
Physics 205—Final Exam Fall 2003
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1) (40 pts) A plane pendulum consists of
a bob of mass m suspended by a massless
rigid rod of length l that is hinged to a sled
of mass M . The sled slides without friction
on a horizontal rail. Gravity acts with the
usual downward acceleration g.

a) Taking x and θ as generalized coordinates write the Lagrangian for the system.

Solution: We start by computing the Cartesian coordinates of the bob

x1 = x + l sin θ =⇒ ẋ1 = ẋ + θ̇l cos θ

y1 = y + l cos θ =⇒ ẏ1 = ẏ + θ̇l sin θ

thus
T =

m

2
(
ẋ2

1 + ẏ2
1

)
+

M

2
ẋ2 = (m + M)/over2 +

m

2

(
2θ̇ẋl cos θ + θ̇2l2

)

and
V = mgl (1− cos θ)

hence

L = T − V =
(m + M)

2
+

m

2

(
2θ̇ẋl cos θ + θ̇2l2

)
+ mgl cos θ

where uninteresting constants have been dropped.

b) Use Lagrange’s equations to derive the equations of motion for the system.

Solution: For x we have

d

dt

∂L

∂ẋ
− ∂L

∂x
= (m + M)ẍ + mlθ̈ cos θ −mθ̇2l sin θ = 0

and for θ
d

dt

∂L

∂θ̇
− ∂L

∂θ
= mẍl cos θ + mθ̈l2 + mgl sin θ = 0

c) Use the equations from part (b) to find the frequency ω for small oscillations of the
bob about the vertical. (Hint: You will need to make some approximations.)
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Solution: For small oscillations, θ, x, and their derivatives will be small, so we can neglect
terms containing θ̇2 and ẋθ̇. Also cos θ ' 1 and sin θ ' θ. With this we obtain

(m + M)ẍ + mlθ̈ ' 0 =⇒ ẍ ' −
(

m

m + M

)
lθ̈

and

ẍ + θ̈l + gθ ' 0 =⇒
(

1− m

m + M

)
lθ̈ ' −gθ

yielding

ωosc '
√

g(
1 m

m+M

)
l

=

√
g(m + M)

lM

d) At time t = 0 the bob and the sled, which had previously been at rest, are set in
motion by a sharp tap delivered to the bob. The tap imparts a horizontal impulse
∆P = F∆t to the bob. Find expressions for the values of θ̇ and ẋ just after the
impulse.

Solution: Here we conserve linear and angular momentum.

∆P =
∑

∆pi = m(ẋ + θ̇l) + Mẋ

and
∆L = ∆Pl =

∑
Li = ml2θ̇ =⇒ θ̇ =

∆P

ml

Note that since
∆P = mlθ̇ =⇒ ẋ = 0

a

m

g

θ

Ω

2) (45 pts) A bead of mass m slides with-
out friction on a rotating circular hoop. The
hoop is forced to rotate about a vertical axis
along its diameter at a constant angular ve-
locity Ω. The position of the bead can be
described by the angle θ, which is the angle
that a line running between the center of the
hoop and the bead makes with the vertical.

a) What is the Lagrangian for the system?

Solution:

L = T − V =
ma2

2

(
θ̇2 + Ω2 sin2 θ

)
−mga(1− cos θ)
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b) What is θ0, the equilibrium position of the bead (i.e., the value for θ that allows
θ̇ = 0)?

Solution: Using

h = θ̇
∂L

∂θ̇
− L = constant

we get
ma2θ̇2

2
−ma

[
aΩ2 sin2 θ

2
+ g cos θ

]
= h

or
a2θ̇2

2
−

[
aΩ2 sin2 θ

2
+ g cos θ

]
=

h

ma
≡ h′

where we identify the first term with an effective kinetic energy and the second two terms
with an effective potential. Finding

[
∂Veff

∂θ

∣∣∣∣
θ0

= − (
aΩ2 cos θ sin θ − g sin θ

)
= 0

yields
cos θ0 =

g

aΩ2

c) What is the frequency for small oscillations about θ0? You may assume that g <
aΩ2.

Solution: Compute

keff =
[
∂2Veff

∂θ2

∣∣∣∣
θ0

= − [
aΩ2

(
cos2 θ − sin2 θ

)− g cos θ
∣∣
θ0

= aΩ2 sin2 θ0

or

ω2
osc =

keff

meff
=

aΩ2 sin2 θ0

a
= Ω2 sin2 θ0

or
ωosc = Ω sin θ0

3) (30 pts) An undamped oscillator having frequency ω0 = 2π/T is subjected to a driving
force given by

t

T/2

T/2

F(t) oω = 2π
T

F (t) =





0, if t < −T/2;
F0 sin(ω0t), if −T/2 < t < T/2;
0, if t > T/2.
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as shown in the sketch. Calculate the displacement of the oscillator for times t >
T/2.

Solution: Starting with the general Green function solution

x(t) =
∫ t

−∞
dt′

F (t′)
mω1

e−γ(t−t′) sin [ω1(t− t′)]

where since there is no damping γ = 0 and ω1 = ω0. We thus have

x(t) =
∫ t

−∞
dt′

F (t′)
mω0

sin [ω1(t− t′)]

since the force is zero prior to −T/2 and after T/2 and we only want to know x(t) for
t > T/2, we can write

x(t) =
∫ T/2

−T/2

dt′
F0 sin(ω0t

′)
mω0

sin [ω0(t− t′)]

=
F0

mω0

[
sin ω0t

∫ T/2

−T/2

sin ω0t
′ cosω0t

′dt′ − cos ω0t

∫ T/2

−T/2

sin2 ω0t
′dt′

]

where we have used the standard trig. ID for the sine of a difference. The first term in
the integral vanishes and the second can be evaluated by noting that the average of sin2 ωt
over one period is 1/2. This yields

x(t) = − F0

mω0
cosω0t

(
T

2

)
= − F0π

mω2
0

cos ω0t

e3
4) (40 pts) A quarterback in American foot-

ball throws the ball in such a way that it ap-
pears to “wobble” rather than spinning smoothly
as it flies. For this problem assume that the foot-
ball can be treated as an axisymmetric top having
I1 = I2 = 2I3, where the ê3 axis is the long axis of
the football. Assume further that the football is
released with a rapid spin, i.e., ω3 6= 0, where ω3

is the component of the football’s angular velocity
along the ê3 body axis.

a) What does the wobbling motion indicate? In particular what does it imply about
the other (ê1 and ê2) components of ω? (No calculation is required here.)

Solution: This worked out to be a little bit more open ended than I had intended. The
answer I was looking for was that it means that the angular velocity was not aligned with
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a body axis, meaning that it would also not be aligned with the angular momentum, which
is a vector fixed in space (conservation of angular momentum with no external torques). I
accepted most reasonable variations on this theme.

b) Expressing vectors with respect to the body fixed axes, ê1, ê2, ê3, derive three equa-
tions that relate the components of ~ω to one another and to the moments of inertia
I1, I2, I3.

Solution: Euler’s equation is
(

d~L

dt

)

inertial

=

(
d~L

dt

)

body

+ ~ω × ~L = ~Γexternal = 0

If we choose body axes that are principal axes then
(

dLi

dt

)

body

=
(

d

dt
Iiiωi

)

body

= Iiω̇i

combining this with Euler’s equation and writing it by components yields

I1ω̇1 = ω2ω3(I2 − I3)

I2ω̇2 = ω3ω1(I3 − I1)

I3ω̇3 = ω1ω2(I1 − I2)

c) If the football is spinning rapidly, then one can assume that ω3 À ω1,2. Use this
assumption to derive an approximate expression for ~ω as a function of time. Find
the period of the wobble in terms of I1 = I2, I3, and ω3.

Solution: Since the football is axisymmetric I1 = I2 = I and ω̇3 = 0. Defining Ω ≡
(I3 − I)/Iω3 yields

ω̇1 = −Ωω2 and ω̇2 = +Ωω1

which, when differentiated, can be solved to yield

ω̈1 = −Ω2ω1 and ω̈2 = −Ω2ω2

Thus both ω1 and ω2 vary harmonically with frequency

Ω =
ω3

2

and the period of the wobble is

T =
2π

Ω
=

4π

ω3
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