos2 Ωt/a6−(r0 +

A sin Ωt)ω2 + 4g[(r0 + A sin Ωt)/a]3 = 0
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We need to get a solution to first order in A.

−[1 + 16(r0/a)6]AΩ2 sin Ωt− A sin Ωtω2 + 12gr2
0A sin Ωt/a3 = 0

−[1 + 16(r0/a)6]Ω2 − 4gr2
0/a

3 + 12gr2
0/a

3 = 0

Ω2 = 8gr2
0/a

3[1 + 16(r0/a)6]

Since Ω is real, the orbit is stable

5. Is the angular momentum conserved in this system?

No, the wire applies a torgue to the particle forcing it to rotate at a contant

angular velocity.
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Problem 2

k wall

Xmass M
α

mass m
D

A block of mass m slides with no friction down a ramp of mass M and height L.

The ramp is attached to the wall by a spring with spring constant k.

1. Write the Lagrangian of the system in terms of X, the distance of the ramp from

the wall, and of D, the distance of the object from the top of the ramp.

L = T − U = 1
2
MẊ2 + 1

2
m(Ẋ + Ḋ cos α)2 + 1

2
mḊ2 sin2 α− 1

2
kX2 + mgD sin α

2. Write the coupled equations of motion for these generalized coordinates.

∂L
dẊ

= (M + m)Ẋ + mḊ cos α

∂L
dX

= −kX

∂L
dḊ

= mḊ + mẊ cos α

∂L
dD

= mg sin α

(M + m)Ẍ + mD̈ cos α + kX = 0

mD̈ + mẌ cos α−mg sin α = 0

3. Suppose that α is small, indeed take it to zero for the purpose of this calculation.

For α = 0, find the eigenfrequencies and the normal modes.

[This exercise should make it plausible that, under appropriate conditions and at

least for small α, the block can we made to slide up the ramp.]

(M + m)Ẍ + mD̈ + kX = 0

mD̈ + mẌ = 0

Take X = X0e
iωt, D = D0e

iωt

4



∣∣∣∣∣
−(M + m)ω2 + k −mω2

−mω2 −mω2

∣∣∣∣∣ = 0

−mω2[−(M + m)ω2 + k]−m2ω4 = 0

Solutions ω = 0 and −(M + m)ω2 + k + mω2 = −Mω2 + k = 0, ω2 = k/M

Eigenvectors for ω = 0: X = 0, D = D0 + D1t

Eigenvectors for ω2 = k/M : X = X0, D = −X0

As expected for horizontal slope, the first mode corresponds to a stationary mass

M and mass m moving with uniform velocity, the second mode corresponds to

oscillating mass M and stationary mass m.
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Problem 3

A string of length l, linear mass density ρ and tension τ is fixed at one end x = 0.

At x = l there are two massless vertical springs, one above the other, as in the picture.

The springs both have spring constant k.

string k
spring

spring

x=0 x=l

k

1. Write the one dimensional wave equation and show that

q(x, t) = [A sin kx + B cos kx]eiωt

is the general solution of this equation.

(Obviously, k here is the wave number, not to be confused with the the spring

constant k.)

Wave equation: ∂2q
∂x2 − 1

v2
∂2q
∂t2

= 0

−k2[A sin kx+B cos kx]eiωt + ω2

v2 [A sin kx+B cos kx]eiωt = 0; v = ω/k = (τ/ρ)1/2

2. Find the solution (i.e. determine B and k) when k = ∞, i.e. the string is fixed

at x = l.

The string is fixed at both ends: B = 0, sin kl = 0; k = nπ/l, n = 1, 2, 3...

3. Find the solution when k = 0, i.e. when the string is free at x = l, with
dq
dx
|x=l = 0.

Now dq
dx
|x=l = A cos(kl) = 0, k = nπ/2l, n = 1, 3, 5

4. Write the boundary conditions for generic a k, i.e. 0 < k < ∞.
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If the string is displaced by distance q,the force from the springs is equal to F =

−2qk. This force is compensated by the tension F = τ sin θ, where θ is the slope of

the string at x = l and dq
dx
|x=l = tan θ. If the oscillations are small, sin θ = tan θ.

dq
dx
|x=l = −2qk/τ

5. Find the condition on k for the solution to satisfy the boundary condition in (4).

A cos(kl) = −2A sin(kl)k/τ

tan(kl) = −τ/2k
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Problem 4

The three principal axes of a tennis racket are (1) along the handle, (2) perpendicular

to the handle in the plane of the string and (3) perpendicular to the handle and strings.

The moments of inertia are in the following relation

I1 < I2 < I3

When a tennis racket is tossed in the air with a spin in the direction of either axis (1)

or (3), the racket continues to spin uniformly about the initial axis and can be easily

recaught. However, if the initial spin is around axis (2), the motion rapidly becomes

irregular, and it is hard to catch the racket. Explain this behaviour by following the

steps below:

1. Write Euler’s equation for the torque-free motion of the racket, starting from the

equation L̇+ ω×L = 0, where L is the angular momentum in the principal-axes

coordinate system.

2. Show that the motion is stable around axis (1) and (3).

3. Show that the motion is unstable around axis (2).

See section 11.12 of textbook for derivation
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Problem 5

A rocket is fired from the ground toward East with initial velocity vo, at an angle α

above the horizontal and at a latitude λ.

Assume that the height of the rocket trajectory is much smaller than the radius of

the Earth.

1. Ignoring earth’s rotation, how long will the rocket be in the air, and how far does

it land?

Usual kinematics with x̂ in the East direction and ŷ in the local vertical direction

vx = v0 cos α; x = v0t cos α

vy = v0 sin α− gt; y = v0t sin α− gt2/2

The duration of the flight T = 2v0 sin α/g and the range R = 2v2
0 sin α cos α/g

2. Now, taking into account Coriolis’ force, answer the same questions as above.

The Coriolis force is Fc = −2mω × v. The rotation is in the north direction. At

latitude λ, ωy = ω sin λ, ωz = −ω cos λ

We get Fcx = 2mvyω cos λ, Fcy = −2mvxω cos λ, Fcz = −2mvxω sin λ

Modified equationsof motion:

ÿ = −g − 2vxω cos λ = −g − 2v0ω cos α cos λ

y = v0t sin α− (g + 2v0ω cos α cos λ)t2/2

The total time in the air is T = 2v0 sin θ/(g + 2v0ω cos α cos λ)

ẍ = 2vyω cos λ = 2(v0 sin α− gt)ω cos λ

ẋ = v0 cos α + 2(v0t sin α− gt2/2)ω cos λ

R = v0T cos α + (v0T
2 sin α− gT 3/3)ω cos λ

3. In which direction and by how much is the rocket deviated from the east direction?

z̈ = −2vxω sin λ = −2v0ω cos α sin λ

z = −v0ω cos α sin λT 2,deviated in the north direction.
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Potentially Useful Relations

τ = L̇ + ω × L L = (I1ω1, I2ω2, I3ω3)

ds2 = dr2 + r2dφ2 + dz2 ds2 = dr2 + r2dθ2 + r2 sin θ2dφ2

∫ τ
2

− τ
2

cos nωt cos(mωt)dt =
τ

2
δn,m

∫ τ
2

− τ
2

cos(nωt) sin(mω)tdt = 0

d

dt

∂L

∂q̇
− ∂L

∂q
= 0

∑

j

q̇j
∂L

∂q̇j

− L = H L = T − V ṗk = −∂H

∂qk

q̇k =
∂H

∂pk

∆φ =
∫ ∞

rmin

dr

r2
√

2m
`2

(E − V )− 1
r2

Etotal =
1

2
mṙ2 + V (r) +

`2

2mr2

xp(t) =
A cos(ωt− δ)√

(ω2
o − ω2)2 + 4ω2β2

F (t) =
1

2
ao +

∑
n

(an cos nωt + bn sin nωt) ω =
2π

τ

an =
2

τ

∫ τ
2

− τ
2

F (t) cos(nωt)dt bn =
2

τ

∫ τ
2

− τ
2

F (t) sin(nωt)dt

r(θ) =
α

(1 + ε cos θ)
α ≡ `2

mk
ε ≡

√
1 +

2E`2

mk2

F = −dV

dr
Veff = V (r) +

`2

2mr2

sin x = x− x3

3!
+ ... cos x = 1− x2

2
+ ... (1 + x)n = 1 + nx + ...

rmin = a(1− ε) rmax = a(1 + ε) E = − k

2a

τ 2

a3
=

4π2µ

k
k = GmM

d2

dθ2
(
1

r
) +

1

r
= −µr2

`2
F (r)

τ = r × F ; L = r × p; τ =
dL

dt

Ffict = −2mω × v −mω × (ω × r)

ẍ + 2βẋ + ω2
ox = A cos(ωt) δ = tan−1 2ωβ

ω2
o − ω2
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