
Chaotic Pendulum 
 

In this experiment you will explore the behavior of a simple driven pendulum in a non-linear 
regime. In this regime it exhibits a surprisingly rich set of behaviors, including bi-stability, 
period doubling, and chaos. Before starting the lab, you need to get some background on non-
linear oscillations and chaos. The textbooks used in our classical mechanics courses (Analytical 
Mechanics by Hand and Finch or Classical Dynamics by Thornton and Marion) have nice 
chapters devoted to the subject.  
 
The mechanical system is quite simple, as shown in the figure. 
The pendulum consists of a disk free to rotate around its axle 
and an extra mass on the bottom at the edge of the disk. Torque 
is applied to the disk by springs through a pulley located 
behind the disk. The pendulum also has adjustable damping 
provided by a permanent magnet located behind the disk. The 
magnet creates eddy currents in the aluminum disk, which 
result in a damping torque proportional to the velocity of the 
disk. The damping strength can be adjusted by bringing the 
magnet closer or further away from the disk with a screw. If 
the magnet is far away from the disk, there is still small friction 
in the axle, which can be modeled as a constant torque that 
always opposes the direction of motion. 
 
The system is driven by a stepper motor which is controlled by 
the computer. The amplitude of the drive can be adjusted by 
sliding the lever attached to the stepper motor and the 
frequency of the drive is set by the speed of the motor. The 
computer program allows one to slowly scan the frequency of 
the drive. The angular position of the disk is recorded by the 
computer using a rotational encoder attached to the axle. The 
position is recorded 400 times per revolution of the motor. The 
encoder output for one complete revolution of the pendulum is 
1440 counts.  
 
The equilibrium position of the pendulum can be adjusted with 
a tuning peg on the bottom. The extra pendulum mass (a screw 
with nuts) can be changed or removed altogether. When adjusting the mass, make sure all the 
nuts are tight, so they don’t vibrate during motion. 
 
The oscillator can be operated in a variety of modes: 
 
Linear torsional oscillator: If you remove the extra mass on the edge, the oscillator becomes a 
simple harmonic system (to the extent that the springs obey Hook’s law).  
 
Simple pendulum: If the amplitude of the drive is small, the system can be thought of as a simple 
pendulum undergoing harmonic motion but with an extra restoring torque provided by springs. 



Non-linear  pendulum: If the amplitude of the drive is large, the behavior becomes much richer 
because of the non-linear nature of the torque due to the extra mass. 
 
Inverted bi-stable pendulum: If you screw the extra mass at the top, instead of the bottom of the 
disk, the system will have two equilibrium points, with a potential maximum at the top. Small 
oscillations around each equilibrium point are still described by harmonic motion, but for larger 
oscillation amplitude the system behavior is more complicated. 
 
Driven or free motion: The system is designed for driven motion, however if you turn off the 
power switch on the control box, the motor will stop while the encoder will still continue to 
record the position of the disk. You can then excite disk oscillations by hand and record their 
decay due to damping. 
 
Your goal in this lab is to develop a quantitative picture for various modes of the pendulum 
behavior. Start by writing the differential equation for the motion of the pendulum. You will find 
that you need to know the following parameters: the moment of inertia of the disk I, the extra 
mass m and its distance from the axle l, the spring constant of the springs k,  and the radius of the 
pulley R. Using provided scale and ruler, you can determine all these parameters. To measure the 
spring constant you can remove the bracket from the motor and hang an extra weight from it 
while holding the disk with your hand so it doesn’t rotate. From the differential equations find 
the frequency of small oscillations of the pendulum with and without the extra mass. 
 
The data are acquired using program Acquire Chaotic Pendulum Data. The program saves the 
data to a binary file (default: data.bin, you can rename the file if it contains interesting data and 
you want to use it for further analysis). First set the frequency of the motor to 1 Hz and leave 
frequency scanning off. Start the program with the motor box OFF.  
 
To display the data use the program DisplayI16. It reads the binary file even while it is being 
recorded and allows basic analysis. Start the program and select the name of the binary file. 
Make sure the real time updating is on. Excite the pendulum with your hand and you should see 
its oscillations on the screen.  
 
You can select a particular region of data using cursors on the upper graph. The data will be 
plotted on the lower graph when you press update tabbed graphs. The program plots the 
coordinate of the disk θ and the velocity of the disk ω.  The velocity is calculated numerically by 
taking the derivative of position using a local smoothing algorithm. You can adjust the degree of 
smoothing by changing the number of points to fit and the order of the fit. The coordinate θ and 
the velocity of the disk ω are the two variables that form the Phase Space, a very useful concept 
in the analysis of the data. It will also be useful to look at the Fourier transform of the data. You 
can  save θ , ω and acceleration of the disk α to an Excel spreadsheet for more detailed analysis. 
The data are recorded at a rate of 400 per one motor revolution, you can select fewer points if 
you wish. Plots of phase space trajectory can be saved directly by clicking on the graph and 
exporting it. 
 
First study free motion of the pendulum without the drive. Record and save decaying oscillations 
for the pendulum without the extra mass. Make a few measurements for different distances of the 



permanent magnet from the disk. Using your previous measurements of the mechanical 
parameters of the system you should be able to predict the frequency of the oscillations for weak 
damping and determine the damping constant as a function of the magnet distance.  
 
Record decaying oscillations of the pendulum with the extra mass. Make sure you excite only 
small oscillations, so the pendulum motion is simple harmonic. The oscillation frequency will 
now be different, it should agree with your predictions.  
 
Now you can study the driven motion. Turn the motor box on. Adjust the bracket on the motor 
for a small drive amplitude, about 1 cm. Turn on frequency scanning option and start from 0.4 
Hz with step increment of 0.003 Hz per revolution or less. You should see the amplitude of the 
motion change as you would expect for a driven oscillator as you step through the resonance. 
You can vary the distance to the magnet to adjust the damping of the resonance. 
 
Remove the extra mass, increase the amplitude of the drive and perform another scan. Be careful 
not to excite too large oscillations, the disk should rotate no more than 1 turn in each direction. 
How are the results different? 
 
Now add back the extra mass, set the amplitude of the drive to 3-4 cm and perform another 
frequency scan. Now the behavior should be more complicated. You can also see what happens 
if the frequency is scanned down, going from 1.2 Hz down in steps of 0.003 Hz or less. Even if 
you make the frequency step size very small, you will see sudden changes in the amplitude of the 
oscillations and observe hysteresis when reversing the direction of the scan. 
 
Go to a frequency near the resonance, about 0.7-0.8 Hz, and stop the frequency scan. By hand, 
stop the motion of the disk and then let it come to an equilibrium oscillation amplitude. In the 
phase space plot you expect to see an ellipse after the transients decay. You can also excite the 
disk to a large amplitude and wait for the transient to decay. You should find that there are two 
different stable motions of the oscillator. This is a manifestation of the bi-stability of a non-linear 
driven oscillator. Each of the stable orbits are called attractors or limit cycles, they represent the 
motion of the system after transient effects have decayed away. The initial phase space is divided 
into basins of attraction for each limit cycle. Depending on the starting conditions, the motion 
will converge to one of the two attractors. The system has undergone a bifurcation from one to 
two attractors at a certain drive amplitude. As you increase the amplitude of the drive further you 
will find more bifurcations of different kinds. 
 
Continue to slowly increase the amplitude of the drive by sliding the bracket on the motor. For 
each setting, you can measure the behavior of the large and the small amplitude limit cycles by 
exciting large amplitude or stopping the pendulum.  You might notice that for some drive 
amplitude the path described by the oscillator in phase space becomes asymmetric. The 
asymmetry could be due to misalignment of the pendulum equilibrium, which can be adjusted by 
the tuning peg. However, there is also a genuine phenomenon of symmetry breaking in this 
system, where two asymmetric solutions are possible for a symmetric potential. By varying the 
initial conditions, you should be able to generate two asymmetrical limit cycles in phase space 
which are mirror images of each other. This is another bifurcation, spontaneous breaking of the 
reflection symmetry.  



As you increase the drive amplitude further you will find at some point that in the phase space 
plot the limit cycle is no longer a single closed loop. The path will close onto itself after two or 
more revolutions. In the Fourier transform you will see peaks at a fraction of the drive frequency 
and in the time domain the motion will repeat itself after 2 or more periods. Here you have 
reached a bifurcation resulting in period doubling, common in non-linear systems.  
 
If you continue to make small steps in the drive amplitude, you should see successive 
bifurcations to 2, 4 and 8 periods. The system is quite sensitive to various parameters at this 
point. Changes in the behavior can be seen from small adjustments of the tuning peg, which can 
also generate odd number of periods due to slight asymmetry of the potential. Wait until the 
motion settles to the attractor and save interesting phase space limit cycles. 
 
Further increase of the drive amplitude will result in chaotic motion. For chaotic motion the path 
in phase space never closes onto itself and the frequency of motion no longer has a discrete 
spectrum. It is possible to achieve the situation where the large-amplitude oscillation is chaotic, 
but the small-amplitude is not.  You can investigate the behavior for different initial excitations 
and convince yourself that the pendulum still settles into one of two “stable” modes, one of 
which is chaotic. In this case one of the attractors is chaotic or strange. For even larger drive 
amplitudes chaotic motion will result from all initial conditions. 
 
Think about what values of the extra mass on the rim will result in chaotic motion. What happens 
if it is too small or too large? Try a few different values of the mass.  
 
You can also investigate the motion of an inverted pendulum. For small oscillations it should 
execute simple harmonic motion around one of the equilibria points with a frequency that you 
should be able to predict from the differential equations. Larger excitation will result again in a 
series of period doublings followed by chaos. 
 
When you obtain an interesting chaotic motion you can let the system run overnight, collecting a 
longer record. For a long run it is easier to display data as a Poincaré plot, which displays only 
one point per drive period. In the phase plot you can change the reading/revolution to 1 and plot 
style to points/no line to see a Poincaré section. 
 
In order to gain insight into the series of bifurcations that you have observed, it is instructive to 
numerically simulate the differential equations of motion. You can use the program Simulate 
Pendulum to do so. The program converts the differential equations to a dimensionless form and 
allows one to set a number of parameters: 
 
Γ − damping torque proportional to velocity 
Γ' − kinetic friction torque that is constant but depends on the sign of the velocity 
κ − spring restoring torque 
μ − torque from the extra mass on the edge of the pendulum 
δ − drive amplitude 
Ω – drive angular frequency 
θ0 − imbalance in the torque from the springs 
 



Show that your differential equations reduce to the form used by the program and calculate the 
values of the parameters from your mechanical measurements. Try to reproduce some of the 
trajectories that you have observed experimentally with the simulation. You can also adjust the 
initial conditions for the pendulum to select between different limit cycles. Using the program 
you can find more precisely the drive amplitudes corresponding to various bifurcations. 
 
With a long chaotic data set you can also confirm several interesting aspects of the chaotic 
behavior.  
 
1) Fractal attractor 
 
For a damped system the motion converges to a limit cycle, which is a closed loop in phase 
space. Thus at long times the volume that can be occupied by the system in phase space for any 
initial conditions goes to zero, as one would expect for a line of finite length and vanishingly 
small thickness. However, when we have chaotic motion, the length of the limit cycle is infinite, 
as it never repeats. Hence there is a seemingly contradictory situation of a phase space with 
infinite length but zero volume. Despite infinite length, the orbit of a chaotic pendulum will 
never completely cover any area of the θ−ω Poincaré section and will occupy a zero volume in 
θ−ω-φ space. This is a result of the fractal nature of the chaotic attractor.  
 
To confirm the fractal nature of the attractor for chaotic motion you can use the program Box 
Counting Dimension, written by Prof. Robert DeSerio of University of Florida. The following is 
his description of the algorithm: 

The attractor for chaotic motion is called “strange” because it has a strange shape called a 
fractal. A fractal is a self-similar object, meaning it looks similar on ever decreasing scales. 
One invariant of a strange attractor is its fractal dimension. Since our attractor is di-
mensionally the same as an extruded Poincaré section, its fractal dimension is one plus the 
fractal dimension of any of its Poincaré sections. Consequently, it is the fractal dimension of 
a Poincaré section that will be sought. While there are several different varieties of fractal 
dimensions, the most common is the capacity dimension. The box-counting algorithm used 
to determine the capacity dimension also demonstrates the self similarity of a fractal 
Poincaré section.  
The algorithm for a two dimensional fractal is as follows. Determine the bounds in the plane 
over which the fractal extends. Divide that area into M×rM grid boxes (r = 1 is fine but not 
required). Count the number of grid boxes N that are covered by any part of the fractal. Re-
peat the procedure as M is increased, making the grid boxes smaller and smaller. The slope 
of the log N vs. log M graph (in the limit as M →∞) is the capacity dimension.  
The procedure above is for the idealized case of an infinite trajectory—a Poincaré section 
from the complete attractor. It will need to be modified for an experimental Poincaré section 
obtained from a finite trajectory. The phrase “covered by any part of the fractal” is modified to 
“having at least one phase point in it.” The phrase “in the limit as M →∞” must be dropped 
because if the size of boxes becomes too small, N will saturate at the total number of phase 
points in the Poincaré section. Thus, one must simply check that the graph of log N vs. log M 
appears to be a straight line before N saturates. For our 50,000-point Poincaré sections, r 
=1/2 (twice as many grid lines in θ as in ω) and M in a range from 10 to 300 or so works well.  



Think about what would be slope of the log N vs. log M line in the box counting algorithm if the 
Poincaré section was a point (as it is for non-chaotic motion), a continuous line, or if it filled a 
box of finite area. Run the box counting program on a long data file with chaotic motion and 
confirm that the slope is indeed a non-integer. The self-similarity of the fractal attractor is 
manifested by the fact that no matter how much you zoom onto an area that appears densely 
filled with points, the density of points does not increase. 
 
2) Lyapunov Exponent  
 
A hallmark of chaotic motion is its sensitivity to initial conditions. Even though the motion is 
completely deterministic, minor changes in the initial conditions will result in drastically 
different position after a period of time. Lyapunov exponent describes how two points that 
started at similar positions in phase space will evolve with time. In three-dimensional phase 
space there are actually three Lyapunov exponents corresponding to possible directions of initial 
separation in phase space. For damped non-chaotic motion all Lyapunov exponents are negative 
or zero because differences resulting from initial conditions decay with time. For chaotic motion, 
at least one of the Lyapunov exponents becomes positive, meaning that initial differences grow 
in time exponentially.  
 
The algorithm for calculating Lyapunov exponents from the time record of motion is fairly 
complicated, see references. Fortunately, Prof. Robert DeSerio also shared with us the program 
for calculating the Lyapunov exponents. The program looks at successive Poincaré sections to 
determine local evolution of the phase space trajectory and then averages the data to determine 
global Lyapunov exponents.  
 
References 

[1] Chaotic pendulum: The complete attractor, Robert DeSerio, American Journal of Physics, 71, 
250-257, 2003 

[2] The analysis of observed chaotic data in physical systems,  Henry D. I. Abarbanel, Reggie 
Brown, John J. Sidorowich, and Lev Sh. Tsimring, Rev. Mod. Phys. 65, 1331–1392 (1993). 

[3] Determining Lyapunov exponents from a time series, Alan Wolf, Jack B. Swifta, Harry L. 
Swinneya and John A. Vastanoa, Physica D: Nonlinear Phenomena, 16, 285-317 (1985).  

[4] Liapunov exponents from time series, J. -P. Eckmann,  S. Oliffson Kamphorst, D. Ruelle, S. 
Ciliberto, Phys. Rev. A 34, 4971–4979 (1986). 

 

 
 
 
 
 


