PHY 203: Solutions to Problem Set 2

October 9, 2006

1 Laser Beam in Refractive Medium

Here we find the path of a light ray using Fermat's principle. The travel time is

$$
\begin{equation*}
T=\int \frac{d s}{v}=\frac{n_{0}}{c} \int \sqrt{1+\left(y^{\prime}\right)^{2}}(1+k y) d x \tag{1}
\end{equation*}
$$

The first integral ('second form' of the Euler-Lagrange equation) is given by:

$$
\begin{equation*}
\mathcal{L}-y^{\prime} \frac{\partial \mathcal{L}}{\partial y^{\prime}} \simeq \sqrt{1+\left(y^{\prime}\right)^{2}}(1+k y)-y^{\prime} \frac{y^{\prime}}{\sqrt{1+\left(y^{\prime}\right)^{2}}}(1+k y)=\text { const }=1 \tag{2}
\end{equation*}
$$

where we have used the boundary conditions to fix the constant. Thus we have the simple differential equation

$$
\begin{equation*}
1+k y=\sqrt{1+\left(y^{\prime}\right)^{2}} \tag{3}
\end{equation*}
$$

Separating variables and integrating (using a hyperbolic substitution) we find:

$$
\begin{equation*}
y(x)=\frac{2}{k} \sinh ^{2}\left(\frac{k x}{2}\right)=\frac{1}{k}(\cosh (k x)-1) \tag{4}
\end{equation*}
$$

2 Problem 6.3

Our goal is to show that the shortest distance between two points in three dimensional space is a straight line. The distance between two points that are infinitesimally close is given by $d s=\sqrt{d x^{2}+d y^{2}+d z^{2}}$. So the distance between any two points is $S=\int d s=\int \sqrt{d x^{2}+d y^{2}+d z^{2}}$. In general a curve in three dimensions is defined by an equation $\vec{r}(t)=(x(t), y(t), z(t))$ where t is some parameter. So if we move along this curve the distance travelled will be $S=\int \sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}} d t$ where $\dot{x}=\frac{d x}{d t}, \dot{y}=\frac{d y}{d t}, \dot{z}=\frac{d z}{d t}$. Now we have to write down Euler's equation for the three functions x, y, z. We will do it only for x since the equations for y, z are exactly the same with the substitutions $x \leftrightarrow y, x \leftrightarrow z$. For $f=\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}$ we have

$$
\begin{equation*}
\frac{\partial f}{\partial x}=\frac{d}{d t} \frac{\partial f}{\partial \dot{x}} \tag{5}
\end{equation*}
$$

Since $\frac{\partial f}{\partial x}=0$ and $\frac{\partial f}{\partial \dot{x}}=\frac{\dot{x}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}}$ the Euler equation is

$$
\begin{equation*}
\frac{d}{d t} \frac{d x / d t}{\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}}=0 . \tag{6}
\end{equation*}
$$

If we define a new variable l by $d l=d t \sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}$ then our equation becomes

$$
\begin{equation*}
\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}} \frac{d}{d l} \frac{d x}{d l}=0 \Rightarrow \frac{d^{2} x}{d l^{2}}=0 . \tag{7}
\end{equation*}
$$

This equation has a simple solution $x=A l+B$. In exactly the same way we can derive that $y=C l+D$ and $z=E l+F$. These three equations define a line in three dimensional space.

3 Problem 6.14

The surface of the cone given in the problem can be expressed in cylindrical coordinates as $z=1-r$. It is the possible to write $d z=-d r$. Therefore the length of a curve in this surface can be written as:

$$
\begin{equation*}
L=\int \sqrt{2 d r^{2}+r^{2} d \theta^{2}}=\int \sqrt{2+r^{2}\left(\frac{d \theta}{d r}\right)^{2}} d r=\int \sqrt{r^{2}+2\left(\frac{d r}{d \theta}\right)^{2}} d \theta \tag{8}
\end{equation*}
$$

depending on which coordinate we use as parameter. Let's take r as the independent variable. Then the Euler equation is:

$$
\begin{equation*}
\frac{d}{d r}\left(\frac{r^{2} \frac{d \theta}{d r}}{\sqrt{2+r^{2}\left(\frac{d \theta}{d r}\right)^{2}}}\right)=0 \tag{9}
\end{equation*}
$$

This means:

$$
\begin{equation*}
\frac{r^{2} \frac{d \theta}{d r}}{\sqrt{2+r^{2}\left(\frac{d \theta}{d r}\right)^{2}}}=A \tag{10}
\end{equation*}
$$

where A is an integration constant. This can be rearranged to give:

$$
\begin{equation*}
\frac{d \theta}{d r}= \pm \frac{\sqrt{2} A}{r \sqrt{r^{2}-A^{2}}} \tag{11}
\end{equation*}
$$

We can absorb the sign in the definition of A. After integration we get:

$$
\begin{equation*}
\theta=\sqrt{2} \sin ^{-1}\left(\frac{A}{r}\right)+B \tag{12}
\end{equation*}
$$

where B is a new integration constant. Alternatively we can use θ as an independent variable. From (8) we can write the hamiltonian form of Euler equation:

$$
\begin{equation*}
\sqrt{r^{2}+2\left(\frac{d r}{d \theta}\right)^{2}}-\frac{2\left(\frac{d r}{d \theta}\right)^{2}}{\sqrt{r^{2}+2\left(\frac{d r}{d \theta}\right)^{2}}}=C \tag{13}
\end{equation*}
$$

By rearranging we get:

$$
\begin{equation*}
\frac{r^{4}}{C^{2}}-r^{2}=2\left(\frac{d r}{d \theta}\right)^{2} \tag{14}
\end{equation*}
$$

The point where $\frac{d r}{d \theta}$ vanishes is the point of minimal radius, $r_{\text {min }}$. From equations (11) and (14) is easy to see that $A=\sqrt{C}=r_{\text {min }}$. We can now substitute our results into (8) and calculate the length of the path:

$$
\begin{equation*}
L=\int \sqrt{r^{2}+2\left(\frac{d r}{d \theta}\right)^{2}} d \theta=\int \frac{r^{2}}{r_{\min }}\left|\frac{d \theta}{d r}\right| d r \tag{15}
\end{equation*}
$$

where we used (14) and changed variables from θ to r. We know what the jacobian is from (11). Also, we can integrate from $r_{\text {min }}$ to 1 and multiply the result by two, as we know the path is symmetric.

$$
\begin{equation*}
L=2 \sqrt{2} \int_{r_{\min }}^{1} \frac{r}{\sqrt{r^{2}-r_{\min }^{2}}} d r \tag{16}
\end{equation*}
$$

Integrating we get:

$$
\begin{equation*}
L=2 \sqrt{2} \sqrt{1-r_{\min }^{2}} \tag{17}
\end{equation*}
$$

We just have to find $r_{\text {min }}$. This is done from boundary conditions. If we ask that the curve (12) goes through the points $\left(1,-\frac{\pi}{2}, 0\right)$ and $\left(1, \frac{\pi}{2}, 0\right)$ we get:

$$
\begin{align*}
B & =-\frac{\pi}{\sqrt{2}} \tag{18}\\
A & =r_{\min }=\cos \frac{\pi}{2 \sqrt{2}} \tag{19}
\end{align*}
$$

Using this result we find the final answer:

$$
\begin{equation*}
L=2 \sqrt{2} \sin \frac{\pi}{2 \sqrt{2}} \tag{20}
\end{equation*}
$$

4 Maximum Area Enclosed by Fixed Perimeter

This problem is worked out in detail in chapter 6 of Thornton and Marion. The solution is of course a circle, with the two integration constants parameterizing the location of its center.

