
PHYS 203 Princeton University    Fall 2005
Midterm Exam Solutions

1. (30 points) Bouncing Ball

A small ball of mass m is released with a zero velocity from a height h above the floor. In the
absence of air resistance the ball will hit the floor in a time ght /20 = . Now suppose there
is a small resistance force proportional to the velocity, F=− kmv. The time until the ball hits
the floor will increase by a small amount 10 ttt += . For small k the time increment t1 is
proportional to k.
a) Determine the equation describing the position of the ball as a function of time.
b) Calculate t1 to first non-trivial order in k.
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a) The equation of motion is (x axis is directed down)
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This is an inhomogeneous linear equation. The characteristic equation for the
homogeneous differential equation 0=+ xkx ��� is krrkrr −===+ ,0;02 . The particular
solution can be guessed tkgx )/(= . Hence the complete solution to the equation of motion

is tkgBeAtx kt )/()( ++= − . The initial conditions are 0)0(,0)0( == xx � . Therefore the
constants A and B have to satisfy the following two equations
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So 22 /,/ kgAkgB −==  and the position as a function of time is given by
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b) The time when the ball hits the floor is given by x(t) = h. This is a transcendental equation
for t and cannot be solved exactly. But we can solve it easily for the first order correction due
to air resistance. Set 10 ttt += where t0 is the time you would get without air resistance.
Since k is small, the exponential function can be expanded in a Taylor series around zero
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Also since 01 tt << , the powers of 10 tt + can be expanded to first order in t1
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Using ght /20 = we get
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Note that we dropped the term proportional to t1 on the right hand side because it is small
compared with the other term. Also it is clear after the fact that the exponent had to be
expanded to third order. If the expansion were truncated sooner, one would get a trivial
result.

2. (40 points) Slipping Cylinder

A cylinder of radius R and mass m is placed on top of a
fixed circular surface of the same radius and allowed to
roll off. The cylinder begins to slip when the angle
θ reaches a critical value θc. The goal of the problem is to
determine the coefficient of static friction µ between the
surfaces.

a) Write down the Lagrangian and the necessary
equations of constraint.

Since we are concerned with friction in this problem, we will need to know both the normal force
and the tangential friction force. Hence, we need to write the Lagrangian equations with two
equations of constraint:
g1 =  r − 2R = 0 and g2  = θ −φ = 0 and two underdetermined constraints λ1 and λ2

The Lagrangian in terms of variables θ, φ, and r is
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The equations of motion are
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b) What is the condition for the cylinder to begin to slip?

The usual equation for slipping is Ff  = µN. Here λ1 gives the normal force of constraint, while
λ2 gives the torque that prevents slipping. Hence the cylinder begins to slip when λ2 =± µRλ1.
The friction force can be either positive or negative, whatever is needed to prevent slipping.
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c)  Obtain the Lagrangian equation of motion containing only the variable θ.

Now that we found the relationship between the forces, we can eliminate variables r and φ from
the Lagrangian equations of motion using equations of constraint
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c) What quantity is conserved for θ < θc?

The energy is conserved before the cylinder begins to slip because friction does no work
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d) Obtain an equation for µ as a function of the angle θc

Now we substitute expressions for θθ DDD and2 into the condition for slipping (also I = mR2/2)
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Pick the sign so µ is positive. Also note that cosθc has to be greater than 16/25 (the result
obtained in the homework problem), otherwise the cylinder will simply fly off the surface.
One needs an infinite µ  to keep it from slipping just before it flies off as the normal force
goes to zero.

3. (30 points) Twirling masses

Two masses m1 and m2 are connected by a spring with a zero equilibrium distance and a spring
constant k, so F = − kd, where d is the distance between
the masses.  The masses are free to slide on a frictionless
horizontal table.

a) How can this problem be reduced to a problem of motion in a central potential? What is the
effective potential in this case?

This configuration is similar to a homework problem. There are no external forces or
torques. Hence the linear and angular momentum of the system is constant. One can go to a
reference frame where the center of mass is at rest and describe the motion in terms of a
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reduced mass µ = m1m2/(m1+m2) and single variable d = r. Hence, the problem is equivalent
to motion in a central force potential with an effective potential is given by
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b) Calculate the frequency of small oscillations around a circular orbit.

The frequency of small oscillations is given by 
µ
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c) Will the orbit precess? Sketch an orbit with a small
oscillation around the circular orbit.

The period of the orbit is given by
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Hence TΩ = 4Pi, in one complete orbit the will be two
complete oscillations. The orbit does not precess.
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