PHY 203: Solutions to Problem Set 4
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1 Buoy Dropped from an Airplane

From energy conservation the buoy hits the surface of the water with a velocity
vg = v/2gh. The equation of motion that determines its subsequent behaviour
is

F=md=mg—pVg— kv. (1)
Writing o = pV g — mg we can integrate this equation and find
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where the integration constant is fixed by the initial velocity: C — a/k = wvy.
The velocity of the buoy is zero at time ¢y given by

tg—mln(kv0+a>. (3)
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Integrating the velocity again and fixing the integration constant such that
y(0) = 0, we find the depth as a function of time:
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Thus the maximum depth is

muvg  om (kvo +

y(to) = -~z lm ) ~ 127m. (5)
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2 Disk Rolling down Inclined Plane

The Lagrangian for this problem is

1 1.
L= im(j:2 + %) + 5[92 + mgrsin o — mgy cos a, (6)

with the following constraints that capture the normal and frictional forces at
the point of contact:

g1 =My=0, g2 = Aa(x — RA) = 0. (7)



Note that we have written down the kinetic and potential energy for the y-
direction even though we know these terms are zero. Nevertheless, we can obtain
the normal force in this way. The three equations of motion from varying the
Lagrangian with respect to x,y and 8, respectively. are:

mgsinae—mE+Xi = 0 (8)
—mgcosa—mi+r = 0 (9)
—I6—XR = 0. (10)

Combining the first and third equation, using the second constraint and I =
mR?/2 we find

&= ggsina, A2 = —gmgsina. (11)
Similarly from the second equation and the first constraint we have
=0, A1 = mgcosa. (12)

Thus the critical value of p at which the disk just starts slipping is given by
Dol = sy, or

1
n=3 tan a. (13)

3 Problem 7.28

This is just a simple application of Hamiltonian dynamics. The Lagrangian is

1 : k
L =_-m(#? +r%0*) 4+ =, (14)
2 r
in polar coordinates. The generalized momenta are given by
Pr =m7, be = mTQH': (15)
and the Hamiltonian is ) )
k
g=Ftry Po__F (16)

2m  2mr? 1’
Therfore Hamilton’s equation of motion are
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Po .
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4 Problem 5.16

The gravitational potential generated by the sphere (outside its volume) is that
of a point mass (make sure you can show this!)

_GM

B(d) = -

(19)



By symmetry the force on the plane must be vertical and considering a small
ring of mass prd¢dr subtending an angle § with the vertical we have

_ GMpcosfrdgdr

dF, yE

(20)
Using cos = h/d and d? = h% + r? it is easy to integrate this expression over
all », which leads to

F,=2rGMp. (21)

5 The Falling Rod

The coordinates of the center of mass (x,y) are related to the angle 6 of the rod
with the vertical by

r=g sin 6, y = écos 6. (22)

The frictional and normal forces are easily found by considering the forces on
the center of mass:

L mlyg e
Fy = mi= 5 (6’ cos @ — 0° sin 0) ) (23)
F, = mg+mij=—mg— %l (ésinﬂ—i—éQ cosé‘) . (24)

Either by writing down a simple pendulum type Lagrangian or directly from
energy conservation we find the equation of motion

é:%mﬂ & 92:3}—9(1—(:086). (25)

The condition for the onset of slipping is |F¢| = pF, and substituting in from
above we find

p(1 —3cos)? — |9sin @ cos @ — 6sin | = 0. (26)

For small p this equation has threc solutions in the range 0 < ¢ < w/2. This
can easily be understood by considering how the rod would fall if its pivot were
clamped down. If it fell to the left, its center of mass would have to accelerate
to the left first, but then accelerate to the right as # approaches 7/2. Thus the
pivot would want to slip right for small angles, but to the left for larger angles.

We are interested in when it first slips of course (since our equations of motion
are o longer valid after that), so we care for the solution at the smallest possible
angle. For p smaller than some critical u. ~ 0.37 there are three solutions and
the relevant one corresponds to slipping to the right. For p larger than p, there
is only one solution which corresponds to slipping to the left. The rod always
slips before the normal force vanishes at an angle of 8 = cos™!(1/3).
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Figure 1: Plot of the left hand side of (26) vs. 8 for g = 0.1 and p = 0.5.

Figure 2: Plot of 1 versus the critical angle € that solves (26).



