PHY 203: Solutions to Problem Set 5

November 6, 2006

1 Pendulum on Sliding Block

If X is the horizontal displacement of the block the position of the pendulum
bob is given by (z,y) = (X + lsinf, —lcosf). The Lagrangian for the system
is therefore

1. . 1 . .. .
L= 5MX2 + §m(X2 + 21X 0 cos b +126%) + mgl cos . (1)
The equations of motion that follow from this are

MX +mX +mlbcosd —mlh?sing = 0, (2)
miX cos @ +mi*0 + mglsing = 0. (3)

From momentum conservation, or else by integrating the first of these equations

we have
m

Fa J cos .
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Now substituting for X and X in the sccond equation of motion we find

é(l—MT_lmc0529>+Mnlm0.2sin6cosl9+‘(l}sin6—0. (5)

Using the small angle approximation the second term is negligible and the equa-
tion reduces to that of a simple harmonic oscillator with frequency

we g(]\fij\}-m) (©)

This is slightly larger than it would be if the block were clamped down. This
can be understood by considering that the effective length of the pendulum is
reduced if the block is allowed to slide back and forth in antiphase with the
pendulum.



2 Cosmic String

First we have to find the force on a particle of mass M in the vicinity of the
cosmic string. This can be done by integrating over all mass elements Adl of
the string
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or alternatively, because of the high symmetry of the problem one can simply
use Gauss’ Law to obtain the same result. Note that we essentially have a
two-dimensional problem with rotational symmetry in the (z,y)-plane. Thus »
above is the radius in plane polar coordinates and the component of angular
momentum in the z-direction (parallel to the string) is conserved.

The effective potential is simply the (negative) integral of this force plus the
usual centripetal term:

2

Verr(r) =2GMMn(r) + Yk

(8)
Note that we have arbitrarily fixed the zero of the logarithmic potential at
7 =1 in some units. This is not physically significant, since we can always add
constant to the potential without affecting the dynamics.

Equating the derivative of the effective potential to zero we find the radius

of circular orbits:
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To find the frequency of small oscillations we compute the second derivative of
the effective potential
v 2GMX | 3L?
eff — r2 - Mrd:
and evaluating it at r = r. we find the frequency of small oscillations around
the circular orbit:
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3 Problem 8.32

In order to investigate the stability of circular orbits we need to find the sign
of the second derivative of the effective potential V(r) at its critical points
(where circular orbits are located). If it is positive, then orbits are stable (local
minimum of the potential); if it is negative they are unstable (local maximum
of the potential).

The effective potential is just:
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where U(r) is the potential related to the force through U'(r) = —F(r). Here

L is the angular momentum and g the reduced mass. We find critical points of
V{(r) wherever V'(r) = 0.

Viry=U(r)+ (12)
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This means that the condition for a critical point is:
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One way to look at this equation is to think that it determines the value of the
angular moment for a circular orbit of radius . It is clear that the Lh.s. of this
equation is always positive, so there is always a solution and we can always find
an L for which there is a circular orbit. However, two different values of r could
lead to the same L.

Now we calculate the second derivative of V{(r):

V= () "
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We substitute (14) into (15) and rearrange to find:

vy = L (1 _ 1). (16)
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This means that V”(r) will be positive for » < a and negative for r > a.
Therelore, orbits are stable in the first case and unstable in the second.

Furthermore we can ask what happens at » = a. To answer this questions
we have to study higher derivatives. If we calculate V(r) and cvaluate it at
the critical point for » = a we get:

L2
V" (a) = —— <0. (17)
pa
Since the third derivative is different from zero, this means that the critical point
in question is neither a maximum nor a minimum. It is a saddle point. Since
the third derivative is negative (i.e. the function looks locally like —r2) circular
orbits are unstable only towards escaping the gravitational field. They can’t
move to a lower bounded orbit. For r > a orbits are also unstable but, once
perturbed, they can either fall into a lower bounded orbit or escape towards
infinity.



4 Problem 8.35

This problem refers us to equation (8.89) in the book. We will, however, solve it
from scratch. The basic quantity we want to calculate is the ratio of frequencies
of the circular unperturbed motion and the harmonic oscillations around the
minimum of the effective potential on top of it. This will tell us how many
periods of the perturbation (for small oscillations) can fit inside an orbit.

We first calculate the frequency of oscillations, wyse. In order to do this, we
Taylor expand the effective potential around its minimum:
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where r. is the radius of the circular orbit. Note that we did not include a
first order term in the expansion. This is correct because the first derivative
of the potential should vanish at r., since it is a critical point. The first order
condition that fixes r. is:
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We can plug this result into (18) and drop the constant term V(r.) as we know
that it does not affect the dynamics. We find

frd — (19)
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We can now read off the frequency from this result. The potential of a spring

with spring constant % is just %I;:(x — x0)? and its frequency is l;/m, where m
is the mass involved in the problem. In our case the mass is just i and thus

(3—n). (21)

Wose = /1427'3
Now we have to find the angular frequency of orbital motion. Since this is
uniform circular motion this is not difficult. Angular momentum is conserved
and rclated to the frequency by:

L= ur?wcirc, (22)

where weire is just the same as . We are now able to calculate the ratio of
periods, i.e. the number of times we can fit a period of the radial oscillations
inside the circular orbit:

L (3-n)
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This allows us to calculate the angle between consecutive maximums of the
oscillator as 2w/+/3 —n. The apsidal angle is the angle between the maximal
and minimal distance to the origin, which is

T
V3—-n

In order to get closed orbits we need this number to be a rational fraction of
2m. It is easy to see that if we restrict ourselves to n > —6, this only happens
for n = —1 (the harmonic oscillator) and n = 2 (Newton’s potential).
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5 Problem 8.41

To solve this problem we will first calculate the velocities of particles in circular
and elliptic orbits. The energy is in both cases:
1 k
E = -mv® - =. 25
5 . (25)
For a circular orbit, 7 is rclated to angular momentum by the condition that
the particle be at the minimum of the effective potential. This lead to
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We also know that the angular momentum is just L = mvr.. Plugging these

results in (25) yields:

k
E(: - 27"8 . (27)

If we equate this result to (25) we get:
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Now let’s do the same for the ellipse. In this case we use the fact that the
effective potential accounts for all the energy at 7,4, and 7.5, when there is
zero velocity in the r-direction. In this case:
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We can treat this equation as a quadratic equation for ﬁ and solve. One
solution is that 7,62 = Twmen. This represents the circular orbit. The other

solution is: ) ok )
L (30)
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Now calculate the energy as

1 k L2 1 k L2
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We can do this because both terms inside parenthesis are equal, so averaging
them gives the same number. Plugging in our result (30) we get after some

algebra:
k

Tmaz + Tmin

Note that this coincides with the solution for the circle when 700 = Tmin. We
proceed as before and equate this to (25). For the velocity at r,,;, we find

2k mazx
vy = ! . (33)
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E.=- (32)

At 7,42 the velocity is

2 i
Vrppon = \/ i : (34)
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We can now calculate the Av needed to go from a lower orbit to a higher one.
It is just the sum of the two changes in velocity (the first one takes us from the
lower circular orbit to the elliptical one and the second one from the elliptical
one to the higher circular one). Therefore

Av = (Very — Very) + (Very — Ver,)- (35)

From our formulas this is

Ay hry %ry [k [k (36)
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What about the time it takes to switch orbits? The total time is just half the
period of the elliptical orbit (as we ride this orbit for half a cycle). We can
calculate the period from Kepler’s third law:

3
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Let’s evaluate these quantities for the given problem. We have

71 = REarth + 200km = 6.58 x 10°m, (38)
T2 = REarth%Moon =3.84 x 108m: (39)

k 3
= = GMparen = 3.98 x 1014, (40)
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where Rgqrin is the radius of the Earth, Rgarth—s moorn 18 the distance from the
Earth to the Moon and Mgg,¢p is the mass of the Earth. If we plug these valucs
into the formulas above we find

Av =3.96 x 1032, (41)

S

t=4.97 days. (42)



