
PHY 203: Solutions to Problem Set 10

January 7, 2007

1 Problem 11.10

This question asks you to consider a body rotating about a fixed diameter (i.e.
external forces are applied to hold the axis of rotation in place), but with a
moment of inertia that changes with time. In particular the inertia tensor
consists of an isotropic term representing the sphere and a term arising from
the particle that moves on the surface of the sphere

I = Is + Ip. (1)

In Cartesian coordinates we have

Is =
2
5
MR2

 1 0 0
0 1 0
0 0 1

 , (2)

and

Ip = m

 y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 , (3)

where the position of the particle as a function of time (for 0 < t < T ) is given
by

x = R sin
(

π
t

T

)
cos(ωt), (4)

y = R sin
(

π
t

T

)
sin(ωt), (5)

z = R cos
(

π
t

T

)
. (6)

Note that the angular velocity by assumption points in the z-direction, but its
magnitude varies with time

~ω = ω(t) ẑ. (7)

The angular momentum vector precesses about ~ω and is determined by

~L = I · ~ω. (8)
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The crucial point is that even though ~L varies its z-component is a conserved
quantity. Substituting for I and ~ω from above we have

Lz =
[
2
5
MR2 + mR2 sin2

(
π

t

T

)]
ω(t) = const =

2
5
MR2ω0, (9)

where in the last equality we have fixed the constant in terms of the initial
angular velocity ω0. Therefore

ω(t) =
ω0

1 + 5m
2M sin2

(
π t

T

) . (10)

Integrating this expression we find the angle of retardation

α =
∫ T

0

[ω0 − ω(t)] dt = ω0T

(
1−

√
2M

2M + 5m

)
. (11)

2 Rectangular Plate

This problem is very similar to the previous one. Again the axis of rotation
is held fixed and the torque needed to do so is given by ~τ = ~̇L, where ~L is
determined by (8). In this case we have

~ω =
ω√

a2 + b2

 b
a
0

 , (12)

where ω is now constant, and

I =
m

12

 a2 0 0
0 b2 0
0 0 a2 + b2

 , (13)

where we have aligned the axis with the sides of the rectangle. Then according
to (8) we find

~L =
mω

12
√

a2 + b2

 a2b
b2a
0

 , (14)

and finally the torque is given by

~τ =
d~L

dt
= ~ω × ~L =

mω2

12(a2 + b2)
ab (b2 − a2) ẑ, (15)

which points out of the plane of the plate.
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3 Bicycle Going Around Curve

First let us consider what would happen if the wheels were massless (m = 0).
In that case the bicycle would still lean into the curve as is easy to see by
considering moments about its center of mass. The centripetal force (which
equals the frictional force acting on the wheels) has magnitude Mv2/R and the
normal force simply Mg. Thus balancing torques requires

M
v2

R
h cos θ = Mgh sin θ. (16)

Note that if R is the radius at which the wheels touch the ground then what
should appear in the denominator on the left hand side is really Reff = R −
h sin θ, but we will assume R � h and neglect this correction.

How is this situation modified when m 6= 0? The total mass of bike and rider
is now M + 2m, but more importantly the wheels now have non-zero angular
momentum, which rotates as the bicycle rounds the curve and hence there must
be a net torque acting on the system. The magnitude of the angular momentum
is L = Iω = 2ma2v/a = 2mav, and it is the radial component Lr = L cos θ
that rotates with angular frequency Ω = v/R. Thus balancing torques again,
we find that (16) is modified to

(M + 2m)
v2

R
h cos θ + 2m

av2

R
cos θ = (M + 2m)gh sin θ, (17)

and thus the bike tilts by an angle

θ = tan−1

(
v2

Rg

(
1 +

2m

M + 2m

a

h

))
. (18)

4 String with Density Discontinuity

As so often in this type of question everything boils down to imposing the correct
boundary conditions on the solution of the wave equation. A sensible starting
point is the ansatz

Ψ1 = A1 sin(k1x) sin(ωt), (19)
Ψ2 = A2 sin(k2(L− x)) sin(ωt), (20)

for the left (0 ≤ x < L/2) and right (L/2 ≤ x ≤ L) half of the string respectively.
This is of course not the most general solution of the wave equation. We have
picked a single normal mode of frequency ω and have already imposed some
important constraints, namely the Dirichlet boundary conditions at both ends,
Ψ1(x = 0) = 0 and Ψ2(x = L) = 0.

Note that we know the normal modes of a string with constant density have
sinusoidal profile, and our ansatz reflects this. Here, however, we juxtapose
two such sine waves with different wavenumbers k1 and k2 for the two regions

3



of different density ρ1 and ρ2, so the combined profile of the normal mode on
the interval [0, L] is not a simple sine function. Instead it is made up of two
sinusoidal pieces with support on one or the other half of the interval.

Now we simply impose the boundary conditions at the junction. Evidently
the string must be continuous Ψ1(x = L/2) = Ψ2(x = L/2) and because there
is no mass attached at the junction the first derivative must also match Ψ′

1(x =
L/2) = Ψ′

2(x = L/2). This leads to the two equations

A1 sin(k1L/2) = A2 sin(k2L/2), (21)
k1A1 cos(k1L/2) = −k2A2 cos(k2L/2). (22)

We can eliminate the amplitudes by dividing the first equation by the second.
Noting the the wavenumbers obey

ω =
√

τ

ρ1
k1 =

√
τ

ρ2
k2, (23)

we find that the frequencies ω of the normal modes are given by the solutions
of the equation

1
√

ρ1
tan

(√
ρ1

τ

ωL

2

)
= − 1

√
ρ2

tan
(√

ρ2

τ

ωL

2

)
. (24)

As a check on this result note that when ρ1 = ρ2 we recover the usual set of
frequencies ω = (nπ/L)

√
τ/ρ.
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