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1 Laser Beam in Refractive Medium

Here we find the path of a light ray using Fermat’s principle. The travel time is

T = % = %/\/1 + (¥)2(1 + ky)dz. (1)

The first integral (‘second form’ of the Euler-Lagrange equation) is given by:
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where we have used the boundary conditions to fix the constant. Thus we have
the simple differential equation

1+ky=+14+ ()% (3)

Separating variables and integrating (using a hyperbolic substitution) we find:

y(z) = %sinh2 <k2$) = %(Cosh(kx) - 1. (4)

2 Problem 6.3

Our goal is to show that the shortest distance between two points in three
dimensional space is a straight line. The distance between two points that
are infinitesimally close is given by ds = y/dx? + dy? + dz? . So the distance
between any two points is S = [ds = [ y/dz? 4+ dy? + dz?. In general a curve
in three dimensions is defined by an equation 7(¢t) = (x(t),y(t), z(t)) where t
is some parameter . So if we move along this curve the distance travelled will
be S = [\/@?+ ¢? + 22dt where & = j%,y = %,Z = %. Now we have to
write down Euler’s equation for the three functions z,y,z. We will do it only
for = since the equations for y, z are exactly the same with the substitutions

T 1y, < z. For f=+/22 4 32 + 22 we have
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Since % =0 and % = the Euler equation is

(6)
If we define a new variable [ by dl = dt\/42 + 92 + 22 then our equation becomes
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This equation has a simple solution z = Al + B . In exactly the same way we
can derive that y = Cl4+ D and z = El+ F. These three equations define a line
in three dimensional space.

3 Problem 6.14

The surface of the cone given in the problem can be expressed in cylindrical
coordinates as z = 1 — r. It is the possible to write dz = —dr. Therefore the
length of a curve in this surface can be written as:
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depending on which coordinate we use as parameter. Let’s take r as the inde-
pendent variable. Then the Euler equation is:
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where A is an integration constant. This can be rearranged to give:

do 2A
b _ VA (11)
dr rvr2 — A2
We can absorb the sign in the definition of A. After integration we get:
(A
0 = /2sin — |+ B, (12)
r
where B is a new integration constant. Alternatively we can use € as an indepen-
dent variable. From (8) we can write the hamiltonian form of Euler equation:
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By rearranging we get:
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The point where % vanishes is the point of minimal radius, r,,;,. From equa-

tions (11) and (14) is easy to see that A = VC = Tmin. We can now substitute
our results into (8) and calculate the length of the path:

L= / r2+2 dr 2d9 = /
= 7 =
where we used (14) and changed variables from 6 to r. We know what the

jacobian is from (11). Also, we can integrate from 7,,;, to 1 and multiply the
result by two, as we know the path is symmetric.
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Integrating we get:
L=2V2\/1-712,, . (17)

We just have to find r,,;,. This is done from boundary conditions. If we ask

that the curve (12) goes through the points (1, —7,0) and (1, 7, 0) we get:
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Using this result we find the final answer:

L =2V/2sin PN (20)

4 Maximum Area Enclosed by Fixed Perimeter

This problem is worked out in detail in chapter 6 of Thornton and Marion. The
solution is of course a circle, with the two integration constants parameterizing
the location of its center.



