
How Hard is Quantum 
Many-Body Theory?

M. B. Hastings
T-13, Complex Systems Group
Los Alamos National Laboratory

Thanks: X.-G. Wen, F. Verstraete, T. Koma, S. Bravyi



• Algorithm overview: perturbation theory, DMRG 
(matrix product), exact diagonalization.

• Computational complexity classes.  Difficulty of 
the problem depends on entanglement.

• Easy problems (P or almost polynomial): 
perturbing a system.  Can find efficient 
representation of ground state.

• Harder problems: (NP) 1d gapped systems.  Area 
laws for quantum entanglement imply an efficient 
representation exists.

• Very hard: (QMA-complete) 1d gapless.
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Some common algorithms:

Perturbation 
theory: 

H = H0 + λV

En = E(0)
n + λ〈Ψ(0)

n |V |Ψ(0)
n 〉 + λ2

∑

k !=n

|〈Ψ(0)
k |V |Ψ(0)

n 〉|2

E(0)
n − E(0)

k

+ ...

Different ways to compute the terms.  
Feynman diagrams (physics).  Moller-Plesset 

(quantum chemistry).
Convergence of series?

Exact diagonalization:
Requires exponentially long time.  Even 

finding ground state is typically limited to 
30-40 spin-1/2 spins.



Matrix product methods 
(including DMRG):

Based on ground state ansatz of the form:

si = −1, 0, 1

si = −1/2, 1/2

Spin 1:

Spin 1/2:

Matrices A are k-by-k matrices.  There are 
variational parameters.

Works extremely well for 1d gapped systems.  Why?

NDk2

α, β, γ = 1...k

Ψ(s1, s2, s3, ...) =
∑

α,β,γ,δ,...

A(1)
αβ(s1)A

(2)
βγ (s2)A

(3)
γδ (s3)....



Complexity classes:
P: algorithm exists to solve in polynomial time (in 

the problem size, N).

• Sort a list of N numbers

• Find the ground state of a ferromagnetic 
Ising model of N spins with arbitrary, 
position-dependent magnetic field

• Determine if an N bit number is prime (but 
not, as far as we know, factoring it!)

Examples:

BQP: polynomial algorithm on a quantum 
computer.  Example: factoring.



NP: a yes-no decision problem.
If yes, can check proof in polynomial time.

• Does a frustrated Ising model                    
have a state with energy less than or equal 
to E, for some E?  Proof if yes: just give the 
configuration of spins.

Example:

Also NP-complete: if solvable in polynomial time, then 
every problem in NP is solvable in polynomial time.  

Widely believed impossible!

H =
∑

Jijσiσj



QMA: yes-no decision problem.  If yes, can check 
proof in polynomial time on a quantum computer, 

with probability at least 2/3 of being right.

• Does a quantum Hamiltonian have a ground 
state of energy E or less, given a promise that 
if not, then the energy is at least E+1/N^4.  
Proof if yes: give the ground state.

Also QMA-complete: if solvable in polynomial time on a 
quantum computer, then every problem in QMA is 

solvable in polynomial time.  Also believed impossible!
Kitaev 02; Aharonov, Gottesman, Kempe 07; Irani 07.



Relation of complexity classes:

NP
BQP

QMA

P
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Perturbation of gapped, decoupled Hamiltonian 
is in P:
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Time to compute m-th coefficient is exponential in m:

Coupled cluster (Bravyi, DiVincenzo, Loss 07)
Rayleigh-Schrodinger (Hastings 07)

Perturbation of gapped, interacting Hamiltonian is 
exp(polylog(N))

Quasi-adiabatic continuation (Hastings-Wen 05; Osborne 07)
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Entanglement in Matrix 
Product States:

Schmidt rank at most k in matrix product 
state.  Approximately true for ground state?

Ψmps =
k∑

γ=1
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Area laws:

Sα(ρ) = 1
1−α ln(tr(ρα))

Von Neumann and 
Renyi entropy of a 

density matrix:

A
B

Entropy for an arbitrary state is of order the volume of A.
Area law means that entropy is of order the surface area.

How much entanglement between A and B?  
Less entanglement means easier to simulate.

S = −tr(ρ ln(ρ))

Ψ0 =
∑

α

A(α)ΨA(α)⊗ΨB(α); S = −
∑

α

|A(α)|2 ln(|A(α)|2)



Handwaving argument for an area law:

• Gap implies short-range correlations.

• Therefore, only the degrees of freedom near 
the surface of A are entangled with the 
degrees of freedom in B.

• Therefore, there is an area law.

Assumptions: short-range Hamiltonian, 
unique ground state, spectral gap.



Can we make this rigorous?
(why area laws are tricky)

• Assuming a gap and short-
range Hamiltonian, can prove 
that the correlations are 
short-range.

• However, even in one-
dimension, there exist states 
with short-range correlations 
but arbitrarily large 
entanglement.  This is based 
on quantum expanders.

M. B. Hastings, PRB 2004;
M. B. Hastings, PRL 2004.

M. B. Hastings, PRB 2007;
A. Ben-Aroya and A. TaShma, quant-ph/
0702129.

Need to consider more than correlations 
to prove an area law!



An area law in 1-d
Assumptions: nearest neighbor Hamiltonian with interaction strength 
bounded by J, finite dimensional Hilbert space D on each site, unique 
ground state, spectral gap.

M. B. Hastings, JSTAT 2007.

(Sketched) proof:

Suppose not.  Then, the entropy is large over a range 
of cuts of the chain, not just one.

.....

S ≤ Smax = exp(O(v/∆E))

l0 = Smax/3 ln(D)

S ≥ 2Smax/3

We will derive a contradiction from this 
based on relative entropy.

i i + l0



Define       to be the maximum entropy of an interval of 
length l contained in the interval between 

Sl

Some trivial properties:
S1 ≤ ln(D)
S2l ≤ 2Sl

If second inequality saturates, 
Then ground state factorizes, contradicting assumption of non-vanishing 
entanglement entropy.

We will go further and use the large entanglement entropy 
to show: S2l ≤ 2Sl −O(l∆E/v)

This gives a contradiction for large l and proves the main theorem.

i, i + l

ρi,i+2l = ρi,i+l ⊗ ρi+l+1,i+2l

Araki, Lieb 1970



Two lemmas:
1) Given assumptions above, for any j,l we can define 
Hermitian, positive definite operators,                               , 
with operator norms bounded by unity such that  

OB(j, l), OL(j, l), OR(j, l)

‖OB(j, l)OL(j, l)OR(j, l)− |Ψ0〉〈Ψ0|‖ ≤ exp(−O(l∆E/v))

and such that the operators are 
supported like this:

O

j j+lj−l+l j+1

O

RO

B

L



2) Given assumptions above, suppose exists factorized 
density matrix                          such that    

〈Ψ0|ρ|Ψ0〉 = P > 0.

Then, the entropy S across the cut is bounded by

Prove this using lemma 1.   Approximate ground state with

OB(j, l)OL(j, l)OR(j, l)ρOR(j, l)OL(j, l)OB(j, l)
Approximation improves with larger l. State is mixture of 
pure states with Schmidt rank         . 

ρ = ρL ⊗ ρR

S ≤ O(v/∆E) ln(D) ln(1/P )
+ O(v/∆E) ln(v/∆E) ln(D)

D2l



F. Verstraete and J. I. Cirac, PRB 2006.

von Neumann entropy 
bound

Renyi 
entropy 
bound

Approximating by 
matrix product state

Lemma 2

•Lemma 2 works for Renyi entropies also.

•Lemma 2 enables approximating ground state by 
matrix product state.

•Upper bound on Renyi or von Neumann entropy gives 
lower bound on the largest Schmidt coefficient across a 
cut and hence lower bound on P in Lemma 2.



Back to proving the main theorem:

O

j j+lj−l+l j+1

O

RO

B

L

The expectation value                       
must be close to unity. 
But the expectation value      
must be small since the entropy across the cut is large.  
So, by Lindblad-Uhlmann theorem, the relative entropy
                                                 must be large.
But this is bounded by               .  
Putting in the constants gives the desired result.

〈Ψ0|OB(j, l)|Ψ0〉 = tr(ρj−l+1,j+lOB(j, l))

tr(ρj−l+1,j ⊗ ρj+1,j+l OB(j, l))

S(ρj−l+1,j+l||ρj−l+1,j ⊗ ρj+1,j+l)
S2l − 2Sl



1d gapped systems are 
in NP

• Represent ground state as matrix product 
state

• Hard to find matrix product state in certain 
cases (NP-complete, Eisert 2006)

• In practice, DMRG or variational matrix 
product methods work well.

k ! exp(S)
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What if no gap in1d?  How hard is it to compute 
ground state energy to accuracy 1/N^4?

Aharonov, Gottesman, Kempe 07; Irani 07.

If gap vanishes at quantum critical point described by 
conformal field theory, Renyi entropy is log(N). 

Problem is still in P!
Examples: spin-1/2 Heisenberg chain, 1d transverse 

field Ising model, etc...
Verstraete, Cirac 05

But with arbitrary interactions the problem is QMA-
complete.  So, there is probably no hope of an 

efficient algorithm in general.



Other methods:
• Quantum Monte Carlo

• Density functional theory: Hohenberg-Kohn 
theorem implies exact functional exists.  
But, unless NP=QMA, exact functional is not 
tractable.

• Coupled cluster method



Conclusion:

• The difficulty of solving different problems 
seems to be closely related to the 
entanglement.

• Can we make the area law bound tight?

• What happens in higher dimensions to the 
area law?

• Do matrix product states work well in 
higher dimensions?  Are there other better 
algorithms?


