
PHY 203: Solutions to Problem Set 1

September 30, 2006

1 Firing Shells at Constant Speed

Here we would like to find the set of all points that lie on some trajectory of
a shell fired with fixed speed v0, but at an arbitrary angle α to the horizontal.
In particular we would like to find an equation for the surface that can just be
reached by such an trajectory (such every point inside the volume bounded by
this surface lies on some trajectory, but no point outside this surface does).

First we note that there is rotational symmetry about the z axis. There-
fore we have essentially a two-dimensional problem and will choose x as our
horizontal coordinate from here on.

The equations of motion are:

x(t) = v0t cos α, (1)

z(t) = v0t sinα− 1
2
gt2, (2)

Eliminating t we have the trajectory in parametric form:

z = x tanα− gx2

2v2
0 cos2 α

. (3)

The trick now is not to look at one particular trajectory (since we don’t a priori
know which point on it might touch the required surface), but instead to look
at all possible trajectories at once and maximize some appropriate distance over
all possible values of α. E.g. we may choose to look at fixed x coordinate and
maximize the height z reached at that x:

∂z

∂α

∣∣∣
x

=
x

cos2 α
− gx2

v2
0

sinα

cos3 α
= 0 ⇒ tanα =

v2
0

gx
. (4)

Substituting back this expressions for tanα we obtain the equation for the
“boundary” surface we were looking for:

z =
v2
0

2g
− gx2

2v2
0

, (5)

which becomes the required expression once we reinstate the y coordinate by
replacing x2 → x2 + y2.
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Alternatively one might choose to write the surface in polar coordinates as
r(θ) and then maximize r over all α at fixed θ. This gives

α =
π

4
+

θ

2
, (6)

and converting back to Cartesian coordinates leads to the same result.

2 Problem 2.39

The dynamical equation is given by:

F = mv̇ = −αeβv. (7)

This can be rearranged and integrated∫ V

V0

e−βvdv = −
∫ T

0

α

m
dt. (8)

After integrating,

e−βV − e−βV0 =
βα

m
T. (9)

Solving for V yields

V = − 1
β

ln
[
βα

m
T + e−βV0

]
. (10)

In order to find the total time elapsed before the object stops we evaluate the
previous expression for V = 0. The result is

TF =
m

βα

[
1− e−βV0

]
. (11)

Now we need to calculate the distance travelled before stoping. This can be
done integrating (10):∫ XF

0

dx =
∫ TF

0

− 1
β

ln
[
βα

m
T + e−βV0

]
dT. (12)

This gives
XF =

m

β2α

[
1− e−βV0(1 + βV0)

]
. (13)

3 Pendulum Hit by a Bullet

The differential equation that governs the motion of a simple pendulum of length
l and with mass M is

Ml2
d2θ

dt2
= −gMl sin θ ' −gMlθ, (14)
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where we have used the small angle approximation. The general solution of this
equation can be written

θ(t) = A sin(ωt) + B cos(ωt), (15)

where ω ≡
√

g/l. The boundary conditions at the instant the bullet hits are

θ(0) = 0 and
dθ

dt
(0) =

mv0

Ml
, (16)

where the second equality follows from momentum conservation. This forces us
to set B = 0 and fixes A such that

θ(t) =
mv0

Mlω
sin(ωt). (17)

4 Problem 3.7

There are several volumes in this problem. Let’s define the ones we will be
interested in:

V = Volume of fluid displaced at equilibrium (18)
Vb = Volume of the body (19)
Vd = Volume of fluid displaced at a given time/position (20)

We can, then, write the equation of motion for this problem:

Vbρẍ = −Vbρg + Vdρ0g, (21)

where x points upwards and the two terms in the r.h.s. represent gravity and
buoyancy. Now, at equilibrium,

0 = −Vbρg + V ρ0g. (22)

Then,

Vb =
V ρ0

ρ
. (23)

Also, if we define the origin of coordinates to be at the equilibrium position, we
get Vd = V − xA. Using this, we can write (21) as:

ẍ +
gA

V
x = 0. (24)

This is just the dynamic equation describing a harmonic oscillator. From it we

can read the frequency ω to be
√

gA
V . We also know that the period is given by

T = 2π
ω . In the end we get:

T = 2π

√
V

gA
' 0.18 s. (25)
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5 Suspension Bridge

There are many approaches to this problem. We choose to solve it by writing
Newton’s equations for a piece of rope with projection dx over the bridge. We
define a function T (x) which is the tension along the rope and another y(x)
which is just the shape of the rope. Newton’s equation in the x̂ direction is:

−T (x− dx

2
) cos

(
θ(x− dx

2
)
)

+ T (x +
dx

2
) cos

(
θ(x +

dx

2
)
)

= 0, (26)

where θ(x) is just the angle of the tangent to the rope with respect to the x̂ axis
at position x. We now expand this in a Taylor series around x to first order and
get:

d

dx
(T (x) cos θ(x)) = 0. (27)

From this equation we see that T (x) cos θ(x) is just a constant we call A. We
now need to use Newton’s equation for the ŷ direction.

−gM

L
dx−T (x− dx

2
) sin

(
θ(x− dx

2
)
)

+T (x+
dx

2
) sin

(
θ(x +

dx

2
)
)

= 0, (28)

where gM
L dx is just the weight of the piece of bridge hanging from the piece of

rope. M is the total mass of the bridge and L its length. Again, we expand
around x, and obtain to first order:

d

dx
(T (x) sin θ(x)) =

gM

L
. (29)

We can now divide this equation by A. Since it is a constant we can put it
inside the derivative in the l.h.s. This yields:

d

dx

(
T (x) sin θ(x)
T (x) cos θ(x)

)
=

gM

LA
. (30)

Now we use that dy
dx = tan θ(x). We obtain:

d2y

dx2
=

gM

LA
. (31)

This means that y(x) = gM
2LAx2 + Bx + C, where B and C are just constants.

B is determined to be zero by fixing the extremes of the rope at, say, x = −L
2

and x = L
2 . C is just related to the origin of coordinates for y, so we can take it

to be zero (this amounts to taking the origin at the point where rope lies in the
middle of the bridge). Finally, A is determined by knowing the height of the
bridge towers with respect to the origin of coordinates. If we take this height
to be H,

H =
gML

8A
. (32)

The final solution is then
y(x) =

4H

L2
x2. (33)
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