
Techniques and software for data analysis
PHY 312

There are many programs available for analysis and presentation of data. I recommend using
Genplot, which can be downloaded for free from www.genplot.com. It can be used for fitting
and other analysis tasks and for making presentation-quality plots. Online documentation for
Genplot is available at http://paros.princeton.edu/genplot.html. Another common program for
data analysis that some of you may already be familiar with is Matlab. Princeton has a site
license for it. Mathematica can also be used, but it is not very efficient dealing with large
datasets. There are also various menu-driven programs, such as Excel and Origin that can
perform a limited set of tasks, but inevitably prove insufficient.

Below I will describe some typical data manipulation and analysis tasks and provide commands
for Genplot and Matlab as a starting point.

Create fake data set: Gaussian noise with a standard deviation of 1, with x ranging from 0 to 100
in steps of 0.01:
GENPLOT

create y=gnoise(x) –from 0 -to 100 –by 0.01

MATLAB
 x=(0:0.01:100);
 y=randn(length(x),1);

Plot data and analyze their statistical distribution:
GENPLOT

plot
eval @ave(y)
eval @std(y)
eval @std(y)/sqrt(npt) – this gives the standard deviation of the average
trans hist 0.1 - transforms data into a histogram that gives the

number of points in bins with a width of 0.1
plot –hist – makes a plot of the histogram.

MATLAB
 plot(x,y)
 mean(y)
 std(y)
 std(y)/sqrt(length(y))

[nbin,ybin]=hist(y,100); - creates a histogram with 100 bins
 bar(ybin,nbin) -makes a histogram plot

We can fit the distribution to a Gaussian. Here are the steps needed to fit the data.

http://www.genplot.com/

GENPLOT
Go to non-linear fitting mode:

nlsfit
Define the fitting function with parameters a, x0, s

define f(x)=a*exp(-(x-x0)^2/(2*s))
fun f

Define initial values for the variables
setvar a 100
setvar x0 0
setvar s 1

Specify which parameters you want to vary during the fit. You can also specify the partial
derivatives of the fitting function with respect to those parameters or let the program calculate
them numerically with “/” option.

vary a /
vary x0 /
vary s /

If you want to remove one of the parameters from the list being varied use remove command
fit - this executes the fit command. It returns fit values of parameters

and their 1-sigma errors as well as other statistical data, such as χ2

ov –fit –lt 1 -this will overlay the resulting fit over the data using a solid line

MATLAB

fun=fittype('a*exp(-(x-x0)^2/(2*s))') – defines a fitting function with
x as an independent variable and a, s, x0 as fitting parameters.

[res,gof,out]=fit(ybin',nbin',fun,'startpoint',[100 1 0],
'algorithm', 'gauss-newton') - fitting with starting points of 100, 1, 0 for

a, s, x0 (variables in alphabetical order).
gof and out contain various statistical parameters:

J=out.Jacobian
sqrt(diag(inv(J'*J))) – returns 1-sigma errors of fit parameters
gof.sse/gof.dfe -returns reduced χ2

hold on -overlays next plot on top of previous one
plot(res)

As you can see the distribution is overall well described by a Gaussian, but there are deviations
in each bin from the fit. What do you think is the distribution of the number of counts in each bin
of the histogram?

In the fit so far we assumed that the uncertainty is the same for each bin and did not apply any
relative weighting in the sum to calculate χ2. A more correct procedure is to use weighs
corresponding to the uncertainty in each data point.

GENPLOT

weight 1/(max(1,y)) -this sets the weight for each point, so that
22))((∑ −×= xfywχ

yyw /1)/(1/1 22 === σ . When y = 0, still have
uncertainty of 1, approximating Poisson distribution.

 fit Now the fit is done using weighting.
 plot –erry sqrt(y) - Plot data with errorbars
 ov –fit –lt 1 - overlay fit

MATLAB

[res,gof,out]=fit(ybin',nbin',fun,'startpoint',[100 1 0],
'algorithm', 'gauss-newton','weight',1./max(1,nbin))
gof.sse/gof.dfe
hold off
plot(res,ybin,nbin) –plot data, fit
hold on

 errorbar(ybin,nbin,sqrt(nbin)) -add errorbars

Look at the quantity called reduced χ2, which is equal to χ2/N and should be close to 1 when
proper weighting is used. The fit also gives estimates for the uncertainty in each parameter. You
can check that this uncertainty is reasonable by generating several random datasets, converting
them to histograms and doing the fit again. The distribution of fit parameters should itself be a
Gaussian with a width given by 1-sigma error.

Data saving and retrival:
GENPLOT

write test.dat -this writes data in a two-column ASCII format

read test.dat -if you have more columns you can use

read –col 2 3 to read 2nd and 3rd columns as x and y

MATLAB
 data=[ybin’,nbin’] – makes a data matrix, “’” transposes rows into columns
 save -ascii 'test.dat' 'data' – writes a two-column data file

 load ‘test.dat’
 ybin1= test(:,1)’
 nbin1= test(:,2)’

Data averaging and filtering:
GENPLOT

create y=gnoise(x) –from 0 -to 100 –points 1000
arch noise - saves data in a curve called “noise” for later use
plot

trans average 10 - averages 10 adjacent points into a single point
ov –color 2 - Noise is reduced by averaging, overlay in red color
retr noise
trans fft_filter 1/(1+exp(3*(f$-1))- this applies a low-pass filter using

Fast Fourier Transform.
ov –color 3 - Another way of reducing noise

MATLAB
 x=(1:1000)/10;
 y=randn(length(x),1);

plot(x,y)
hold on
xave=sum(reshape(x,10,100))/10; - average 10 points into 1
yave=sum(reshape(y,10,100))/10;

 plot(xave,yave,’color’,’r’)
 xdec=decimate(x,10); -“decimate” data, similar to average
 ydec=decimate(y,10); but with additional filtering
 plot(xdec,ydec,’color’,’g’)

 f=inline('1./(1.+exp(3.*(x-1)))') - commands for Fourier filtering

ffty=fftshift(fft(y));
filffty=ffty’.*f(abs(-length(ffty)/2:length(ffty)/2-1)/
(x(end)-x(1)));
fily=ifft(ifftshift(filffty));
plot(x,fily,’color’,’c’)

The filtering function 1/(1+exp(3*(f-1)) in frequency space is motivated by the Fermi-
Dirac distribution. It gives flat response for frequencies below 1 Hz and exponential attenuation
for frequencies above 1 Hz. The width of the transition region is 1/3 Hz.

Fourier Transforms
GENPLOT
create y=0.5*sin(2*Pi*x)+gnoise(x) –from 0 -to 100 –points 1000
 plot - the sine wave is barely visible in the noise

trans fft –magn -this gives the fft magnitude transform (sum in quadrature
of real and imaginary components)

plot - now you can clarly see the peak in frequency space.

MATLAB
x=(1:1000)/10
y=0.5*sin(2*pi*x)+randn(1000,1)'
hold off
plot(x,y)
ffty=abs(fft(y))
fftx=(1:length(x)/2)/(x(end)-x(1));
plot(fftx,ffty(1:length(ffty)/2))

Note that the Fourier transform extends to 5 Hz. This is the result of the Nyquist theorem, for
data with a sampling rate of 10 Hz (1000 points over an interval of 100 sec), the frequency range
is equal to 10 Hz/2 (in Matlab the data above 5 Hz are a mirror image).

Digital lock-in amplifier
GENPLOT
create y=0.1*sin(2*Pi*x)+gnoise(x) –from 0 -to 100 –points 1000

 Now the signal is even smaller
let y 2*y*sin(2*Pi*x)
trans fft_filter 1/(1+exp(10*(f$-0.5)) - fft filter with cut off at 0.5 Hz
plot
eval @ave(y) This number gives the amplitude of the sine wave.

MATLAB
x=(1:1000)/10
y=0.1*sin(2*pi*x)+randn(1000,1)'
yl=2*y.*sin(2*pi*x);
[b,a] = butter(5,0.5*(x(2)-x(1))*2); - Butterworth filter of 5th

order with cut-off at 0.5 Hz
yfil=filter(b,a,yl);
plot(x,yfil)
mean(yfil)

What do you think is the uncertainty in the estimate of this amplitude?

Making nice plots.
You can use menus on top of Genplot and Matlab windows to make labels for plots and change
their appearance. Plots can be saved to Windows metafiles or EPS files.

