
PHY 203: Solutions to Problem Set 6

November 22, 2006

1 Problem 9.50

In this problem we need to calculate the differential cross section for a radial
force field of magnitude F = k

r3 . In order to do this, we first need to obtain the
deflection angle as a function of the constants of the motion. We are going to
use conservation of energy and angular momentum:

L = mr2 dθ

dt
, (1)

E =
1
2
m

(
dr

dt

)2

+
k

2r2
+

L2

2mr2
, (2)

where the second term in the energy is just the potential associated with the
given force and the third term is the usual centrifugal barrier. From the equa-
tions above we can isolate dt and equate the results, eliminating time depen-
dence.

dt =
mr2

L
dθ =

√
mdr√

2E − (k + L2

m )r−2
. (3)

From the reflection symmetry of the orbit around rmin we know that the deflec-
tion angles is α = π − 2θ, where θ is just the angle swept by the motion from
rmin to r = ∞. Therefore:

α = π −
∫

dθ = π −
∫ ∞

rmin

Ldr

r
√

2mEr2 − (mk + L2)
, (4)

where we changed variables from θ to r using (3). We can perform the integral
and, after evaluating in the limits, we get:

α = π − L√
mk + L2

sin−1

( √
mk + L2

rmin

√
2mE

)
. (5)

We now have to calculate rmin. This is the point where there is no kinetic
energy in the r-direction; all energy is potential and centrifugal. That is:

E =
k

2r2
min

+
L2

2mr2
min

→ rmin =

√
mk + L2

2mE
. (6)
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Plugging this result into (5) yields:

α = π

(
1− L√

mk + L2

)
, (7)

where we used sin−1 (1) = π
2 . It is possible to write L as a function of the initial

velocity v0 and the impact parameter b as L = mv0b. Using this result in (7)
and solving for b we get:

b =

√
k

mv2
0

π − α√
2π − α

√
α

. (8)

In 3 dimensions and when we have axial symmetry, the differential cross section
is given by:

σ =
b

sin (α)

∣∣∣∣
db

dα

∣∣∣∣ , (9)

(this can be obtained from matching the number of incoming and outcoming
particles). We can use (8) in (9) to obtain our final result:

σ =
kπ2(π − α)

mv2
0α2(2π − α)2 sin α

. (10)

2 The Hockey Player

This problem is very similar to Example 9.11 in the book. The only real subtlety
is that our problem is 2-dimensional, while the one in the book is 3-dimensional.
The only effect this has is in the formula for the cross section. By matching the
number of outcoming and incoming particles we get:

σ =
∣∣∣∣
db

dθ

∣∣∣∣ , (11)

(note that we do not have the usual factor b
sin θ in this case). This is only

because incoming particles do not come in concentric rings of width db but in
usual segments of the same width; the same reasoning applies for outcoming
particles). Having said this, the only thing we have to do is to calculate b as
a function of θ. This can easily be done by looking at figure 9-23 in the book.
The result is geometrical:

b = (R + a) cos
θ

2
, (12)

where R is the radius of the hockey player and a is the radius of the puck. Using
this result we get:

σ =
R + a

2

∣∣∣∣sin
θ

2

∣∣∣∣ . (13)
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Note that in this case this is not a constant like the 3-D case. To obtain the
number of pucks (N ) that go inside the goal net we write this as:

N =
N

L
σdθ, (14)

(this formula is valid for all angles as long as L > R + a so the entire hockey
player is bombarded with pucks, otherwise N could be zero for some angles).
Since d is much larger that all other distances involved we can approximate dθ
as dθ = w

d (this is just the definition of radians). This gives the final result:

N =
N

L

R + a

2

∣∣∣∣sin
θ

2

∣∣∣∣
w

d
. (15)

3 Problem 12.7

Choosing as coordinates the distances from the equilibrium for the two masses
x and y, we find that the kinetic energy is

T =
1
2
mẋ2 +

1
2
mẏ2. (16)

The potential energy is given by

V =
1
2
kx2 +

1
2
k(x− y)2 =

1
2
(2x2 − 2xy + y2). (17)

Thus the corresponding matrices mij = ∂2T
∂q̇i∂q̇j

and Aij = ∂2V
∂qi∂qj

are

m =
(

m 0
0 m

)
, (18)

and

A =
(

2k −k
−k k

)
. (19)

The eigenfrequencies are given by

det(mω2 −A) = 0 ⇒ (mω2)2 − 3kmω2 + k2 = 0, (20)

with solutions

ω2 =
3±√5

2
k

m
. (21)

The eigenvectors are easily found from the equation

(mω2 −A)~u = 0. (22)

This gives the (unnormalized) eigenvectors

~u1,2 =
(

1
1∓√5

2

)
. (23)
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4 Problem 12.16

The kinetic energy of the hoop is just Thoop = 1
2IR2θ̇2 with I = 2MR2 from the

parallel axis theorem. The kinetic energy of the mass is Tmass = 1
2M(ẋ2 + ẏ2)

where
x = R(sin θ + sin φ), y = R(cos θ + cos φ). (24)

The sum of the two (expanding around θ = 0, φ = 0) is thus

T =
1
2
MR2(3θ̇2 + 2θ̇φ̇ + φ̇2). (25)

The potential energy is simply V = MgR( 1
2φ2 + θ2). Therefore the correspond-

ing matrices are

m =
(

3MR2 MR2

MR2 MR2

)
, A =

(
2MgR 0

0 MgR

)
, (26)

and det(mω2 −A) = 0 gives

2ω4 − 5ω2 g

R
+ 2

( g

R

)2

= 0 ⇒ ω2 =
5± 3

4
g

R
⇒ ω2

1 = 2
g

R
ω2

2 =
1
2

g

R
. (27)

The unnormalized eigenvectors are found to be

~u1 =
(

1
−2

)
, ~u2 =

(
1
1

)
. (28)

If one wants to excite one of the normal modes, one can simply set the initial
displacement proportional to one of the eigenvectors, with zero initial velocity.
So an initial displacement of θ = α, φ = −2α, for small α excites the first mode.
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