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quantum 
computation:

Accuracy of Quantum Computational Results (1)

But real quantum computers don’t implement U exactly.
What’s the effect on the failure probability bound of implementation errors?

( )( )[ ] ( )( )( )ymy ExIGEyxG trIOPr mm ==oo

Probability that the ideal quantum computation
followed by measurement produces outcome y:

Probability that the ideal quantum computation
followed by measurement produces the correct 
result F(x):

The quantity p bounds the probability that the 
ideal quantum computation followed by 
measurement fails to produce the correct result

Kitaev’s Model of Ideal 
Quantum Computation
Kitaev (1997)
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Accuracy of Quantum Computational Results (2)
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Kitaev model gives failure probability for ideal computation.
QCC describes deviation of the quantum computation from the ideal.

What’s the combined effect?

The Quantum Computer
Condition (QCC)
Gilbert, Hamrick & Weinstein (2007)

Implementation Inaccuracy
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Ideal
Computation

Actual
Computation

Non-dynamical maps linking 
the logical and computational 
Hilbert spaces

αρρ ≤−
1

†UUPM

Notational Simplification:
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Accuracy of Quantum Computational Results (3)
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• Kitaev model shows ideal quantum computation can produce correct output, within p
• the QCC states that real quantum computation can realize ideal quantum computation, within α
• our result shows that real quantum computation can produce correct output, within p + α

αρρ ≤−
1

†UUPM

( )α+≤ ppf

( )α+−> p1
Composite diagram commutes with 
probability

Failure probability
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Achieving a Specified Probability of Success
We can now derive a bound on the implementation 
inaccuracy that will guarantee the correct result with 
a specified probability
– End user specifies maximum probability of failure

– means majority voting can be used
– Our result bounds total probability of failure
– Bounds pb on failure probability, p,  for ideal quantum 

computation are known for algorithms of interest:
– e.g., in Grover search for 1 out of n items 

– We require that the implementation error tolerance be 
bounded by  

– It follows that the probability that the computation 
fails to return the correct result is bounded, as 
required, by     

pp f ˆ≤

p̂

2
1ˆ <p

bpp ≤

pppp bf ˆ≤+≤+≤ αα

bpp −≤ ˆα
npb 1=

MITRE

α+≤ pp f

bpp −ˆ

We wish to achieve

But the standard theory of fault tolerance yields a bound on the probability
that the quantum computation results in the correct quantum state, not 

the implementation inaccuracy, which is a bound on the error norm of the state.  
Can we relate the two?
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Fault Tolerance Theory

• Fault tolerance techniques enable correct dynamical evolution 
of the quantum computation in the presence of noise 
– Circuit is subject to (random) errors
– Techniques such as concatenated quantum error correcting codes are 

used to correct errors
– Fault tolerant circuit operates on encoded states
– Not all errors are corrected, only the more likely ones
– There is a residual error probability that the circuit fails to produce the 

desired quantum state as its output
– Residual error probability can be estimated from theory

– Doesn’t address quantum uncertainties in the final measurement
– Need to find connection between residual error probability and probability 

of obtaining the correct final result
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Residual Error Probability Elementary gate failure probability

Error threshold (function of circuit structure)

Number of levels of concatenation
(for a single logical gate using simplified 

model for concatenated error codes) MITRE
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Preskill (1998)
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Specifying Fault Tolerance to Guarantee 
Probability of Obtaining Correct Final Result

• Fault tolerance theory yields a residual error probability
– Ng is the number of logical gates in the formal description of the

algorithm

• We derive from this a bound on implementation inaccuracy 
given by: 

• Success criterion is achieved if this bound satisfies
• For a given circuit and a given probability of elementary gate 

failure, this gives the number of levels of concatenation 
required to achieve the success criterion for the overall result
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Example
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Number of gates in circuit

Failure probability tolerance 
for final result 

Measurement failure bound 
for quantum algorithm 

Fault tolerant error threshold 

Elementary Gate Failure Probability
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Levels of Concatenation Required 
to Guarantee Specified Tolerance 

of 0.4 for Failure to Compute 
Correct Final Result
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OQEC contains QEC

EAQEC contains QEC

EAOQEC:

Quantum Error Correction (2)

ρρε ρ =encABBdec B
Tr VWRFV
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EAOQEC contains EAQEC and OQEC
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Quantum Error Correction (3)

all forms of error correction
are special cases of the QCC
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Operator Quantum Fault Tolerance (1)
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• Would like “top-down” approach to fault tolerance based on
system-level dynamical constraint

full specification of system dynamics
with success criterion

characterization system dynamics
at ith level of concatenation

Operator Quantum Fault Tolerance (OQFT) MITRE
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Operator Quantum Fault Tolerance (2)
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OQFT success criterion standard FT success criterion

OQFT can produce more accurate (larger) error thresholds than standard FT

Y (acting on Hcomp) faithfully
implements U (acting on Hlog)

model for P that includes local
stochastic noise and locally
correlated stochastic noise
(i.e., standard quantum fault
tolerance)
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Conclusion

• The probability that a quantum computation produces the correct 
final answer can be simply expressed in terms of the intrinsic failure 
probability due to quantum uncertainty in measurement and the 
implementation inaccuracy

• The resulting expression can be used to specify the “amount” of 
fault tolerance required to achieve a  specified success probability 
that the quantum computer yields the correct final answer

• All forms of error correction and avoidance are special cases of the 
QCC

• The QCC provides a universal operator-theoretic framework for 
quantum fault tolerance based on a top-down criterion, leading to 
improved accuracy for error threshold values
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