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1 Problem 13.4

In this problem we are asked to solve for the motion of a string with given initial
conditions. We start from the wave equation:

ρ
∂2ψ

∂t2
= T

∂2ψ

∂x2
, (1)

where ψ is the transverse displacement of the string, ρ its density and T its
tension. To solve this equation we use the usual, oscillatory ansatz of the form:

ψ(x, t) =
∞∑

n=1

(an cos (knx) + bn sin (knx)) cos (ωnt+ φn), (2)

where we still have to determine the coefficients ωn, kn and φn and the ampli-
tudes an and bn. Plugging each normal mode into equation (1) we get:

ρω2
nψ = Tk2

nψ → ωn =

√
T

ρ
kn. (3)

Now we use the boundary conditions. Since the string is fixed at x = 0
(i.e. ψ(0, t) = 0), only solutions which have sin(kx) are allowed (since cos(kx) 6=
0 at x = 0). Thus an = 0 for all n. If we do the same thing for x = L we get
the condition sin(knL) = 0 for all n. Then, kn = nπ

L . At this point our solution
looks like

ψ(x, t) =
∞∑

n=1

bn sin (
nπ

L
x) cos (

√
T

ρ

nπ

L
t+ φn). (4)

The only thing left for us to do is to fix bn and φn by initial conditions. In our
case the initial conditions are

ψ(x, 0) =
4x(L− x)

L2
=

∞∑
n=1

bn cos (φn) sin (
nπ

L
x), (5)

ψ̇(x, 0) = 0 =
∞∑

n=1

−bnωn sin (φn) sin (
nπ

L
x), (6)
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where we have substituted the result from (4). The only thing left for us to do
is to Fourier expand the initial conditions and match coefficients on both sides
of (5) and (6). It is easier to start from (6). The Fourier expansion of 0 is just 0
for every coefficient. This means that ωnbn sin(φn) = 0 for all n. Since neither
ωn (these frequencies were already calculated and are positive) nor the bn can
be zero, we have sin(φn) = 0⇒ φn = 0. Using this result in (5) we find

4x(L− x)
L2

=
∞∑

n=1

bn sin (
nπ

L
x). (7)

Thus the bn are just the Fourier coefficients of the initial position of the string.

bn =
2
L

∫ L

0

4x(L− x)
L2

sin (
nπ

L
x)dx. (8)

Performing the integral (by parts) we obtain

bn =
16
π3n3

[1− (−1)n] , (9)

which is the same as bn = 0 for n even and bn = 32
π3n3 for n odd. These are the

amplitudes of the normal modes. Our final solution is therefore

ψ(x, t) =
∞∑

n=1

32
π3(2n− 1)3

sin
(

(2n− 1)π
L

x

)
cos

(√
T

ρ

(2n− 1)π
L

t

)
. (10)

2 String with Spring

Here we again use the general solution (2) with Dirichlet boundary conditions
at x = 0 (i.e. an = 0) and dispersion relation ω =

√
T/λ k. The only non-trivial

issue is the boundary condition at x = L. At a generic point along the string
we have

∂2ψ

∂t2
λdx = T

(
∂ψ

∂x

∣∣∣∣∣
x+dx

− ∂ψ

∂x

∣∣∣∣∣
x

)
. (11)

At the boundary x = L the first term on the right hand side is zero (since there
is no more string to the right of the endpoint) and furthermore there is an extra
term proportional to the displacement from the spring:

∂2ψ

∂t2
λdx = −T ∂ψ

∂x

∣∣∣∣∣
x=L−

− kψ. (12)

Now as dx → 0 the right hand side of this equation must vanish at x = L.
Substituting from (2) this gives

tan(knL) = −T
k
kn ⇒ tan

(
ωn

√
λ

T
L

)
= −

√
λTωn

k
. (13)
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We can find the frequencies ωn graphically by plotting tan(z) and −Tz/(kL)
and finding their points of intersection. In particular, in the limit k → 0 the
slope of the straight line diverges and the solutions are just the points where
tan(z) diverges, that is

ωn = (2n− 1)

√
T

λ

π

2L
. (14)

This coincides with the result for a string with a free end (Neumann boundary
condition). Similarly for k → ∞ the solutions are simply the zeroes of tan(z),
which implies

ωn = n

√
T

λ

π

L
. (15)

This is of course just a string with Dirichlet boundary conditions at both ends.

3 String with Mass in the Middle

Again this is basically just a question of boundary conditions, but before we get
to that there’s an important point to be understood: the normal modes of a
string of length L without a mass attached are either symmetric or antisymmet-
ric about x = L/2. For the antisymmetric modes there’s a node at x = L/2, so
if we put a mass there nothing changes. The antisymmetric modes (with even
mode numbers) still have sinusoidal x-dependence and have frequencies

ω2n = 2n

√
T

λ

π

L
. (16)

This is not true for the symmetric modes however. Here the mass at x = L/2
sits at a node, and thus the frequencies will be shifted and normal modes will
have a kink at this point (they are still piecewise sinusoidal to the left and right
of the mass, but they are not sinusoidal on the whole interval [0, L]).

To treat these symmetric modes we consider just the left half of the string
(the right half is then fixed by symmetry) and treat the mass as a boundary
condition. We have

∂2ψ

∂t2
(λdx+m) = −2T

∂ψ

∂x

∣∣∣∣∣
x=(L/2)−

, (17)

where we take the left derivative (note the profile of the string is not differen-
tiable at x = L/2), the factor of two arises because the right half of the string
pulls on the mass with the same force by symmetry, and again the λdx term
vanishes as dx→ 0. Therefore we find for odd mode numbers

cot

(
ω2n−1

√
λ

T

L

2

)
=
mω2n−1

2
√
λT

. (18)

Again this can be solved graphically and the limits m → 0 and m → ∞ are
analogous to those discussed in Problem 2.

3



4 Chain of Springs

Consider the equation of motion for a mass m at site j, which depends on its
displacement xj and that of its immediate neighbours:

mẍj = k(xj+1−xj)+k(xj−1−xj) = kd

(
xj+1 − xj

d

)
−kd

(
xj − xj−1

d

)
, (19)

where the right hand side should remind you of a difference of two derivatives
analogous to eq. (11). Indeed we can rewrite it in the even more suggestive form

m

d
ẍj = kd

(
xj+1 − 2xj + xj−1

d2

)
, (20)

where now the right hand side is the discrete version of a second derivative.
Taking the continuum limit d→ 0, m→ 0 and k →∞, such that λ = m/d and
T = kd are finite, we recover the wave equation

λẍ = Tx′′. (21)

To find the relationship between Young’s modulus and the wave velocity
imagine a 3D simple cubic lattice of masses m connected by equal springs, which
basically amounts many of the above discrete chains in parallel, with one chain
per cross sectional area d2. The three-dimensional density is then ρ = m/d3

and Young modulus is given by

E ≡ stress
strain

=
kx/d2

x/d
=
k

d
. (22)

Therefore the wave velocity, i.e. the velocity of longitudinal sound waves c, is

c2 =
T

λ
=

kd

m/d
=
E

ρ
. (23)
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