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Flux qubits at IBM

e R. Koch 1950-2007
e The IBM design, and a theorists view of flux qubits
 The inductive energy of a flux qubit, and linear response theory
* Potential landscapes
 Energy bands and principles of operation
e Oscillator stabilization, more energy bands, experimental results
* Dreaming of large systems
 \What has become of the five criteria?

(with Roger Koch, Matthias Steffen, Fred Brito, Guido Burkard)






IBM Josephson junction gubit

“qubit” =

of electric current
In one direction or
another (???7?)

Low-bandwidth control scheme for an oscillator stabilized Josephson qubit

K. H. Koch, J. R. Rozen, G. A. Keefe, F. M. Milliken, C. C. Tsuei, J. R. Kirtley, and D. P. DiVincenzo
IBM Watson Research Cir., Yorktoum Heights, NY 10598 USA
(Dated: November 16, 2004)



IBM qubit with associated
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“No power is required
to perform computation.”
CH Bennett

“Quantum computers can
operate autonomously.”
N Margolus

(inventor of “computronium”)




Quantum SQUID characteristic:
the “washboard”
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1. Loop: inductance L, energy
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2. 2. Josephson junction:
critical current I,
energy |, cos ®
3. External bias energy
(flux quantization effect):
od/L

. Quantum energy lévels
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Josephson phase ®
Junction capacitance C, plays role of particle mass




Equation of motion of a complex circuit:

Cp = —L; 'sing R1<,'0 My * ¢
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The lossless parts of this equation arise from a simple Hamiltonian:

1 H; U=exp(iHt)
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Burkard, Koch, DiVincenzo,
PRB (2004).



the equation of motion (continued):
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Straightforward (but complicated!) functions of
the topology (F matrices) and the inductance matrix



The physics of the coupling matrices




The physics of the coupling matrices

Cut out the Josephson junctions...




The physics of the coupling matrices

Multiport
Electric circuit
Green function:




DiVincenzo, Brito, and Koch, Phys. Rev. B (2006).
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FIG. 2: Contour plot of the potential U7 () on the S line for
the external fluxes @ = 0.36d0 and ¢ = $o. The red dashed
line indicates the “slow” direction f). Along this direction the
potential is a symmetric donble well, with the two relevant
minima of the potential indicated by dots. The bars show the
spatial extension of the wave function. in the vicinity of the

minima, in the “fast” direction f; with the smallest curv ature Py

of the potential.

|| small-loop noise: gradiometrically
protected
Large-loop noise: bad, but heavily filtered
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20: The total relaxation, dephasing and decoherence
times (T, Ty and T3, respectively) along the S line. We can
see that Ty (T1) strongly increases (decreases) as a function
of ®.. These facts cause there to be a window of desirable
operating parameters for the qubit.



IBM Josephson junction qubit:
scheme of operation:

--fix ¢ to be small

—-initialize qubit in state splitting ~ exp(a®.. )

1
L)=—=(S)+|A
0)=75(5)+/m) A A)
--pulse small loop flux, reducing energy
barrier height h splitting

S)

control flux @
N.B. -

eigenstates are ‘L> and ‘R>

& = asymmetry of double well



IBM Josephson junction qubit:
scheme of operation:

--fix ¢ to be small

--initialize qubit in state
1

L)=—=|S)+|A

L= (s)+1) A A)

--pulse small loop flux, reducing energy

barrier height h splitting

splitting ~ exp(a®,. )

S)

control flux @




IBM Josephson junction qubit:
scheme of operation:

--fix € to be small
--Initialize qubit In state
1

L)=—(8)+[A) A)

--pulse small loop flux, reducing 1 energy

barrier height h splitting
--state acquires phase shift
1

ﬁQSFE'QW) ‘S>

--in the original basis, this |
corresponds to rotating control flux @
between L and R:

cosd|L)+ising|R)

splitting ~ exp(a®,. )




IBM Josephson junction gubit

“qubit” = circulation
of electric current

In one direction or
another (?77?7?)

Low-bandwidth control scheme for an oscillator stabilized Josephson qubit

K. H. Koch, J. R. Rozen, G. A. Keefe, F. M. Milliken, C. C. Tsuei, J. R. Kirtley, and D. P. DiVincenzo
IBM Watson Research Cir., Yorktoum Heights, NY 10598 USA
(Dated: November 16, 2004)



Energy diagram of qubit coupled to transmission line

Frequency [GHz]
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29 = 270 MHz
forC=10fF

29 =220 MHz
for C=50fF

Need 29 of about 1000 MHz
for 100% visibility and

good independence of
operating parameters on
junction critical current lo.

Have ~980 MHz today
2000+ MHz is achievable.



Coupled wave functions at three points

A
E
5 _
=
2 3 >
— =Q_ H
qubit phase

Fq y[GH]

025 03 035 04
N



Good Larmor oscillations

Prob Switch
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-- 40nsec decay

-- reasonable long term
stability
They are actually 0/1 photon

IBM qubit
-- Up to 90% visibility

oscillations of trans. line.
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k endi
PRL 96, 127001 (2006) ERYSICAl, RENIEW LETTERS 31 MARCH 2006

Experimental Demonstration of an Oscillator Stabilized Josephson Flux Qubit

E.H. Koch, G. A. Keefe, E.P. Milliken, J. R. Rozen, C.C. Tsuei, . R. Kirtley, and D. F. DiVincenzo
IBM Watsen Research Center, Yorktown Heights, New York 10598, USA
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Integrated IBM qubit
May 2006 version

All components including junctions are integrated.
Stack has two levels of metal and one crossover.
Test fabrications on ordinary silicon wavers and
wafers with embedded superconducting

ground plane 60 um into the silicon.

EHT= 5.00kV  Date :12 May 2006

WD= 6mm  File Name = 51106A1-4.tif
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Follow-

up Experiment, March 2007 (unpublished)
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INITIALIZE:

Control Flux [d]
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Fold resonator to make it smaller

Someof the designand g, & E——:: — =
testing demos needed E R ——
to build a 2-D array of Z 3 —s
qubits: > 2 E=“
- -‘E ® 11 ——

SQUID set and readout circuits

DC level and LP filters and
persistent

pUlSE circuits current circuits

SQUID set and readout circuits

Make circuits
smaller and ]

make control
circuit choices (CMOS vs SFQ and Allow multiple qubit-to-qubit coupling,
dc pulse vs microwaves) long range, and "coupling crossovers"




2-D array of IBM qubits
to form Coupled
Logical Qubits

IBM theory group
has shown

that a 2-d plane
of qubits will
have a much
better threshold
when
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compared
toa 1-d -
or fractal design. Use 3D Integration (3DI) methods

to create dense array of qubits.
Superconducting ground plane(s)

between qubits and circuits.

Superconducting bump bonds.

Following the ideas of quant-ph/0604090
"Noise Threshold for a Fault-Tolerant
Two-Dimensional Lattice Architecture”
K.M.Svore, D.P.DiVincenzo,and B.M.Terhal
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IBM Josephson Junction Qubit

» Many basic principles in hand theoretically and experimentally
e Good Ideas:
» oscillator stabilization
« adiabatic interconversion
 Unclear in our work so far:
e essential to use microwaves?
* (All-baseband pulses work in principle.)
 Noise avoidance is everything, technically
e It Is now possible, just barely, to discuss systems issues.



Five criteria for physical implementation of
a guantum computer

1. Well defined extendible qubit array -stable
memory

Preparable in the “000..." state

Long decoherence time (>10% operation time)
Universal set of gate operations
Single-quantum measurements

o bk~ Db

D. P. DiVincenzo, in Mesoscopic Electron Transport, eds. Sohn, Kowenhoven,
Schoen (Kluwer 1997), p. 657, cond-mat/9612126; “The Physical
Implementation of Quantum Computation,” Fort. der Physik 48, 771 (2000),
quant-ph/0002077.
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