
PHY 203: Solutions to Problem Set 3

October 16, 2006

1 Problem 7.7

Assigning coordinates of the double pendulum in the usual way we have

x1 = l sinφ1 (1)

y1 = −l cos φ1 (2)

x2 = l(sinφ1 + sinφ2) (3)

y2 = −l(cos φ1 + cos φ2). (4)

The potential energy is V = mg(y1 +y2) = −mgl(2 cos φ1 +cos φ2). The kinetic
energy is T = 1

2m(ẋ2
1+ẏ2

1+ẋ2
2+ẏ2

2) . Differentiating with respect to time we find
that ẋ2

1 + ẏ2
1 = l2φ̇2

1(cos2 φ1 + sin2 φ1) = l2φ̇2
1. Also ẋ2 = l(φ̇1 cos φ1 + φ̇2 cos φ2)

and ẏ2 = l(φ̇1 sinφ1 + φ̇2 sinφ2). After some algebra and using cos(a − b) =
cos a cos b + sin a sin b we find that ẋ2

2 + ẏ2
2 = l2(φ̇2

1 + φ̇2
2 + 2φ̇1φ̇2 cos(φ1 − φ2).

Adding up all the pieces our Lagrangian is

L =
1
2
ml2(2φ̇2

1 + φ̇2
2 + 2φ̇1φ̇2 cos(φ1 − φ2)) + mgl(2 cos φ1 + cos φ2). (5)

Now we have to write down the Euler-Lagrange equations for this Lagrangian.
First for φ1:

∂L

∂φ1
=

d

dt

∂L

∂φ̇1

. (6)

−ml2φ̇1φ̇2 sin(φ1−φ2)−2mgl sinφ1 = 2ml2φ̈1+ml2φ̈2 cos(φ1−φ2)−ml2φ̇2(φ̇1−φ̇2) sin(φ1−φ2).
(7)

or
2φ̈1 + φ̈2 cos(φ1 − φ2) = −2

g

l
sinφ1 − φ̇2

2 sin(φ1 − φ2). (8)

The equations for φ2 follow similarly:

∂L

∂φ2
=

d

dt

∂L

∂φ̇2

. (9)

ml2φ̇1φ̇2 sin(φ1−φ2)−mgl sinφ2 = ml2φ̈2+ml2φ̈1cos(φ1−φ2)−ml2φ̇1(φ̇1−φ̇2) sin(φ1−φ2).
(10)

or
φ̈2 + φ̈1 cos(φ1 − φ2) = −g

l
sinφ2 + φ̇2

1 sin(φ1 − φ2). (11)
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2 Problem 7.9

Let us first choose the origin of coordinates to be on the line where the center of
the disc moves. Let’s call this line the x-axis and its perpendicular the y-axis.
Let’s denote the coordinates of the center of the disc as xd and yd = 0. The
coordinates of the pendulum are denoted xp and yp. They are related to the
ones of the disc by:

xp = xd + L sin (θ + α), (12)
yp = −L cos (θ + α), (13)

where θ is the angular degree of freedom of the pendulum measured from the
vertical (parallel to the direction of the force of gravity) and α is just the incli-
nation of the plane. L is the length of the rope that holds the pendulum.

The disc rolls down the plane without slipping. That means that the angular
velocity of the disc (φ̇d) is related to ẋd by φ̇dR = ẋd. This is a consequence of
the fact that the point on the disc in contact with the plane has zero velocity (no
slipping). The only other thing we need to know is that for a disc I = 1

2MR2.
With all this information we can write the Lagrangian of the system:

L =
3
4
Mẋd

2+Mgxd sinα+
1
2
m

(
ẋd

2 + L2θ̇2 + 2ẋdLθ̇ cos (θ + α)
)
+mgxd sinα+mgL cos θ.

(14)
As expected there are only to degrees of freedom: the angle of the pendulum
and the x coordinate of the disc. We can now find the equations of motion. For
xd:(

3
2
M + m

)
ẍd + mLθ̈ cos (θ + α)−mLθ̇2 sin (θ + α) = (M + m)g sinα. (15)

For θ we have:

mL2θ̈+mLẍd cos (θ + α)−mLẋdθ̇ sin (θ + α) = −mgL sin θ−mLẋdθ̇ sin (θ + α).
(16)

3 Problem 7.13

We solve this problem in a similar fashion as the previous one. The Lagrangian
for this system is:

L =
1
2
m

(
ẋ2 + ẏ2

)
−mgy, (17)

where we picked our origin of coordinates to be some at rest in some inertial
frame on the rail.

Since the system is accelerating in x we write:

x =
1
2
at2 + b sin θ, (18)

y = −b cos θ, (19)
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where the origin of coordinates and time was chosen in such a way to make the
constant and linear terms in time zero. We denote by a the acceleration of the
system in the x axis. We now take derivatives:

ẋ = at + bθ̇ cos θ, (20)
ẏ = bθ̇ sin θ. (21)

Now we plug in our results in (17) and obtain:

L =
1
2
ma2t2 +

1
2
mb2θ̇2 + mbatθ̇ cos θ + mgb cos θ. (22)

We can drop the first term, which is only function of t. As such it can always be
written as the total derivative of some other function of t (its primitive function).
Also, we can add to L another total derivative without affecting the dynamics.
If we add df

dt = d
dt (−mbat sin θ), we get:

L =
1
2
mb2θ̇2 + mgb cos θ + mbatθ̇ cos θ −mbatθ̇ cos θ −mba sin θ (23)

where the last two terms correspond to df
dt . We see that the third and fourth

terms cancel out. Also, we can use trigonometric identities to combine the
second and fifth term:

L =
1
2
mb2θ̇2 + mb

√
g2 + a2 cos

(
θ + arctan

a

g

)
. (24)

From here it is easy to see that this is the Lagrangian of a pendulum with
effective gravity geff =

√
g2 + a2 and equilibrium angle θe = − arctan a

g . As

such, the frequency is just ω =
√√

g2+a2

b . Essentially we have added the
weight and the inertial force vectorially and treated the result as the effective
gravitational force.

4 Problem 7.20

The hoop can rotate and move up and down. If we call θ the angle of rotation
and z the height we have z2 ' l2 − R2θ2 using the small angle approximation.
The Lagrangian is

L =
1
2
MR2θ̇2 +

1
2
Mż2 + Mgz. (25)

Substituting for z and using again the small θ approximation we get

L =
1
2
MR2θ̇2 + Mgl − 1

2
Mg

R2

l
θ. (26)

From this we find the equation of motion

MR2θ̈ = −MR2 g

l
θ, (27)

with frequency ω =
√

g
l .

3



5 Problem 7.34

The coordinates of mass m are given by

xm = x + r sin θ, ym = −r cos θ, (28)

where x measures the displacement of M. The Lagrangian including the con-
straint r = R is given by

L =
1
2
Mẋ2 +

1
2
m( ˙xm

2 + ˙ym
2)−mgym + λ(r −R), (29)

which implies

L =
1
2
(m+M)ẋ2 +

1
2
m(ṙ2 +r2θ̇2 +2ẋṙ sin θ+2ẋrθ̇ cos θ)+mgr cos θ+λ(r−R).

(30)
The Euler-Lagrange equations that follow from this are

(m + M)ẍ + mRθ̈ cos θ −mRθ̇2 sin θ = 0, (31)

mR2θ̈ + mRẍ cos θ = −mgR sin θ, (32)

mẍ sin θ = mRθ̇2 + mg cos θ + λ, (33)

for x, θ, r respectively. Note we have substituted r = R after varying the La-
grangian.

In order to find the reaction force we have to find ẍ and θ̇2 in terms of θ.
Solving the first two equations for ẍ we get

ẍ =
mR2θ̇2 sin θ + mg sin θ cos θ

m + M −m cos2 θ
. (34)

Thus we only need θ̇2 . We have from conservation of momentum

Mẋ + m ˙xm = 0⇒ ẋ = −αRθ̇ cos θ, (35)

where α = m/(m + M). Conservation of energy gives

1
2
(m + M)ẋ2 +

1
2
mR2θ̇2 + mRẋθ̇ cos θ −mgR cos θ = −mgR cos θo, (36)

Plugging in for ẋ we get

Rθ̇2 =
2g(cos θ − cos θo)

1− α cos2 θ
. (37)

Substituting in the expression for λ we find the constraint force

λ = Mgα
3 cos θ − 2 cos θo − α cos3 θ

(1− α cos2 θ)2
. (38)
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