Physics 205-Final Exam Fall 2003
 Solutions

1) (40 pts) A plane pendulum consists of a bob of mass m suspended by a massless rigid rod of length l that is hinged to a sled g of mass M. The sled slides without friction on a horizontal rail. Gravity acts with the usual downward acceleration g.
a) Taking x and θ as generalized coordinates write the Lagrangian for the system.

Solution: We start by computing the Cartesian coordinates of the bob

$$
\begin{array}{ll}
x_{1}=x+l \sin \theta & \Longrightarrow \dot{x}_{1}=\dot{x}+\dot{\theta} l \cos \theta \\
y_{1}=y+l \cos \theta & \Longrightarrow \dot{y}_{1}=\dot{y}+\dot{\theta} l \sin \theta
\end{array}
$$

thus

$$
T=\frac{m}{2}\left(\dot{x}_{1}^{2}+\dot{y}_{1}^{2}\right)+\frac{M}{2} \dot{x}^{2}=(m+M) / \text { over } 2+\frac{m}{2}\left(2 \dot{\theta} \dot{x} l \cos \theta+\dot{\theta}^{2} l^{2}\right)
$$

and

$$
V=m g l(1-\cos \theta)
$$

hence

$$
L=T-V=\frac{(m+M)}{2}+\frac{m}{2}\left(2 \dot{\theta} \dot{x} l \cos \theta+\dot{\theta}^{2} l^{2}\right)+m g l \cos \theta
$$

where uninteresting constants have been dropped.
b) Use Lagrange's equations to derive the equations of motion for the system.

Solution: For x we have

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}-\frac{\partial L}{\partial x}=(m+M) \ddot{x}+m l \ddot{\theta} \cos \theta-m \dot{\theta}^{2} l \sin \theta=0
$$

and for θ

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{\theta}}-\frac{\partial L}{\partial \theta}=m \ddot{x} l \cos \theta+m \ddot{\theta} l^{2}+m g l \sin \theta=0
$$

c) Use the equations from part (b) to find the frequency ω for small oscillations of the bob about the vertical. (Hint: You will need to make some approximations.)

Solution: For small oscillations, θ, x, and their derivatives will be small, so we can neglect terms containing $\dot{\theta}^{2}$ and $\dot{x} \dot{\theta}$. Also $\cos \theta \simeq 1$ and $\sin \theta \simeq \theta$. With this we obtain

$$
(m+M) \ddot{x}+m l \ddot{\theta} \simeq 0 \Longrightarrow \ddot{x} \simeq-\left(\frac{m}{m+M}\right) l \ddot{\theta}
$$

and

$$
\ddot{x}+\ddot{\theta} l+g \theta \simeq 0 \Longrightarrow\left(1-\frac{m}{m+M}\right) l \ddot{\theta} \simeq-g \theta
$$

yielding

$$
\omega_{\mathrm{osc}} \simeq \sqrt{\frac{g}{\left(1 \frac{m}{m+M}\right) l}}=\sqrt{\frac{g(m+M)}{l M}}
$$

d) At time $t=0$ the bob and the sled, which had previously been at rest, are set in motion by a sharp tap delivered to the bob. The tap imparts a horizontal impulse $\Delta P=F \Delta t$ to the bob. Find expressions for the values of $\dot{\theta}$ and \dot{x} just after the impulse.

Solution: Here we conserve linear and angular momentum.

$$
\Delta P=\sum \Delta p_{i}=m(\dot{x}+\dot{\theta} l)+M \dot{x}
$$

and

$$
\Delta L=\Delta P l=\sum L_{i}=m l^{2} \dot{\theta} \Longrightarrow \dot{\theta}=\frac{\Delta P}{m l}
$$

Note that since

$$
\Delta P=m l \dot{\theta} \Longrightarrow \dot{x}=0
$$

2) (45 pts) A bead of mass m slides without friction on a rotating circular hoop. The hoop is forced to rotate about a vertical axis along its diameter at a constant angular velocity Ω. The position of the bead can be described by the angle θ, which is the angle that a line running between the center of the hoop and the bead makes with the vertical.
a) What is the Lagrangian for the system?

Solution:

$$
L=T-V=\frac{m a^{2}}{2}\left(\dot{\theta}^{2}+\Omega^{2} \sin ^{2} \theta\right)-m g a(1-\cos \theta)
$$

b) What is θ_{0}, the equilibrium position of the bead (i.e., the value for θ that allows $\dot{\theta}=0)$?

Solution: Using

$$
h=\dot{\theta} \frac{\partial L}{\partial \dot{\theta}}-L=\text { constant }
$$

we get

$$
\frac{m a^{2} \dot{\theta}^{2}}{2}-m a\left[\frac{a \Omega^{2} \sin ^{2} \theta}{2}+g \cos \theta\right]=h
$$

or

$$
\frac{a^{2} \dot{\theta}^{2}}{2}-\left[\frac{a \Omega^{2} \sin ^{2} \theta}{2}+g \cos \theta\right]=\frac{h}{m a} \equiv h^{\prime}
$$

where we identify the first term with an effective kinetic energy and the second two terms with an effective potential. Finding

$$
\left[\left.\frac{\partial V_{\mathrm{eff}}}{\partial \theta}\right|_{\theta_{0}}=-\left(a \Omega^{2} \cos \theta \sin \theta-g \sin \theta\right)=0\right.
$$

yields

$$
\cos \theta_{0}=\frac{g}{a \Omega^{2}}
$$

c) What is the frequency for small oscillations about θ_{0} ? You may assume that $g<$ $a \Omega^{2}$.

Solution: Compute

$$
k_{\mathrm{eff}}=\left[\left.\frac{\partial^{2} V_{\mathrm{eff}}}{\partial \theta^{2}}\right|_{\theta_{0}}=-\left[a \Omega^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)-\left.g \cos \theta\right|_{\theta_{0}}=a \Omega^{2} \sin ^{2} \theta_{0}\right.\right.
$$

or

$$
\omega_{\mathrm{osc}}^{2}=\frac{k_{\mathrm{eff}}}{m_{\mathrm{eff}}}=\frac{a \Omega^{2} \sin ^{2} \theta_{0}}{a}=\Omega^{2} \sin ^{2} \theta_{0}
$$

or

$$
\omega_{\mathrm{osc}}=\Omega \sin \theta_{0}
$$

3) (30 pts) An undamped oscillator having frequency $\omega_{0}=2 \pi / T$ is subjected to a driving force given by

$$
F(t)= \begin{cases}0, & \text { if } t<-T / 2 \\ F_{0} \sin \left(\omega_{0} t\right), & \text { if }-T / 2<t<T / 2 \\ 0, & \text { if } t>T / 2\end{cases}
$$

as shown in the sketch. Calculate the displacement of the oscillator for times $t>$ $T / 2$.

Solution: Starting with the general Green function solution

$$
x(t)=\int_{-\infty}^{t} d t^{\prime} \frac{F\left(t^{\prime}\right)}{m \omega_{1}} e^{-\gamma\left(t-t^{\prime}\right)} \sin \left[\omega_{1}\left(t-t^{\prime}\right)\right]
$$

where since there is no damping $\gamma=0$ and $\omega_{1}=\omega_{0}$. We thus have

$$
x(t)=\int_{-\infty}^{t} d t^{\prime} \frac{F\left(t^{\prime}\right)}{m \omega_{0}} \sin \left[\omega_{1}\left(t-t^{\prime}\right)\right]
$$

since the force is zero prior to $-T / 2$ and after $T / 2$ and we only want to know $x(t)$ for $t>T / 2$, we can write

$$
\begin{aligned}
x(t) & =\int_{-T / 2}^{T / 2} d t^{\prime} \frac{F_{0} \sin \left(\omega_{0} t^{\prime}\right)}{m \omega_{0}} \sin \left[\omega_{0}\left(t-t^{\prime}\right)\right] \\
& =\frac{F_{0}}{m \omega_{0}}\left[\sin \omega_{0} t \int_{-T / 2}^{T / 2} \sin \omega_{0} t^{\prime} \cos \omega_{0} t^{\prime} d t^{\prime}-\cos \omega_{0} t \int_{-T / 2}^{T / 2} \sin ^{2} \omega_{0} t^{\prime} d t^{\prime}\right]
\end{aligned}
$$

where we have used the standard trig. ID for the sine of a difference. The first term in the integral vanishes and the second can be evaluated by noting that the average of $\sin ^{2} \omega t$ over one period is $1 / 2$. This yields

$$
x(t)=-\frac{F_{0}}{m \omega_{0}} \cos \omega_{0} t\left(\frac{T}{2}\right)=-\frac{F_{0} \pi}{m \omega_{0}^{2}} \cos \omega_{0} t
$$

4) (40 pts) A quarterback in American football throws the ball in such a way that it appears to "wobble" rather than spinning smoothly as it flies. For this problem assume that the football can be treated as an axisymmetric top having $I_{1}=I_{2}=2 I_{3}$, where the \hat{e}_{3} axis is the long axis of the football. Assume further that the football is released with a rapid spin, i.e., $\omega_{3} \neq 0$, where ω_{3} is the component of the football's angular velocity
 along the \hat{e}_{3} body axis.
a) What does the wobbling motion indicate? In particular what does it imply about the other (\hat{e}_{1} and \hat{e}_{2}) components of ω ? (No calculation is required here.)

Solution: This worked out to be a little bit more open ended than I had intended. The answer I was looking for was that it means that the angular velocity was not aligned with
a body axis, meaning that it would also not be aligned with the angular momentum, which is a vector fixed in space (conservation of angular momentum with no external torques). I accepted most reasonable variations on this theme.
b) Expressing vectors with respect to the body fixed axes, $\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}$, derive three equations that relate the components of $\vec{\omega}$ to one another and to the moments of inertia I_{1}, I_{2}, I_{3}.

Solution: Euler's equation is

$$
\left(\frac{d \vec{L}}{d t}\right)_{\text {inertial }}=\left(\frac{d \vec{L}}{d t}\right)_{\text {body }}+\vec{\omega} \times \vec{L}=\vec{\Gamma}_{\text {external }}=0
$$

If we choose body axes that are principal axes then

$$
\left(\frac{d L_{i}}{d t}\right)_{\text {body }}=\left(\frac{d}{d t} I_{i i} \omega_{i}\right)_{\text {body }}=I_{i} \dot{\omega}_{i}
$$

combining this with Euler's equation and writing it by components yields

$$
\begin{aligned}
& I_{1} \dot{\omega}_{1}=\omega_{2} \omega_{3}\left(I_{2}-I_{3}\right) \\
& I_{2} \dot{\omega}_{2}=\omega_{3} \omega_{1}\left(I_{3}-I_{1}\right) \\
& I_{3} \dot{\omega}_{3}=\omega_{1} \omega_{2}\left(I_{1}-I_{2}\right)
\end{aligned}
$$

c) If the football is spinning rapidly, then one can assume that $\omega_{3} \gg \omega_{1,2}$. Use this assumption to derive an approximate expression for $\vec{\omega}$ as a function of time. Find the period of the wobble in terms of $I_{1}=I_{2}, I_{3}$, and ω_{3}.

Solution: Since the football is axisymmetric $I_{1}=I_{2}=I$ and $\dot{\omega}_{3}=0$. Defining $\Omega \equiv$ $\left(I_{3}-I\right) / I \omega_{3}$ yields

$$
\dot{\omega}_{1}=-\Omega \omega_{2} \quad \text { and } \quad \dot{\omega}_{2}=+\Omega \omega_{1}
$$

which, when differentiated, can be solved to yield

$$
\ddot{\omega}_{1}=-\Omega^{2} \omega_{1} \quad \text { and } \quad \ddot{\omega}_{2}=-\Omega^{2} \omega_{2}
$$

Thus both ω_{1} and ω_{2} vary harmonically with frequency

$$
\Omega=\frac{\omega_{3}}{2}
$$

and the period of the wobble is

$$
T=\frac{2 \pi}{\Omega}=\frac{4 \pi}{\omega_{3}}
$$

