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Atomic systems in regular lattices are intriguing systems for implementing ideas in quantum
simulation and information processing. Focusing on ionic systems, which can be laser cooled to form
2- and 3-D Wigner crystals in Penning traps, we find a robust and simple approach to engineering
non-trivial 2-body phase terms sufficient for universal quantum computation. We then consider a
non-local architecture using an asymmetric entanglement generation procedure between a Penning
trap system and well-established linear Paul trap designs, and extensions of our approach to the
fast generation of large cluster-states.

PACS numbers:

Quantum information processing using trapped ions
has been the focus of tremendous theoretical [1–3] and
experimental [4–8] advances over the past decade. The
coherence times of ions can sometimes exceed seconds,
while manipulation times and entanglement time scales
can be as fast as tens of microseconds. However, so far
approaches to scaling these systems to many ions have
met with tremendous difficulties, both in linear Paul
trap systems, where increasing numbers of ions leads to
tremendous control difficulties, and in proposed trap ar-
rays, where “shuttling” of quantum information using
gate electrodes would allow for a scalable architecture [9].
A possible solution is to separate the processing elements
(processor qubits) from the memory elements [10].

For ion-based schemes, a natural system to consider as
a quantum memory is a Wigner crystal of ions in a Pen-
ning trap [11]. Such crystals can be robustly formed [12],
and are dynamically stable, with tens of thousands of
ions in a given trap. In addition, the strength of the
Coulomb interaction leads to large separations between
individual ions, making individual addressing of ions in
such lattices a distinct possibility, in contrast to present
quantum control in neutral atom and polar molecule lat-
tices [13, 14].

In this letter we develop an approach to building a
quantum memory and large entangled states that takes
full advantage of the advances in ion trap technology for
building large Wigner crystals of ions in Penning traps.
Using a modulated-carrier “push” gate adapted from lin-
ear ion trap quantum computing schemes [15–19], we find
a fast but adiabatic method for building small clusters
of entanglement which is insensitive to thermal phonons
in 2D and 3D Wigner crystals. Non-deterministic en-
tanglement generation between distant ions suggests a
processor (linear Paul trap) and memory (2D Wigner
crystal) architecture based upon a quantum register ap-
proach [20], where the low photon collection efficiency
from ions in the memory is offset by an asymmetric en-
tanglement generation scheme using a weak cavity cou-
pled to ions in the processor [5, 21]. Finally, we take ad-
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FIG. 1: a) Schematic of a quantum processor (such as a linear
Paul trap) coupled via a high finesse cavity to a photodetector
system to allow interference with photons from an ion Wigner
crystal in a Penning trap nearby. b) Level structure of an
ion, with Raman transitions allowed between two metastable
qubit states (0 and 1) and a cycling transition at a different
frequency for 1 only to allow state-dependent flouresence.

vantage of some of the unique features of penning traps,
such as rotation of the crystal, to provide simplifications
in the necessary hardware to implement these ideas in 2D
Wigner crystals. We further show that such a quantum
memory device can also be used directly for cluster state
quantum computation, though fault-tolerance requires
extensions of the approach to quasi-3D crystals [22, 23].
Our approach follows recent work (Ref. 24) on perform-
ing quantum gates in 2D Wigner crystals.

We start by considering a 2D or 3D Wigner crystal of
ions, rotating in a Penning trap [11] with harmonic con-
finement with frequencies ωxy (in the lateral directions)
and ωz (in the vertical direction). With characteristic
ion spacings ∼ 10 µm, tightly focused lasers allow for
individual addressing of ions (Fig. 1). Laser cooling can
reduce the temperature ≈ 1 mK, yielding on the order of
102 − 103 phonons in lateral modes. We will assume the
coherence time of the memory states to be much longer
than any other time scale in the problem, and thus mem-
ory errors can be neglected. Non-deterministic entangle-
ment generation between two ions can be accomplished
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FIG. 1: a) Schematic of a quantum processor (such as a linear
Paul trap) coupled via a high finesse cavity to a photodetector
system to allow interference with photons from an ion Wigner
crystal in a Penning trap nearby. b) Level structure of an
ion, with Raman transitions allowed between two metastable
qubit states (0 and 1) and a cycling transition at a different
frequency for 1 only to allow state-dependent flouresence.

vantage of some of the unique features of penning traps,
such as rotation of the crystal, to provide simplifications
in the necessary hardware to implement these ideas in 2D
Wigner crystals. We further show that such a quantum
memory device can also be used directly for cluster state
quantum computation, though fault-tolerance requires
extensions of the approach to quasi-3D crystals [22, 23].
Our approach follows recent work (Ref. 24) on perform-
ing quantum gates in 2D Wigner crystals.
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ions, rotating in a Penning trap [11] with harmonic con-
finement with frequencies ωxy (in the lateral directions)
and ωz (in the vertical direction). With characteristic
ion spacings ∼ 10 µm, tightly focused lasers allow for
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• Problem: photon attenuation

• Resources: short-range entangled pairs, “local” operations, 
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• Repeater “node”: a commodity device for quantum communication

• Repeater protocol: divide and conquer

Quantum communication: quantum repeaters

[ early ideas: Briegel, Dür, Cirac, Zoller; Bennett, Ekert ]
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• Add purification (remove errors):
need log(d) qubits per node?

• Sufficient: two qubits
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• Is there an optimum approach for given resources?

Minimal-resource repeaters

[ Childress, JMT, Sørensen, Lukin, PRL (2006) ]
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Atomic systems in regular lattices are intriguing systems for implementing ideas in quantum
simulation and information processing. Focusing on ionic systems, which can be laser cooled to form
2- and 3-D Wigner crystals in Penning traps, we find a robust and simple approach to engineering
non-trivial 2-body phase terms sufficient for universal quantum computation. We then consider a
non-local architecture using an asymmetric entanglement generation procedure between a Penning
trap system and well-established linear Paul trap designs, and extensions of our approach to the
fast generation of large cluster-states.

PACS numbers:

Quantum information processing using trapped ions
has been the focus of tremendous theoretical [1–3] and
experimental [4–8] advances over the past decade. The
coherence times of ions can sometimes exceed seconds,
while manipulation times and entanglement time scales
can be as fast as tens of microseconds. However, so far
approaches to scaling these systems to many ions have
met with tremendous difficulties, both in linear Paul
trap systems, where increasing numbers of ions leads to
tremendous control difficulties, and in proposed trap ar-
rays, where “shuttling” of quantum information using
gate electrodes would allow for a scalable architecture [9].
A possible solution is to separate the processing elements
(processor qubits) from the memory elements [10].

For ion-based schemes, a natural system to consider as
a quantum memory is a Wigner crystal of ions in a Pen-
ning trap [11]. Such crystals can be robustly formed [12],
and are dynamically stable, with tens of thousands of
ions in a given trap. In addition, the strength of the
Coulomb interaction leads to large separations between
individual ions, making individual addressing of ions in
such lattices a distinct possibility, in contrast to present
quantum control in neutral atom and polar molecule lat-
tices [13, 14].

In this letter we develop an approach to building a
quantum memory and large entangled states that takes
full advantage of the advances in ion trap technology for
building large Wigner crystals of ions in Penning traps.
Using a modulated-carrier “push” gate adapted from lin-
ear ion trap quantum computing schemes [15–19], we find
a fast but adiabatic method for building small clusters
of entanglement which is insensitive to thermal phonons
in 2D and 3D Wigner crystals. Non-deterministic en-
tanglement generation between distant ions suggests a
processor (linear Paul trap) and memory (2D Wigner
crystal) architecture based upon a quantum register ap-
proach [20], where the low photon collection efficiency
from ions in the memory is offset by an asymmetric en-
tanglement generation scheme using a weak cavity cou-
pled to ions in the processor [5, 21]. Finally, we take ad-
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(Paul trap)
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(Penning 

trap)

Interconnect
(beam splitter 
+ detectors)

a) b)
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FIG. 1: a) Schematic of a quantum processor (such as a linear
Paul trap) coupled via a high finesse cavity to a photodetector
system to allow interference with photons from an ion Wigner
crystal in a Penning trap nearby. b) Level structure of an
ion, with Raman transitions allowed between two metastable
qubit states (0 and 1) and a cycling transition at a different
frequency for 1 only to allow state-dependent flouresence.

vantage of some of the unique features of penning traps,
such as rotation of the crystal, to provide simplifications
in the necessary hardware to implement these ideas in 2D
Wigner crystals. We further show that such a quantum
memory device can also be used directly for cluster state
quantum computation, though fault-tolerance requires
extensions of the approach to quasi-3D crystals [22, 23].
Our approach follows recent work (Ref. 24) on perform-
ing quantum gates in 2D Wigner crystals.

We start by considering a 2D or 3D Wigner crystal of
ions, rotating in a Penning trap [11] with harmonic con-
finement with frequencies ωxy (in the lateral directions)
and ωz (in the vertical direction). With characteristic
ion spacings ∼ 10 µm, tightly focused lasers allow for
individual addressing of ions (Fig. 1). Laser cooling can
reduce the temperature ≈ 1 mK, yielding on the order of
102 − 103 phonons in lateral modes. We will assume the
coherence time of the memory states to be much longer
than any other time scale in the problem, and thus mem-
ory errors can be neglected. Non-deterministic entangle-
ment generation between two ions can be accomplished

Focus of this talk



with L. Jiang, A. Sørensen, M. D. Lukin, 
[Harvard, Copenhagen]

Distributed computation

• Problem: apparatus for many qubits?
      – limited coupling strengths in a NMR molecule
         (frequency selectivity)
      – quantum control in limited space

[image from Janis.com]

?



with L. Jiang, A. Sørensen, M. D. Lukin, 
[Harvard, Copenhagen]

Distributed computation

• Problem: apparatus for many qubits?
      – limited coupling strengths in a NMR molecule
         (frequency selectivity)
      – quantum control in limited space

[image from Janis.com]

?

!"# $%&'()*+,- $#- .'/'011%(- 2# 3 4*56',1%(- 7# 8%05*/9%( %: ;*0<%=>,9; *;9)1 <> )'?0*)*/9%( %:

;*0<%+>)0*/'1 )609(? @0*:/ ;%%@9(? %: A9('# !"#$%&#' ())*#' +,-. +/."0 1%2' !"# BBCDB!E FBGHIJ#

!I# K%%A'0- 2# L# 3 K0%(9(- M# N# $9('*0 *() ;>;,9; *,9A+*/9; ;*0<%=*59)'1 %: /+' O60;+91%( 5'/'%09/'P

Q>)0%,>R*<,' )'09S*/9S'1 %: *59(% *;9)1 *() %/+'0 ;*0<%=>,9; *;9)1# 3"*#$&4' 5*)4*#$&4' (#6/ !"#

BEETDBEB" FBGG"J#

!H# UA1/'9(- 4#- V091+(*560/+>- N# W#- K0%(9(- M# N#- .9RR*0',,%- 4# 3 X6'(- 2# Y# Y(616*, 1/*<,' 91%/%A'

0*/9%1 9( *59(% *;9) *() ;*0<%=>,9; *;9) '=/0*;/1 :0%5 /+' O60;+91%( 5'/'%09/'# 7/6,0" $%&# ZHHDZHG

FBGCHJ#

!C# K%,'5*(- O# $# 3 O%%0'- O# .# [90';/ 0')6;/9%( %: 16,:*/'1 /% 16,:60 )9%=9)' :%0 91%/%A9; *(*,>191#

(%/-' 5$"4' !'# B"GZDB"G" FBGHCJ#

!G# ['1 O*0*91- [# M# \1%/%A9; 'S%,6/9%( %: /+' <9%?'%;+'59;*, ;*0<%( ;>;,' )609(? /+' .0%/'0%R%9; '%(#

809' 3"*#$"4' %(# BC"DBGT FBGGHJ#

!"#$%&'()*(+($,-

L' /+*(@ ]# L'<'0 *() M# K0%(9( :%0 )91;6119%(1 *() ;%55'(/1 %( /+' 5*(61;09A/^ *()
K# ]19>% *() _# U1A%19/% :%0 *1191/*(;' &9/+ `?60'1# _+91 &%0@ &*1 16AA%0/') <> /+'
U=%<9%,%?> .0%?0*5 %: a]4]#

K%00'1A%()'(;' *() 0'b6'1/1 :%0 5*/'09*,1 1+%6,) <' *))0'11') /% 2#K#
F'c5*9,P ?;%%A'0d5*9,#*0;#(*1*#?%SJ#

!"##"$% #& '(#)$"

a]_YNU e W7$ ZBZ e !Ef!H [UKUOgUN !EEB e &&&#(*/60'#;%5 **+

#################################################################
!"#$%&'$()*+ %$*+&,*)&-( -. /0-%12
34*()4' .*5)-%&(6 *+6-%&)0'
42&(6 (45+$*% '*6($)&5 %$2-(*(5$
7&$8$( 9: ;: <*(=$%2>#$(hi? 9*))0&*2 /)$..$(hi? @%$6-%> A%$>)*h?
B-2)*()&(- /: C*((-(&h? 9*%D E: /0$%F--=h G H2**5 7: B04*(6hi

h 1:; (-4/2"% <")"/0#$ 5"%6"0= >/% ?*)"= 5/-&@*0%&/ ABCDE= F>(
i >*-&2 >6/6" /%2 +$*6*%&#) G/H*0/6*0I= >6/%@*02 F%&J"0)&6I= >6/%@*02=
5/-&@*0%&/ AKLEBMKENB= F>(

))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

*+, -./0,1 23 45,64 7-8 9:744;97: 92/6.5,1 1,<.;1,4 ;- 21=,1 52
>-= 5+, 61;/, 3795214 23 7- !?=;@;5 ;-5,@,1 " ;-91,74,4 ,A62-,-?
5;7::8 B;5+ !# 75 :,745 .4;-@ 7:@21;5+/4 C-2B- 75 61,4,-5D) E79521;-@
:71@, ;-5,@,14 ;4 5+,1,321, 92-F,95.1,= 52 0, ;-5179570:, 9:744;97::8#
7- 204,1G75;2- .-=,1:8;-@ 5+, 4,9.1;58 23 B;=,:8 .4,= 918652?
@176+;9 92=,4D#%) H.7-5./ 92/6.5,14$# +2B,G,1# 92.:= 379521
;-5,@,14 ;- 2-:8 62:8-2/;7: 5;/,# .4;-@ I+21J4 <.7-5./ 379521;-@
7:@21;5+/KL&) M:5+2.@+ ;/62157-5 321 5+, 45.=8 23 <.7-5./
92/6.5,14(# ,A6,1;/,-57: =,/2-45175;2- 23 5+;4 7:@21;5+/ +74
612G,= ,:.4;G,NLD') O,1, B, 1,6215 7- ;/6:,/,-575;2- 23 5+,
4;/6:,45 ;-457-9, 23 I+21J4 7:@21;5+/P 379521;Q75;2- 23 " ! D!
RB+24, 61;/, 3795214 71, $ 7-= !S) T, .4, 4,G,- 46;-?DU% -.9:,; ;-
7 /2:,9.:, 74 <.7-5./ 0;54DD#D%# B+;9+ 97- 0, /7-;6.:75,= B;5+
122/ 5,/6,175.1, :;<.;=?4575, -.9:,71 /7@-,5;9 1,42-7-9, 5,9+?
-;<.,4) *+;4 /,5+2= 23 .4;-@ -.9:,; 52 4521, <.7-5./ ;-321/7?
5;2- ;4 ;- 61;-9;6:, 497:70:, 52 4845,/4 92-57;-;-@ /7-8 <.7-5./
0;54D$# 0.5 4.9+ 497:70;:;58 ;4 -25 ;/6:;,= 08 5+, 61,4,-5 B21C) *+,
4;@-;>97-9, 23 2.1 B21C :;,4 ;- 5+, =,/2-45175;2- 23 ,A6,1;/,-57:
7-= 5+,21,5;97: 5,9+-;<.,4 321 61,9;4, 92-512: 7-= /2=,::;-@ 23
92/6:,A <.7-5./ 92/6.5,14) V- 6715;9.:71# B, 61,4,-5 7 4;/6:,#
6717/,5,1?31,, 0.5 61,=;95;G, /2=,: 23 =,92+,1,-9, ,33,954DK ;-
2.1 4845,/)

4+%0j1 :*;/%09(? *,?%09/+5 &%0@1 <> 619(? * b6*(/65 ;%5A6/'0
/% b69;@,> )'/'059(' /+' A'09%) %: /+' :6(;/9%( @ "O# ! /O 5%)7
F/+' 0'5*9()'0 %: /O )9S9)') <> 7J- &+'0' / 91 * 0*()%5,> ;+%1'(
15*,, (65<'0 &9/+ (% :*;/%01 9( ;%55%( &9/+ 7^ :0%5 /+91
A'09%)- (65<'0c/+'%0'/9; /';+(9b6'1 ;*( <' 61') /% :*;/%0 7 &9/+
+9?+ A0%<*<9,9/>ZDI# _+' /&% 5*9( ;%5A%('(/1 %: /+' *,?%09/+5-
5%)6,*0 '=A%('(/9*/9%( F;%5A6/*/9%( %: /O 5%)7J *() /+'
9(S'01' b6*(/65 8%609'0 /0*(1:%05 Fk8_J /*@' %(,> 8F-TJ %A'0*c
/9%(1ZDI# K,*119;*,,>- 9( ;%(/0*1/- A095' :*;/%09R*/9%( /*@'1 8F!-BfTJ
%A'0*/9%(1B- &+9;+ b69;@,> <';%5'1 9(/0*;/*<,' *1 - 9(;0'*1'1#

_+' 195A,'1/ 5'*(9(?:6, 9(1/*(;' %: 4+%0j1 *,?%09/+5 91 :*;/%0c
9R*/9%( %: 7 ! B" F0':# HJl/+' *,?%09/+5 :*9,1 :%0 7 'S'( %0 * A095'
A%&'0# US'( :%0 16;+ * 15*,, 7- b6*(/65 :*;/%09R*/9%( A%1'1 */
A0'1'(/ * 19?(9`;*(/ '=A'095'(/*, ;+*,,'(?'P 9/ 0'b690'1 ;%+'0'(/
;%(/0%, %S'0 1'S'( b6*(/65 <9/1 Fb6<9/1J 9( /+' ;%601' %: * ,%(?
1'b6'(;' %: ;%(/0%,,') 9(/'0*;/9%(1- 'S'( *:/'0 5*=95*, 0')6;/9%( %:
/+' b6*(/65 ;90;69/^ 9(;,6)9(? /+' 1/*/' 9(9/9*,9R*/9%(- 9(/'0*;/9%(1
<'/&''( *,5%1/ *,, A*901 %: b6<9/1 *0' ('')')# \( ;%5A*091%( &9/+
'*0,9'0 &%0@CDBE- /+91 '=A'095'(/ /+61 A6/1 '=/0'5',> +9?+ )'5*()1
%( /+' 1A9(D1A9( ;%6A,9(? ('/&%0@- /+' )'?0'' %: ;%(/0%, %S'0 /+'
+*59,/%(9*( *() /+' 1A9( ;%+'0'(;' /95'1# 860/+'05%0'- (65'09c
;*,,> A0')9;/9(? /+' %6/;%5' %: /+'1' '=A'095'(/1 +*1 <''( ;%(c
19)'0') 95A0*;/9;*, %&9(? /% /+' '(%05%61 19R' %: /+' 1/*/' 1A*;'
/0*(1:%05*/9%(1- &+9;+ *0' )'1;09<') <>!ZH ! ZH 0'*, A*0*5'/'01 9:
)';%+'0'(;' '::';/1 *0' 9(;,6)')#

\5A,'5'(/*/9%( %: /+' *,?%09/+5 ;*( <' <0%@'( 9(/% :%60 )91/9(;/
1/'A1 F89?# B*J- &9/+ /+' 5%1/ ;%5A,'= <'9(? /+' ;%5A6/*/9%( %:
@ "O# ! /O 5%)7 :%0 !% S*,6'1 %: O 9( A*0*,,',# 8%,,%&9(? 1/*()*0)
;,*119;*, ;90;69/ /';+(9b6'1- /+91 91 A'0:%05') <> 6/9,9R9(? /+'
9)'(/9/> /O ! /!%"B O%"B!/!OB/OE- &+'0' OP *0' /+' <9(*0> )9?9/1 %: O#
O%)6,*0 '=A%('(/9*/9%( /+61 ;%(191/1 %: 1'09*, 56,/9A,9;*/9%( <>
/!P

5%)7 :%0 *,, P FE # P # % " BJ :%0 &+9;+ $OP! ! $B!# _+' A%&'01
/!P

;*( <' ':`;9'(/,> A0'c;%5A6/') %( * ;,*119;*, 5*;+9(' <>
0'A'*/') 1b6*09(? %: /# 8%0 7 ! B"- / 5*> <' !- Z- H- C- BB- BT %0
BZ# \: &' +*AA'( /% A9;@ / ! !- H- C %0 BT- &' `() /+*/
/Z 5%) B" ! B- *() /+'0':%0' *,, /!P 5%)7 ! B :%0 P$ !# \( /+91
;*1'- @FOJ 195A,9`'1 /% 56,/9A,9;*/9%(1 ;%(/0%,,') <> m61/ /&% <9/1- OE

*() OB# \: / ! Z- BB %0 BZ- /+'( /! 5%) B" ! B- 1% %(,> OE 91 0','S*(/#
_+61- /+' `01/ 0'?91/'0 ;*( <' *1 15*,, *1 /&% b6<9/1 F% ! !J^
+%&'S'0- /+0'' b6<9/1 F% ! TJ *,,%& :%0 /+' A%119<9,9/> %: )'/';/9(?
5%0' A'09%)1- *() /+61 ;%(1/9/6/'1 * 5%0' 1/09(?'(/ /'1/ %: /+'
5%)6,*0 '=A%('(/9*/9%( *() k8_ FO#4# "6 /-'- 5*(61;09A/ 9(
A0'A*0*/9%(J# _%?'/+'0 &9/+ /+' 4 ! ",%?! B"# ! Z b6<9/1 /% +%,)
@FOJ- &' ('') 1'S'( b6<9/1 9( /%/*, F89?# B<J# L' 95A,'5'(/') /+91
*,?%09/+5 *() /'1/') 9/ %( /&% 0'A0'1'(/*/9S' A*0*5'/'0 ;+%9;'1P
/ ! BB F*( n'*1>j ;*1'J *() / ! H F* n)9:`;6,/j ;*1'J#

_+' ;61/%5c1>(/+'19R') 5%,';6,' 61') *1 /+' b6*(/65 ;%5A6c
/'0 :%0 /+91 '=A'095'(/ ;%(/*9(1 `S' BG8 *() /&% BTK 1A9(cBf! (6;,'9
*1 b6<9/1 F89?# !J# \( * 1/*/9; 5*?('/9; `',)- '*;+ 1A9( & +*1 /&%
)91;0'/' '('0?> '9?'(1/*/'1- eE! F1A9(c6AJ *() eB! F1A9(c)%&(J-
)'1;09<') <> /+' +*59,/%(9*( QE ! " !&!"&1R&- &+'0' "&f!# 91
/+' /0*(19/9%( :0'b6'(;> <'/&''( eE! *() eB! *() 1R 91 /+' RS
;%5A%('(/ %: /+' 1A9( *(?6,*0 5%5'(/65 %A'0*/%0# ],, 1'S'(
1A9(1 9( /+91 5%,';6,' *0' 0'5*0@*<,> &',, 1'A*0*/') 9( :0'b6'(;>
"&f!#- *() 9(/'0*;/ A*90&91' S9* /+' ?c;%6A,9(?- )'1;09<') <> Q? !
!&%T!#!?&T1R&1RT F0':# B"J#

_+' )'190') 9(9/9*, 1/*/' %: /+' 1'S'( b6<9/1 91 $$B! ! $EEEEEEB!
F89?# BJ# Q%&'S'0- '=A'095'(/*,,> &' 1/*0/ :0%5 /+'05*, 'b69,9<c
0965# _+' )'(19/> 5*/09= 91 /+'( ?9S'( <> %/+ ! ""QE !Pg! !!H- &9/+
Pg! ! !"& */ 0%%5 /'5A'0*/60' 1% '*;+ 1A9( 91 9( * 1/*/91/9;*,
59=/60' %: eE! *() eB! F89?# T*J# L' ;%(S'0/') %/+ 9(/% * Hc1A9(
'::';/9S' A60' 1/*/'BB-B! %B S9* /'5A%0*, *S'0*?9(?G F1/'A EJ^ %B

;%(1/9/6/'1 * 169/*<,' 9(9/9*, 1/*/' :%0 4+%0j1 :*;/%09(? *,?%09/+5
<';*61' 9/ ?'('0*/'1 /+' 1*5' 19?(*, *1 $$B! F89?# T<J- 6A /% *
A0%A%0/9%(*,9/> ;%(1/*(/BB-B!# ],/+%6?+ %B 91 +9?+,> 59=') *() 9(
:*;/ 0'5*9(1 1'A*0*<,' 6()'0 6(9/*0> /0*(1:%051- /+' %<1'0S')
)>(*59;1 6()'0 56,/9A,' b6<9/ %A'0*/9%(1 16;+ *1 9( 4+%0j1 *,?%c
09/+5 *AA*0'(/,> 0'5*9( +*0) /% 1956,*/' ;,*119;*,,>BIDBC#

_+' b6*(/65 ;90;69/ %: 89?# B &*1 0'*,9R') &9/+ * 1'b6'(;' %:
!TEE F/ ! HJ 1A9(c1',';/9S' 0*)9%c:0'b6'(;> F0#:#J A6,1'1 1'A*0*/')
<> /95' 9(/'0S*,1 %: :0'' 'S%,6/9%( 6()'0 /+' +*59,/%(9*( F89?# ZJ#
_+' A6,1' 1'b6'(;' 91 )'19?(') 16;+ /+*/ /+' 0'16,/9(? /0*(1:%05*c
/9%(1 %: /+' 1A9( 1/*/'1 ;%00'1A%() /% /+' ;%5A6/*/9%(*, 1/'A1 9( /+'
*,?%09/+5# YA%( ;%5A,'/9%( %: /+91 1'b6'(;'- &' '1/95*/' /+' 1/*/'
%: /+' `01/ /+0'' b6<9/1- %!!#U#$#!

T!0!$#!T!0$- S9* (6;,'*0 5*?('/9;
0'1%(*(;' FaONJ 1A';/0%1;%A># \( /+' '=A'095'(/- *( '(1'5<,' %:
9()'A'()'(/ b6*(/65 ;%5A6/'01 0*/+'0 /+*( * 19(?,' b6*(/65

© 2001 Macmillan Magazines Ltd

[ Vandersypen et al., Nature 2001 ]

!"##"$% #& '(#)$"

**+ !"#$%& ' ()* +,+ ' -./-0 1&2&34&% -.., ' 5556789:;<6=>?

9@< ?>A<B 8C;<<D 5<BB 5E9@ 9@< B8;C< 7>7FEA<8BE9E<D >G 9@< A8986 #@<
H;<AE=9EI< I8B:< >G 9@< ?>A<B 58D G:;9@<; =>7J;?<A IE8 E7A<H<7F
A<79 9<D9 <KH<;E?<79D6
#@ED EDL 9> >:; M7>5B<AC<L 9@< J;D9 !3% N:879:? =>?H:989E>7

<KH<;E?<79 G>; 5@E=@ A<=>@<;<7=< ED 9@< A>?E7879 D>:;=< >G
<;;>;DOP 9@< A<?87AD >G Q@>;RD 8BC>;E9@? =B<8;BS H:D@ 9@< BE?E9D >G
9@< =:;;<79 ?>B<=:B<L A<DHE9< E9D <K=<H9E>78B H;>H<;9E<D6 "9 9@< D8?<
9E?<L 9@< C>>A 8C;<<?<79 T<95<<7 9@< ?<8D:;<A 87A DE?:B89<A
DH<=9;8 D:CC<D9D 9@89 9@< A<C;<< >G :7E98;S =>79;>B E7 9@< <KH<;E?<79
58D I<;S @EC@L 5@E=@ T>A<D 5<BB G>; ;<B89<A H;>H>D<A E?HB<?<798F
9E>7D >G N:879:? =>?H:9<;D-UL-V6 WE78BBSL 5< 7>9< 9@89 >:; H8;8?F
<9<;FG;<< A<=>@<;<7=< ?>A<BL 8 H;<AE=9EI< 9>>B G>; ?>A<BBE7C
N:879:? <;;>;D E7 9@ED =>?HB<K DSD9<?L H;>IEA<D 87 8I<7:< G>;
G:9:;< A<DEC7 DE?:B89E>7 >G N:879:? =>?H:9<;D6 !

!"#$%&'
&KH<;E?<79D 5<;< H<;G>;?<A 89 9@< X43 "B?8A<7 %<D<8;=@ 2<79<; 5E9@ 87 ,,60F# YU..F
3Z[\ )KG>;A X7D9;:?<79D ?8C7<9L 8 =:D9>?F?>AEJ<A G>:;F=@877<B (8;E87 $7E9S
X!)(" DH<=9;>?<9<;L 87A 8 !8B>;8= ZW] H;>T<6 <̂ <K9<7A<A 9@< 9<=@7EN:<D >G ;<G6 _ G>;
D<;IE7C?:B9EHB< 7:=B<E H<; =@877<BL G>; ;<A:=E7C =;>DDF98BM T<95<<7 ;6G6 H:BD<D >7 AEGG<;<79
DHE7D 87A G>; D<7AE7C DE?:B987<>:D H:BD<D6 <̂ :D<A DHE7FD<B<=9EI< Z<;?E9<F,O. 87A
`8:DDE87F_. H:BD<D,UL D@8H<A E7 -UV D9<HDL 5E9@ 8 A:;89E>7 >G .6-- 9>!-?D6 " 9<=@7EN:< 9>
=>?H<7D89< G>; =>:HBE7C <GG<=9D A:;E7C 9@< D<B<=9EI< H:BD<D 58D A<I<B>H<A 87A E?HB<F
?<79<A IE8 a7<C89EI< A<B8SR 9E?<D T<G>;< 87A 8G9<; 9@< H:BD<6 #@< 8?>:79 >G 7<C89EI<
<I>B:9E>7 7<<A<A A<H<7AD >7 9@< H:BD< D@8H<L 87A 58D H;<F=>?H:9<A IE8 7:?<;E=8B
DE?:B89E>7D6
#> =;<89< 87 <GG<=9EI< H:;< C;>:7A D989< >G 8BB D<I<7 DHE7DL 5@E=@ @8D Y9> >:;

M7>5B<AC<\ 7>9 T<<7 A>7< T<G>;<L 5< :D<A 8 95>FD98C< <K9<7DE>7 >G 9@< D=@<?< >G ;<G6
_L 7<=<DD8;S T<=8:D< !,b2 ED I<;S AEGG<;<79 G;>? !,_W6 #@< JI< ,_W DHE7D 8;< ?8A<
<GG<=9EI< H:;< IE8 9@< D:??89E>7 >G 7E7< <KH<;E?<79DL <8=@ 5E9@ 8 AEGG<;<79 D<N:<7=< >G
!"#$ 87A "# C89<D Y!"#$ D987AD G>; 8 =>79;>BB<AF!)# >H<;89E>7L 5@E=@ cEHD 9@< 98;C<9
N:TE9 $ EG 87A >7BS EG 9@< =>79;>B # ED E7 ',!P "# DE?HBS cEHD #\-+6 #@<D< 7E7< <KH<;E?<79D
8;< <K<=:9<A G>:; 9E?<DL <8=@ 9E?< 5E9@ AEGG<;<79 8AAE9E>78B !"#$ 87A "#L D:=@ 9@89 9@<
95> ,b2 DHE7D 8;< 8BD> ?8A< <GG<=9EI< H:;<6 Q:??89E>7 >G 9@< +! _ ! bV <KH<;E?<79D
8B>7C 5E9@ 8 !)# >7 DHE7 0 CEI<D ",6 #@< D989< H;<H8;89E>7 D<N:<7=<D 5<;< A<DEC7<A 9>
T< 8D D@>;9 8D H>DDETB< Y!-..?D\ TS ?8ME7C >H9E?8B :D< >G 9@< 8I8EB8TB< =>:HBE7C
7<95>;M6
3:B9EHBE=89E>7 >G % ! , TS &?>A ,U =>79;>BB<A TS '. YN:TE9 b\ 58D ;<HB8=<A TS

=>79;>BB<AF8AAE9E>7 >G "& " ,#?>A ,U6 W>; & ! ,,L 9@ED ED A>7< TS !"b+!"bV 87A G>;
& ! 0 TS !"bU!"bV YC89<D " 87A 4 >G WEC6 ,T\6 3:B9EHBE=89E>7 >G % TS 0-?>A ,U ED
<N:EI8B<79 9> ?:B9EHBE=89E>7 >G % TS +?>A ,UL 5@E=@ ;<A:=<D 9> D58HHE7C %. 5E9@ %- 87A %,
5E9@ %b6 4>9@ D58H >H<;89E>7D ?:D9 T< =>79;>BB<A TS ',L 5@E=@ =87 T< 8=@E<I<A

-0 IE8 C89<D
2L 1L & 87A WL `L Z >G WEC6 ,T6 #@ED N:879:? =E;=:E9 =87 T< G:;9@<; DE?HBEJ<A TS 8 N:879:?
878B>C:< 9> H<<H@>B< =>?HEB<; >H9E?E[89E>7-OL 5@E=@ 5< =>7DEA<; D@>:BA T<=>?<
D987A8;A E7 G:9:;< N:879:? =>?HEB<;Dd Y,\ 9@< =>79;>B N:TE9 >G C89< 2 ED '.!L D> 2 58D
D:HH;<DD<AP Y-\ DE?EB8;BSL W 58D ;<HB8=<A TS "UP Yb\ C89<D Z 87A & 8;< E7=>7D<N:<79E8B G>;
9@< J78B D989< >G 9@< J;D9 ;<CED9<;L D> 9@<S 5<;< >?E99<AP Y+\ 9@< 98;C<9D >G 9@< A>:TBS
=>79;>BB<A !)# C89<D 1 87A ` 8;< E7 8 T8DED D989<L D> 9@<S =87 T< E?HB<?<79<A 8D
!( e

-+!)
-
V+!( -+ 87A !(e

-0!)
-
U0!(-0 Y!)#$ D987AD G>; 8 _.! *+ ;>989E>7 >G $ EG 87A >7BS EG

# ED E7 ',!\P YU\ 9@< ;<G>=:DE7C D=@<?<D 5<;< M<H9 8D DE?HB< 8D H>DDETB<6 #> 9@ED <7AL " 58D
=8;;E<A >:9 8G9<; &6 <̂ AEA ;<G>=:D E7@>?>C<7<>:D A<H@8DE7C G>; 8BB DHE7D E7 9@< 9;87DI<;D<
HB87<6 %<DEA:8B =>:HBE7CD 5E9@ 9@< =S=B>H<798AE<7SB H;>9>7D 5<;< A<=>:HB<A TS =>79E7F
:>:D >7F;<D>787=< B>5FH>5<; E;;8AE89E>7 :DE7C 8 D<H8;89< H>5<; 8?HBEJ<; 87A 8AAE9E>78B
H>5<; =>?TE7<;D 87A ;6G6 JB9<;D6 "G9<; 8BB 9@<D< DE?HBEJ=89E>7DL 9@< H:BD< D<N:<7=< G>;
0'?>A ,U 58D!+..?D B>7C6 #@< E7I<;D< fW#58D E?HB<?<79<A 8D D@>57 E7 WEC6 ,T 87A
9>>M!,-.?D6 #@< A:;89E>7 >G 9@< =>?HB<9< D<N:<7=< G>; 9@< Q@>; 8BC>;E9@?58D 9@:D :H
9> !0-.?D6 " A<98EB<A ;<H>;9 >7 9@<D< ?<9@>AD 5EBB T< H:TBED@<A <BD<5@<;< Y36Q6 ,- &./L
?87:D=;EH9 E7 H;<H8;89E>7\6

%<=<EI<A ,b g:BSP 8==<H9<A O )=9>T<; -..,6

,6 h7:9@L 16 &6 01, 23- 45 !4678-,3 934:3&66#;: (>B6 -< =,6#;86,3#>&. 2.:43#-16? Y"AAED>7F <̂DB<SL

%<8AE7CL 38DD8=@:D<99DL ,__O\6

-6 h>TBE9[L !6 2 !483?, #; "86@,3 01,43% &;A !3%7-4:3&71% YQH;E7C<;L !<5 i>;ML ,__+\6

b6 4<77<99L 26 Z6 j 1E(E7=<7[>L 16 k6 f:879:? E7G>;?89E>7 87A =>?H:989E>76 "&-83, !"!# -+0l-UU

Y-...\6

+6 Q@>;L k6 E7 934>/ BC-1 2;;8/ =%67/ 4; -1, D48;A&-#4;? 45 !4678-,3 =>#,;>, Y<A6 `>BA58DD<;L Q6\ ,-+l

,b+ YX&&& 2>?H:9<; Q>=E<9S k;<DDL *>D "B8?E9>DL 28BEG>;7E8L ,__+\6

U6 Q@>;L k6 k>BS7>?E8BF9E?< 8BC>;E9@?D G>; H;E?< G8=9>;E[89E>7 87A AED=;<9< B>C8;E9@?D >7 8 N:879:?

=>?H:9<;6 =E2F G/ !4678-/ $%# ,+O+l,U._ Y,__0\6

V6 &M<;9L "6 j g>[D8L %6 f:879:? =>?H:989E>7 87A Q@>;RD G8=9>;E7C 8BC>;E9@?6 H,I/ F4A/ 91%?/ %&Yb\#

0bbl0Ub Y,__V\6

06 4<=M?87L 16L 2@8;EL "6 !6L 1<I8T@8M9:7EL Q6 j k;<DMEBBL g6 &GJ=E<79 7<95>;MD G>; N:879:? G8=9>;E7C6

91%?/ H,I/ 2 '!# ,.b+l,.Vb Y,__V\6

O6 g>7<DL g6 "6 !3% N:879:? =>?H:989E>76 934:/ "FH =7,>-34?>/ (&# b-UlbV. Y-..,\6

_6 (87A<;DSH<7L *6 36 h6 ,- &.6 &KH<;E?<798B ;<8BE[89E>7 >G 87 >;A<;FJ7AE7C 8BC>;E9@? 5E9@ 87 !3%

N:879:? =>?H:9<;6 91%?/ H,I/ J,--/ &'# U+U-lU+UU Y-...\6

,.6 h7EBBL &6L *8c8??<L %6L 38;9E7<[L %6 j #D<7CL 26FZ6 "7 8BC>;E9@?E= T<7=@?8;M G>; N:879:?

E7G>;?89E>7 H;>=<DDE7C6 "&-83, !"!# bVOlb0. Y-...\6

,,6 `<;D@<7G<BAL !6 j 2@:87CL X6 *6 4:BM DHE7F;<D>787=< N:879:? =>?H:989E>76 =>#,;>, $)'# bU.lbUV

Y,__0\6

1:

2:

3:

4:

5:

6:

7:

(0) (1) (2) (3)

()*+," - !"#$% $%&"%'(% )*+ ,-.#%-%'/0/,*' *) /1% &"0'/"- (,+(",/ *) 2,34 5 )*+ ! ! 64

71% /0## +%8 #,'%$ +%.+%$%'/ 9:! ."#$%$ $%#%(/,;%#< 0(/,'3 *' *'% *) /1% $%;%' &"=,/$

>1*+,?*'/0# #,'%$@ 0=*"/ .*$,/,;% "# >'* (+*$$@A '%30/,;% "# >#*B%+ (+*$$@ 0'8 .*$,/,;% $# >/*.

(+*$$@4 C*/% 1*B $,'3#% 9:! ."#$%$ (*++%$.*'8 /* D080-0+8 30/%$A 0'8 .0,+$ *) $"(1

."#$%$ $%.0+0/%8 =< 8%#0< /,-%$ (*++%$.*'8 /* /B*E&"=,/ 30/%$4 71% $-0##%+ =#"% #,'%$

8%'*/% 5F:! $%#%(/,;% ."#$%$ "$%8 )*+ +%)*("$,'3G: 0=*"/ .*$,/,;% >80+H%+ $108%@ 0'8

'%30/,;% "# >#,31/%+ $108%@4 I*/0/,*'$ 0=*"/ %# 0+% 8%'*/%8 =< $-0##%+ 0'8 /1,(H%+ 3+%%'

+%(/0'3#%$A 0'8 B%+% ,-.#%-%'/%8 B,/1 )+0-%E+*/0/,*'$4 7,-% 8%#0<$ 0+% '*/ 8+0B' /*

$(0#%4 71% ;%+/,(0# 80$1%8 =#0(H #,'%$ ;,$"0##< $%.0+0/% /1% $/%.$ *) /1% 0#3*+,/1-J $/%. >:@

$1*B$ *'% *) /1% GK /%-.*+0# 0;%+03,'3 $%&"%'(%$4

© 2001 Macmillan Magazines Ltd



with L. Jiang, A. Sørensen, M. D. Lukin, 
[Harvard, Copenhagen]

Distributed computation

• Problem: apparatus for many qubits?
      – limited coupling strengths in a NMR molecule
         (frequency selectivity)
      – quantum control in limited space

[image from Janis.com]
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Approach: build a
Quantum Register

Use quantum communication
between registers

- noisy, failure prone, still OK

Have good local operation of 
a given register

Use many local operations 
to improve (faulty) inter-
register operations 



Early ideas (monolithic architecture)
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Q U A N T U M  C O M P U T I N G

A Practical
Architecture for
Reliable Quantum
Computers

Q uantum computers offer the prospect of
computation that scales exponentially
with data size. Unfortunately, a single bit
error can corrupt an exponential amount
of data. Quantum mechanics can seem

more suited to science fiction than system engi-
neering, yet small quantum devices of 5 to 7 bits
have nevertheless been built in the laboratory,1,2

100-bit devices are on the drawing table now, and
emerging quantum technologies promise even
greater scalability.3,4

More importantly, improvements in quantum
error-correction codes have established a threshold
theorem,5 according to which scalable quantum
computers can be built from faulty components as
long as the error probability for each quantum oper-
ation is less than some constant (estimated to be as
high as 10−4). The overhead for quantum error cor-
rection remains daunting: Current well-known
codes require tens of thousands of elementary oper-
ations to provide a single fault-tolerant logical oper-
ation. But proof of the threshold theorem
fundamentally alters the prospects for quantum
computers. No principle of physics prevents their
realization—it is an engineering problem. 

Empirical studies of practical quantum architec-
tures are just beginning to appear in the literature.6

Elementary architectural concepts are still lacking:
How do we provide quantum storage, data paths,

classical control circuits, parallelism, and system
integration? And, crucially, how can we design
architectures to reduce error-correction overhead?

QUANTUM COMPUTATION
Quantum information systems can be a mathe-

matically intense subject. We can understand a great
deal, however, by using a simple model of abstract
building blocks: quantum bits, gates, and algo-
rithms, and the available implementation technolo-
gies—in all their imperfections.7 The basic building
block is a quantum bit, or qubit, represented by
nanoscale physical properties such as nuclear spin.
In contrast to classical computation, in which a bit
represents either 0 or 1, a qubit represents both
states simultaneously. More precisely, a qubit’s state
is described by probability amplitudes, which can
destructively interfere with each other and only turn
into probabilities upon external observation.

Quantum computers manipulate these ampli-
tudes directly to perform a computation. Because
n qubits represent 2n states, a two-qubit vector
simultaneously represents the states 00, 01, 10, and
11—each with some probability when measured.
Each additional qubit doubles the number of ampli-
tudes represented—thus, the potential to scale
exponentially with data size.

A fundamental problem, however, is that we gen-
erally cannot look at the results of a quantum com-

Quantum computation has advanced to the point where system-level 
solutions can help close the gap between emerging quantum technologies
and real-world computing requirements.
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high as 10−4). The overhead for quantum error cor-
rection remains daunting: Current well-known
codes require tens of thousands of elementary oper-
ations to provide a single fault-tolerant logical oper-
ation. But proof of the threshold theorem
fundamentally alters the prospects for quantum
computers. No principle of physics prevents their
realization—it is an engineering problem. 

Empirical studies of practical quantum architec-
tures are just beginning to appear in the literature.6

Elementary architectural concepts are still lacking:
How do we provide quantum storage, data paths,

classical control circuits, parallelism, and system
integration? And, crucially, how can we design
architectures to reduce error-correction overhead?

QUANTUM COMPUTATION
Quantum information systems can be a mathe-

matically intense subject. We can understand a great
deal, however, by using a simple model of abstract
building blocks: quantum bits, gates, and algo-
rithms, and the available implementation technolo-
gies—in all their imperfections.7 The basic building
block is a quantum bit, or qubit, represented by
nanoscale physical properties such as nuclear spin.
In contrast to classical computation, in which a bit
represents either 0 or 1, a qubit represents both
states simultaneously. More precisely, a qubit’s state
is described by probability amplitudes, which can
destructively interfere with each other and only turn
into probabilities upon external observation.

Quantum computers manipulate these ampli-
tudes directly to perform a computation. Because
n qubits represent 2n states, a two-qubit vector
simultaneously represents the states 00, 01, 10, and
11—each with some probability when measured.
Each additional qubit doubles the number of ampli-
tudes represented—thus, the potential to scale
exponentially with data size.

A fundamental problem, however, is that we gen-
erally cannot look at the results of a quantum com-
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operations. Because this task is requisite to fault-
tolerant quantum computing, the ALU performs it
on encoded data after most logical operations. This
procedure consumes ancilla states, which help in
the computation of parity checks. Specialized hard-
ware provides elementary standard states that the
ALU uses to manufacture requisite ancilla.

Quantum memory
The architecture’s generality relies on an efficient

quantum memory. The key is building quantum
memory banks that are more reliable than quan-
tum computation devices. We can also use special-
ized “refresh” units that are much less complex
than our general ALU.

The storage of qubits not undergoing computa-
tion is very similar to the storage of conventional
dynamic RAM. Just as individual capacitors used
for DRAM leak into the surrounding substrate over
time, qubits couple to the surrounding environment
and decohere over time. This requires periodically
refreshing individual logical qubits. As Figure 2
shows, each qubit memory bank has a dedicated
refresh unit that periodically performs error detec-
tion and recovery on the logical qubits. From a
technological standpoint, decoherence-free sub-

systems,18 which naturally provide lower decoher-
ence rates for static qubits, could implement such
quantum memories.

The architecture uses multiple quantum memory
banks. This is not for improving logical qubit access
times. In fact, the underlying error rate of the qubit’s
physical storage mechanism, the algorithm’s com-
plexity and input data size, the quantum ALU’s
operation time and parallelism, and the error-cor-
rection code that stores the logical qubits limit the
bank size. For example, if we run Shor’s algorithm
on a 1,024-bit number using a memory technology
with an error rate of p = 10−9, we estimate that it
would use 28,000 physical qubits to represent about
1,000 physical bits using two levels of recursion in
a 5-qubit error-correction code. On the other hand,
if the error rate increases to p = 10−6, error correc-
tion would require four levels of recursion to refresh
a bank size of just 1,000 physical qubits that would
store only two logical qubits.

Quantum wires
Moving information around in a quantum com-

puter is a challenge. Quantum operations must be
reversible, and we cannot perfectly clone qubits—
that is, we cannot copy their value. We cannot sim-
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Figure 2. Fault-
tolerant quantum
computer architec-
ture. The quantum
arithmetic logic unit
(ALU) performs all
quantum operations,
quantum memory
banks support effi-
cient code conver-
sion, teleportation
transmits quantum
states without send-
ing quantum data,
and the dynamic
scheduler controls
all processes. 

[ Oskin et al., IEEE 2002 ]
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(Fig. 2(c)).
Entanglement pumping, like entanglement generation,

is probabilistic; however, failures are detected. Still, in
computation, where each logical gate should be com-
pleted within the allocated time (clock cycle), failed en-
tanglement pumping can lead to gate failure. To demon-
strate the feasibility of our approach for quantum compu-
tation, we next analyze the time required for robust ini-
tialization, measurement and entanglement generation,
and show that the failure probability for these proce-
dures can be made sufficiently small with only modest
time overhead.

The measurement circuit shown in Fig. 2(a) yields the
correct result based on majority vote from 2m+1 consec-
utive readouts (bit-verification). Since the local C-NOT
gate does not propagate bit-flip error from communica-
tion qubit to auxiliary qubit, the measurement of Z op-
erator of the communication qubit can be repeated many
times. The error probability for such a measurement is:

ε̃M ≈
(

2m + 1
m + 1

)
(pI + pM )m+1 + (2m + 1) pL. (2)

For example, with pI = pM = 5% and pL = 10−4, we
need m = 5 to achieve ε̃M ≈ 0.14%. The time needed for
robust measurement is

t̃M = (2m + 1) (tI + tL + tM ) . (3)

We now use robust measurement and entanglement gen-
eration to perform entanglement pumping [26, 27].

Suppose the raw Bell pairs have initial fidelity F due
to depolarizing error. We apply two-level entanglement
pumping. The first level uses nb ≥ 1 steps of bit-error
pumping using raw Bell pairs (Fig. 2(b)) to produce a
bit-error purified entangled pair. The second level uses
these bit-error purified pairs for np ≥ 1 steps of phase-
error pumping (Fig. 2(c)). The overall success proba-
bility can be defined as the probability that successive
steps all succeed. We may use the model of Markov
process with (nb + 1) (np + 1) states to directly calculate
the probability of having a successful two-level (nb, np)
pumping from a total of N raw pairs, pnb,np (Ntot). For
example, for initial pair fidelity F = 90%, robust mea-
surement error probability ε̃M = 0.14%, pL = 10−4, and
purification with (nb, np) = (3, 4), we find a failure prob-
ability εE,fail = 0.02, 0.002, 0.0002 for a number of pu-
rification attempts Ntot = 50, 75, and 100, respectively.
This indicates an exponential decrease in error for large
Ntot.

For successful purification, the infidelity of the puri-
fied pair ε

(nb,np)
E depends on both the control parameters

(nb, np) and the imperfection parameters (1−F, ε̃M , pL)
[37]. With optimized choice of

(
n∗b , n

∗
p

)
, we can minize

the infidelity

ε
(n∗b ,n∗p)
E = neffpL (4)

where neff is a pre-factor relating how errors in local op-
erations lead to the final infidelity. neff depends logrith-
mically on the imperfection parameters 1 − F , ε̃M , and
pL.

The total infidelity is bounded by the combination of
the above two errors [38]

ε̃E ≈ ε
(n∗b ,n∗p)
E + εE,fail ≈ neffpL (5)

where the second step neglects the exponentially de-
creasing failure probability for sufficiently large Ntot

(! 100). Numerically, we have ε̃E ≈ neffpL ≈ 20pL

for the entanglement pumping scheme of (np, nb, Ntot) =
(3, 4, 100) and imperfection parameters (1− F, ε̃M , pL) =(
10%, 0.14%, 10−4

)
. The total time for robust generation

of Bell pair t̃E is proportional to the average number of
raw Bell pairs generated 〈Ntot〉:

t̃E ≈ 〈Ntot〉 ×
(
tE + tL + t̃M

)
. (6)

This time t̃E and error probability ε̃E will determine the
performance of the non-local C-NOT operation used be-
tween registers.

We remark that a faster and less resource intensive
approach may be used if the unpurified Bell pair is dom-
inated by dephasing error. Then, one-level pumping
may be sufficient (i.e. no bit-error purification, nb = 1
[39]). For example, with the same imperfection param-
eters as above, the entanglement pumping scheme of
(np, nb, Ntot) = (4, 1, 35) can purify the dephasing error
more efficiently and achieve ε̃E ≈ neffpL = 12pL.

To confirm this analytical estimate, we have performed
a numerical calculation for all errors from purification
failure and other imperfections. The relationship be-
tween the optimized fidelity (over choices of nb, np) and
the total time (proportional to 〈Ntot〉) has been plotted
in Fig. 3 for cases with depolarization error and cases
with dephasing error. Asymptotically, the optimal pu-
rification of Bell pair is limited by the imperfections from
local unitary operations (pL and ε̃M ).

Scaling and thresholds With the robust measurement
and entanglement generation techniques now developed,
we may consider the register-based quantum computer
design in the context of standard models of quantum
error correction [34, 35]. We map our specific ap-
proach to a general error model, in which operations
are bounded with some error probability p0 and take
a characteristic “clock cycle” time tC . Since the col-
lection of local unitary operations and robust initial-
ization/measurement/entanglement generation are suf-
ficient for universal quantum computation, their error
probabilities and operational time determine p0 and tC ,
respectively. We estimate

p0 = max {pL, ε̃I , ε̃M , ε̃E} ≈ neffpL (7)

tC = max
{
tL, t̃I , t̃M , t̃E

}
' Ntot

(
tE + tL + t̃M

)
(8)
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(Fig. 2(c)).
Entanglement pumping, like entanglement generation,

is probabilistic; however, failures are detected. Still, in
computation, where each logical gate should be com-
pleted within the allocated time (clock cycle), failed en-
tanglement pumping can lead to gate failure. To demon-
strate the feasibility of our approach for quantum compu-
tation, we next analyze the time required for robust ini-
tialization, measurement and entanglement generation,
and show that the failure probability for these proce-
dures can be made sufficiently small with only modest
time overhead.

The measurement circuit shown in Fig. 2(a) yields the
correct result based on majority vote from 2m+1 consec-
utive readouts (bit-verification). Since the local C-NOT
gate does not propagate bit-flip error from communica-
tion qubit to auxiliary qubit, the measurement of Z op-
erator of the communication qubit can be repeated many
times. The error probability for such a measurement is:

ε̃M ≈
(

2m + 1
m + 1

)

(pI + pM )m+1 + (2m + 1) pL. (2)

For example, with pI = pM = 5% and pL = 10−4, we
need m = 5 to achieve ε̃M ≈ 0.14%. The time needed for
robust measurement is

t̃M = (2m + 1) (tI + tL + tM ) . (3)

We now use robust measurement and entanglement gen-
eration to perform entanglement pumping [26, 27].

Suppose the raw Bell pairs have initial fidelity F due
to depolarizing error. We apply two-level entanglement
pumping. The first level uses nb ≥ 1 steps of bit-error
pumping using raw Bell pairs (Fig. 2(b)) to produce a
bit-error purified entangled pair. The second level uses
these bit-error purified pairs for np ≥ 1 steps of phase-
error pumping (Fig. 2(c)). The overall success proba-
bility can be defined as the probability that successive
steps all succeed. We may use the model of Markov
process with (nb + 1) (np + 1) states to directly calculate
the probability of having a successful two-level (nb, np)
pumping from a total of N raw pairs, pnb,np

(Ntot). For
example, for initial pair fidelity F = 90%, robust mea-
surement error probability ε̃M = 0.14%, pL = 10−4, and
purification with (nb, np) = (3, 4), we find a failure prob-
ability εE,fail = 0.02, 0.002, 0.0002 for a number of pu-
rification attempts Ntot = 50, 75, and 100, respectively.
This indicates an exponential decrease in error for large
Ntot.

For successful purification, the infidelity of the puri-

fied pair ε
(nb,np)
E depends on both the control parameters

(nb, np) and the imperfection parameters (1−F, ε̃M , pL)
[36]. With optimized choice of
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where neff is a pre-factor relating how errors in local op-
erations lead to the final infidelity. neff depends logrith-
mically on the imperfection parameters 1 − F , ε̃M , and
pL.

The total infidelity is bounded by the combination of
the above two errors [37]

ε̃E ≈ ε
(n∗
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E + εE,fail ≈ neffpL (5)

where the second step neglects the exponentially de-
creasing failure probability for sufficiently large Ntot

(! 100). Numerically, we have ε̃E ≈ neffpL ≈ 20pL

for the entanglement pumping scheme of (np, nb, Ntot) =
(3, 4, 100) and imperfection parameters (1 − F, ε̃M , pL) =
(

10%, 0.14%, 10−4
)

. The total time for robust generation
of Bell pair t̃E is proportional to the average number of
raw Bell pairs generated 〈Ntot〉:

t̃E ≈ 〈Ntot〉 ×
(

tE + tL + t̃M
)

. (6)

This time t̃E and error probability ε̃E will determine the
performance of the non-local C-NOT operation used be-
tween registers.

We remark that a faster and less resource intensive
approach may be used if the unpurified Bell pair is dom-
inated by dephasing error. Then, one-level pumping
may be sufficient (i.e. no bit-error purification, nb = 1
[38]). For example, with the same imperfection param-
eters as above, the entanglement pumping scheme of
(np, nb, Ntot) = (4, 1, 35) can purify the dephasing error
more efficiently and achieve ε̃E ≈ neffpL = 12pL.

To confirm this analytical estimate, we have performed
a numerical calculation for all errors from purification
failure and other imperfections. The relationship be-
tween the optimized fidelity (over choices of nb, np) and
the total time (proportional to 〈Ntot〉) has been plotted
in Fig. 3 for cases with depolarization error and cases
with dephasing error. Asymptotically, the optimal pu-
rification of Bell pair is limited by the imperfections from
local unitary operations (pL and ε̃M ).

Scaling and thresholds With the robust measurement
and entanglement generation techniques now developed,
we may consider the register-based quantum computer
design in the context of standard models of quantum
error correction [34, 35]. We map our specific ap-
proach to a general error model, in which operations
are bounded with some error probability p0 and take
a characteristic “clock cycle” time tC . Since the col-
lection of local unitary operations and robust initial-
ization/measurement/entanglement generation are suf-
ficient for universal quantum computation, their error
probabilities and operational time determine p0 and tC ,
respectively. We estimate

p0 = max {pL, ε̃I , ε̃M , ε̃E} ≈ neffpL (7)

tC = max
{

tL, t̃I , t̃M , t̃E
}

' Ntot

(

tE + tL + t̃M
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strate the feasibility of our approach for quantum compu-
tation, we next analyze the time required for robust ini-
tialization, measurement and entanglement generation,
and show that the failure probability for these proce-
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For example, with pI = pM = 5% and pL = 10−4, we
need m = 5 to achieve ε̃M ≈ 0.14%. The time needed for
robust measurement is

t̃M = (2m + 1) (tI + tL + tM ) . (3)

We now use robust measurement and entanglement gen-
eration to perform entanglement pumping [26, 27].

Suppose the raw Bell pairs have initial fidelity F due
to depolarizing error. We apply two-level entanglement
pumping. The first level uses nb ≥ 1 steps of bit-error
pumping using raw Bell pairs (Fig. 2(b)) to produce a
bit-error purified entangled pair. The second level uses
these bit-error purified pairs for np ≥ 1 steps of phase-
error pumping (Fig. 2(c)). The overall success proba-
bility can be defined as the probability that successive
steps all succeed. We may use the model of Markov
process with (nb + 1) (np + 1) states to directly calculate
the probability of having a successful two-level (nb, np)
pumping from a total of N raw pairs, pnb,np (Ntot). For
example, for initial pair fidelity F = 90%, robust mea-
surement error probability ε̃M = 0.14%, pL = 10−4, and
purification with (nb, np) = (3, 4), we find a failure prob-
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is probabilistic; however, failures are detected. Still, in
computation, where each logical gate should be com-
pleted within the allocated time (clock cycle), failed en-
tanglement pumping can lead to gate failure. To demon-
strate the feasibility of our approach for quantum compu-
tation, we next analyze the time required for robust ini-
tialization, measurement and entanglement generation,
and show that the failure probability for these proce-
dures can be made sufficiently small with only modest
time overhead.

The measurement circuit shown in Fig. 2(a) yields the
correct result based on majority vote from 2m+1 consec-
utive readouts (bit-verification). Since the local C-NOT
gate does not propagate bit-flip error from communica-
tion qubit to auxiliary qubit, the measurement of Z op-
erator of the communication qubit can be repeated many
times. The error probability for such a measurement is:

ε̃M ≈
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)

(pI + pM )m+1 + (2m + 1) pL. (2)

For example, with pI = pM = 5% and pL = 10−4, we
need m = 5 to achieve ε̃M ≈ 0.14%. The time needed for
robust measurement is

t̃M = (2m + 1) (tI + tL + tM ) . (3)

We now use robust measurement and entanglement gen-
eration to perform entanglement pumping [26, 27].

Suppose the raw Bell pairs have initial fidelity F due
to depolarizing error. We apply two-level entanglement
pumping. The first level uses nb ≥ 1 steps of bit-error
pumping using raw Bell pairs (Fig. 2(b)) to produce a
bit-error purified entangled pair. The second level uses
these bit-error purified pairs for np ≥ 1 steps of phase-
error pumping (Fig. 2(c)). The overall success proba-
bility can be defined as the probability that successive
steps all succeed. We may use the model of Markov
process with (nb + 1) (np + 1) states to directly calculate
the probability of having a successful two-level (nb, np)
pumping from a total of N raw pairs, pnb,np

(Ntot). For
example, for initial pair fidelity F = 90%, robust mea-
surement error probability ε̃M = 0.14%, pL = 10−4, and
purification with (nb, np) = (3, 4), we find a failure prob-
ability εE,fail = 0.02, 0.002, 0.0002 for a number of pu-
rification attempts Ntot = 50, 75, and 100, respectively.
This indicates an exponential decrease in error for large
Ntot.

For successful purification, the infidelity of the puri-

fied pair ε
(nb,np)
E depends on both the control parameters

(nb, np) and the imperfection parameters (1−F, ε̃M , pL)
[36]. With optimized choice of

(

n∗

b , n
∗

p

)

, we can minize
the infidelity

ε
(n∗

b ,n∗

p)
E = neffpL (4)

where neff is a pre-factor relating how errors in local op-
erations lead to the final infidelity. neff depends logrith-
mically on the imperfection parameters 1 − F , ε̃M , and
pL.

The total infidelity is bounded by the combination of
the above two errors [37]

ε̃E ≈ ε
(n∗

b ,n∗

p)
E + εE,fail ≈ neffpL (5)

where the second step neglects the exponentially de-
creasing failure probability for sufficiently large Ntot

(! 100). Numerically, we have ε̃E ≈ neffpL ≈ 20pL

for the entanglement pumping scheme of (np, nb, Ntot) =
(3, 4, 100) and imperfection parameters (1 − F, ε̃M , pL) =
(

10%, 0.14%, 10−4
)

. The total time for robust generation
of Bell pair t̃E is proportional to the average number of
raw Bell pairs generated 〈Ntot〉:

t̃E ≈ 〈Ntot〉 ×
(

tE + tL + t̃M
)

. (6)

This time t̃E and error probability ε̃E will determine the
performance of the non-local C-NOT operation used be-
tween registers.

We remark that a faster and less resource intensive
approach may be used if the unpurified Bell pair is dom-
inated by dephasing error. Then, one-level pumping
may be sufficient (i.e. no bit-error purification, nb = 1
[38]). For example, with the same imperfection param-
eters as above, the entanglement pumping scheme of
(np, nb, Ntot) = (4, 1, 35) can purify the dephasing error
more efficiently and achieve ε̃E ≈ neffpL = 12pL.

To confirm this analytical estimate, we have performed
a numerical calculation for all errors from purification
failure and other imperfections. The relationship be-
tween the optimized fidelity (over choices of nb, np) and
the total time (proportional to 〈Ntot〉) has been plotted
in Fig. 3 for cases with depolarization error and cases
with dephasing error. Asymptotically, the optimal pu-
rification of Bell pair is limited by the imperfections from
local unitary operations (pL and ε̃M ).

Scaling and thresholds With the robust measurement
and entanglement generation techniques now developed,
we may consider the register-based quantum computer
design in the context of standard models of quantum
error correction [34, 35]. We map our specific ap-
proach to a general error model, in which operations
are bounded with some error probability p0 and take
a characteristic “clock cycle” time tC . Since the col-
lection of local unitary operations and robust initial-
ization/measurement/entanglement generation are suf-
ficient for universal quantum computation, their error
probabilities and operational time determine p0 and tC ,
respectively. We estimate

p0 = max {pL, ε̃I , ε̃M , ε̃E} ≈ neffpL (7)

tC = max
{

tL, t̃I , t̃M , t̃E
}

' Ntot

(

tE + tL + t̃M
)

(8)

Robust measurement
•  imperfect initialization, measurement (pI,pM ~ 5%)
•  near-perfect local operation  (pL ~ 0.01%)

Robust entanglement generation
•  Large time overhead 
      (tC ~100–1000 tL)
•  Initial F=0.9 gives final F>0.995
      (Neff ~ 20)
•  Good quantum memory critical
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(Fig. 2(c)).
Entanglement pumping, like entanglement generation,

is probabilistic; however, failures are detected. Still, in
computation, where each logical gate should be com-
pleted within the allocated time (clock cycle), failed en-
tanglement pumping can lead to gate failure. To demon-
strate the feasibility of our approach for quantum compu-
tation, we next analyze the time required for robust ini-
tialization, measurement and entanglement generation,
and show that the failure probability for these proce-
dures can be made sufficiently small with only modest
time overhead.

The measurement circuit shown in Fig. 2(a) yields the
correct result based on majority vote from 2m+1 consec-
utive readouts (bit-verification). Since the local C-NOT
gate does not propagate bit-flip error from communica-
tion qubit to auxiliary qubit, the measurement of Z op-
erator of the communication qubit can be repeated many
times. The error probability for such a measurement is:

ε̃M ≈
(

2m + 1
m + 1

)
(pI + pM )m+1 + (2m + 1) pL. (2)

For example, with pI = pM = 5% and pL = 10−4, we
need m = 5 to achieve ε̃M ≈ 0.14%. The time needed for
robust measurement is

t̃M = (2m + 1) (tI + tL + tM ) . (3)

We now use robust measurement and entanglement gen-
eration to perform entanglement pumping [26, 27].

Suppose the raw Bell pairs have initial fidelity F due
to depolarizing error. We apply two-level entanglement
pumping. The first level uses nb ≥ 1 steps of bit-error
pumping using raw Bell pairs (Fig. 2(b)) to produce a
bit-error purified entangled pair. The second level uses
these bit-error purified pairs for np ≥ 1 steps of phase-
error pumping (Fig. 2(c)). The overall success proba-
bility can be defined as the probability that successive
steps all succeed. We may use the model of Markov
process with (nb + 1) (np + 1) states to directly calculate
the probability of having a successful two-level (nb, np)
pumping from a total of N raw pairs, pnb,np (Ntot). For
example, for initial pair fidelity F = 90%, robust mea-
surement error probability ε̃M = 0.14%, pL = 10−4, and
purification with (nb, np) = (3, 4), we find a failure prob-
ability εE,fail = 0.02, 0.002, 0.0002 for a number of pu-
rification attempts Ntot = 50, 75, and 100, respectively.
This indicates an exponential decrease in error for large
Ntot.

For successful purification, the infidelity of the puri-
fied pair ε

(nb,np)
E depends on both the control parameters

(nb, np) and the imperfection parameters (1−F, ε̃M , pL)
[37]. With optimized choice of

(
n∗b , n

∗
p

)
, we can minize

the infidelity

ε
(n∗b ,n∗p)
E = neffpL (4)

where neff is a pre-factor relating how errors in local op-
erations lead to the final infidelity. neff depends logrith-
mically on the imperfection parameters 1 − F , ε̃M , and
pL.

The total infidelity is bounded by the combination of
the above two errors [38]

ε̃E ≈ ε
(n∗b ,n∗p)
E + εE,fail ≈ neffpL (5)

where the second step neglects the exponentially de-
creasing failure probability for sufficiently large Ntot

(! 100). Numerically, we have ε̃E ≈ neffpL ≈ 20pL

for the entanglement pumping scheme of (np, nb, Ntot) =
(3, 4, 100) and imperfection parameters (1− F, ε̃M , pL) =(
10%, 0.14%, 10−4

)
. The total time for robust generation

of Bell pair t̃E is proportional to the average number of
raw Bell pairs generated 〈Ntot〉:

t̃E ≈ 〈Ntot〉 ×
(
tE + tL + t̃M

)
. (6)

This time t̃E and error probability ε̃E will determine the
performance of the non-local C-NOT operation used be-
tween registers.

We remark that a faster and less resource intensive
approach may be used if the unpurified Bell pair is dom-
inated by dephasing error. Then, one-level pumping
may be sufficient (i.e. no bit-error purification, nb = 1
[39]). For example, with the same imperfection param-
eters as above, the entanglement pumping scheme of
(np, nb, Ntot) = (4, 1, 35) can purify the dephasing error
more efficiently and achieve ε̃E ≈ neffpL = 12pL.

To confirm this analytical estimate, we have performed
a numerical calculation for all errors from purification
failure and other imperfections. The relationship be-
tween the optimized fidelity (over choices of nb, np) and
the total time (proportional to 〈Ntot〉) has been plotted
in Fig. 3 for cases with depolarization error and cases
with dephasing error. Asymptotically, the optimal pu-
rification of Bell pair is limited by the imperfections from
local unitary operations (pL and ε̃M ).

Scaling and thresholds With the robust measurement
and entanglement generation techniques now developed,
we may consider the register-based quantum computer
design in the context of standard models of quantum
error correction [34, 35]. We map our specific ap-
proach to a general error model, in which operations
are bounded with some error probability p0 and take
a characteristic “clock cycle” time tC . Since the col-
lection of local unitary operations and robust initial-
ization/measurement/entanglement generation are suf-
ficient for universal quantum computation, their error
probabilities and operational time determine p0 and tC ,
respectively. We estimate

p0 = max {pL, ε̃I , ε̃M , ε̃E} ≈ neffpL (7)

tC = max
{
tL, t̃I , t̃M , t̃E

}
' Ntot

(
tE + tL + t̃M

)
(8)
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(Fig. 2(c)).
Entanglement pumping, like entanglement generation,

is probabilistic; however, failures are detected. Still, in
computation, where each logical gate should be com-
pleted within the allocated time (clock cycle), failed en-
tanglement pumping can lead to gate failure. To demon-
strate the feasibility of our approach for quantum compu-
tation, we next analyze the time required for robust ini-
tialization, measurement and entanglement generation,
and show that the failure probability for these proce-
dures can be made sufficiently small with only modest
time overhead.

The measurement circuit shown in Fig. 2(a) yields the
correct result based on majority vote from 2m+1 consec-
utive readouts (bit-verification). Since the local C-NOT
gate does not propagate bit-flip error from communica-
tion qubit to auxiliary qubit, the measurement of Z op-
erator of the communication qubit can be repeated many
times. The error probability for such a measurement is:

ε̃M ≈
(

2m + 1
m + 1

)

(pI + pM )m+1 + (2m + 1) pL. (2)

For example, with pI = pM = 5% and pL = 10−4, we
need m = 5 to achieve ε̃M ≈ 0.14%. The time needed for
robust measurement is

t̃M = (2m + 1) (tI + tL + tM ) . (3)

We now use robust measurement and entanglement gen-
eration to perform entanglement pumping [26, 27].

Suppose the raw Bell pairs have initial fidelity F due
to depolarizing error. We apply two-level entanglement
pumping. The first level uses nb ≥ 1 steps of bit-error
pumping using raw Bell pairs (Fig. 2(b)) to produce a
bit-error purified entangled pair. The second level uses
these bit-error purified pairs for np ≥ 1 steps of phase-
error pumping (Fig. 2(c)). The overall success proba-
bility can be defined as the probability that successive
steps all succeed. We may use the model of Markov
process with (nb + 1) (np + 1) states to directly calculate
the probability of having a successful two-level (nb, np)
pumping from a total of N raw pairs, pnb,np

(Ntot). For
example, for initial pair fidelity F = 90%, robust mea-
surement error probability ε̃M = 0.14%, pL = 10−4, and
purification with (nb, np) = (3, 4), we find a failure prob-
ability εE,fail = 0.02, 0.002, 0.0002 for a number of pu-
rification attempts Ntot = 50, 75, and 100, respectively.
This indicates an exponential decrease in error for large
Ntot.

For successful purification, the infidelity of the puri-

fied pair ε
(nb,np)
E depends on both the control parameters

(nb, np) and the imperfection parameters (1−F, ε̃M , pL)
[36]. With optimized choice of

(

n∗

b , n
∗

p

)

, we can minize
the infidelity

ε
(n∗

b ,n∗

p)
E = neffpL (4)

where neff is a pre-factor relating how errors in local op-
erations lead to the final infidelity. neff depends logrith-
mically on the imperfection parameters 1 − F , ε̃M , and
pL.

The total infidelity is bounded by the combination of
the above two errors [37]

ε̃E ≈ ε
(n∗

b ,n∗

p)
E + εE,fail ≈ neffpL (5)

where the second step neglects the exponentially de-
creasing failure probability for sufficiently large Ntot

(! 100). Numerically, we have ε̃E ≈ neffpL ≈ 20pL

for the entanglement pumping scheme of (np, nb, Ntot) =
(3, 4, 100) and imperfection parameters (1 − F, ε̃M , pL) =
(

10%, 0.14%, 10−4
)

. The total time for robust generation
of Bell pair t̃E is proportional to the average number of
raw Bell pairs generated 〈Ntot〉:

t̃E ≈ 〈Ntot〉 ×
(

tE + tL + t̃M
)

. (6)

This time t̃E and error probability ε̃E will determine the
performance of the non-local C-NOT operation used be-
tween registers.

We remark that a faster and less resource intensive
approach may be used if the unpurified Bell pair is dom-
inated by dephasing error. Then, one-level pumping
may be sufficient (i.e. no bit-error purification, nb = 1
[38]). For example, with the same imperfection param-
eters as above, the entanglement pumping scheme of
(np, nb, Ntot) = (4, 1, 35) can purify the dephasing error
more efficiently and achieve ε̃E ≈ neffpL = 12pL.

To confirm this analytical estimate, we have performed
a numerical calculation for all errors from purification
failure and other imperfections. The relationship be-
tween the optimized fidelity (over choices of nb, np) and
the total time (proportional to 〈Ntot〉) has been plotted
in Fig. 3 for cases with depolarization error and cases
with dephasing error. Asymptotically, the optimal pu-
rification of Bell pair is limited by the imperfections from
local unitary operations (pL and ε̃M ).

Scaling and thresholds With the robust measurement
and entanglement generation techniques now developed,
we may consider the register-based quantum computer
design in the context of standard models of quantum
error correction [34, 35]. We map our specific ap-
proach to a general error model, in which operations
are bounded with some error probability p0 and take
a characteristic “clock cycle” time tC . Since the col-
lection of local unitary operations and robust initial-
ization/measurement/entanglement generation are suf-
ficient for universal quantum computation, their error
probabilities and operational time determine p0 and tC ,
respectively. We estimate

p0 = max {pL, ε̃I , ε̃M , ε̃E} ≈ neffpL (7)

tC = max
{

tL, t̃I , t̃M , t̃E
}

' Ntot

(

tE + tL + t̃M
)

(8)

Robust measurement
•  imperfect initialization, measurement (pI,pM ~ 5%)
•  near-perfect local operation  (pL ~ 0.01%)

Further improvements: 
better collection efficiency via 
optical cavities (Purcell effect) 
— improves both speed and fidelity

Robust entanglement generation
•  Large time overhead 
      (tC ~100–1000 tL)
•  Initial F=0.9 gives final F>0.995
      (Neff ~ 20)
•  Good quantum memory critical

10-1

10-2

A
v
e
ra

g
e
 F

id
e
li
ty

0 15050 100

Purification steps

In
fid
el
ity



3

(Fig. 2(c)).
Entanglement pumping, like entanglement generation,

is probabilistic; however, failures are detected. Still, in
computation, where each logical gate should be com-
pleted within the allocated time (clock cycle), failed en-
tanglement pumping can lead to gate failure. To demon-
strate the feasibility of our approach for quantum compu-
tation, we next analyze the time required for robust ini-
tialization, measurement and entanglement generation,
and show that the failure probability for these proce-
dures can be made sufficiently small with only modest
time overhead.

The measurement circuit shown in Fig. 2(a) yields the
correct result based on majority vote from 2m+1 consec-
utive readouts (bit-verification). Since the local C-NOT
gate does not propagate bit-flip error from communica-
tion qubit to auxiliary qubit, the measurement of Z op-
erator of the communication qubit can be repeated many
times. The error probability for such a measurement is:

ε̃M ≈
(

2m + 1
m + 1

)
(pI + pM )m+1 + (2m + 1) pL. (2)

For example, with pI = pM = 5% and pL = 10−4, we
need m = 5 to achieve ε̃M ≈ 0.14%. The time needed for
robust measurement is

t̃M = (2m + 1) (tI + tL + tM ) . (3)

We now use robust measurement and entanglement gen-
eration to perform entanglement pumping [26, 27].

Suppose the raw Bell pairs have initial fidelity F due
to depolarizing error. We apply two-level entanglement
pumping. The first level uses nb ≥ 1 steps of bit-error
pumping using raw Bell pairs (Fig. 2(b)) to produce a
bit-error purified entangled pair. The second level uses
these bit-error purified pairs for np ≥ 1 steps of phase-
error pumping (Fig. 2(c)). The overall success proba-
bility can be defined as the probability that successive
steps all succeed. We may use the model of Markov
process with (nb + 1) (np + 1) states to directly calculate
the probability of having a successful two-level (nb, np)
pumping from a total of N raw pairs, pnb,np (Ntot). For
example, for initial pair fidelity F = 90%, robust mea-
surement error probability ε̃M = 0.14%, pL = 10−4, and
purification with (nb, np) = (3, 4), we find a failure prob-
ability εE,fail = 0.02, 0.002, 0.0002 for a number of pu-
rification attempts Ntot = 50, 75, and 100, respectively.
This indicates an exponential decrease in error for large
Ntot.

For successful purification, the infidelity of the puri-
fied pair ε

(nb,np)
E depends on both the control parameters

(nb, np) and the imperfection parameters (1−F, ε̃M , pL)
[37]. With optimized choice of

(
n∗b , n

∗
p

)
, we can minize

the infidelity

ε
(n∗b ,n∗p)
E = neffpL (4)

where neff is a pre-factor relating how errors in local op-
erations lead to the final infidelity. neff depends logrith-
mically on the imperfection parameters 1 − F , ε̃M , and
pL.

The total infidelity is bounded by the combination of
the above two errors [38]

ε̃E ≈ ε
(n∗b ,n∗p)
E + εE,fail ≈ neffpL (5)

where the second step neglects the exponentially de-
creasing failure probability for sufficiently large Ntot

(! 100). Numerically, we have ε̃E ≈ neffpL ≈ 20pL

for the entanglement pumping scheme of (np, nb, Ntot) =
(3, 4, 100) and imperfection parameters (1− F, ε̃M , pL) =(
10%, 0.14%, 10−4

)
. The total time for robust generation

of Bell pair t̃E is proportional to the average number of
raw Bell pairs generated 〈Ntot〉:

t̃E ≈ 〈Ntot〉 ×
(
tE + tL + t̃M

)
. (6)

This time t̃E and error probability ε̃E will determine the
performance of the non-local C-NOT operation used be-
tween registers.

We remark that a faster and less resource intensive
approach may be used if the unpurified Bell pair is dom-
inated by dephasing error. Then, one-level pumping
may be sufficient (i.e. no bit-error purification, nb = 1
[39]). For example, with the same imperfection param-
eters as above, the entanglement pumping scheme of
(np, nb, Ntot) = (4, 1, 35) can purify the dephasing error
more efficiently and achieve ε̃E ≈ neffpL = 12pL.

To confirm this analytical estimate, we have performed
a numerical calculation for all errors from purification
failure and other imperfections. The relationship be-
tween the optimized fidelity (over choices of nb, np) and
the total time (proportional to 〈Ntot〉) has been plotted
in Fig. 3 for cases with depolarization error and cases
with dephasing error. Asymptotically, the optimal pu-
rification of Bell pair is limited by the imperfections from
local unitary operations (pL and ε̃M ).

Scaling and thresholds With the robust measurement
and entanglement generation techniques now developed,
we may consider the register-based quantum computer
design in the context of standard models of quantum
error correction [34, 35]. We map our specific ap-
proach to a general error model, in which operations
are bounded with some error probability p0 and take
a characteristic “clock cycle” time tC . Since the col-
lection of local unitary operations and robust initial-
ization/measurement/entanglement generation are suf-
ficient for universal quantum computation, their error
probabilities and operational time determine p0 and tC ,
respectively. We estimate

p0 = max {pL, ε̃I , ε̃M , ε̃E} ≈ neffpL (7)

tC = max
{
tL, t̃I , t̃M , t̃E

}
' Ntot

(
tE + tL + t̃M

)
(8)
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(Fig. 2(c)).
Entanglement pumping, like entanglement generation,

is probabilistic; however, failures are detected. Still, in
computation, where each logical gate should be com-
pleted within the allocated time (clock cycle), failed en-
tanglement pumping can lead to gate failure. To demon-
strate the feasibility of our approach for quantum compu-
tation, we next analyze the time required for robust ini-
tialization, measurement and entanglement generation,
and show that the failure probability for these proce-
dures can be made sufficiently small with only modest
time overhead.

The measurement circuit shown in Fig. 2(a) yields the
correct result based on majority vote from 2m+1 consec-
utive readouts (bit-verification). Since the local C-NOT
gate does not propagate bit-flip error from communica-
tion qubit to auxiliary qubit, the measurement of Z op-
erator of the communication qubit can be repeated many
times. The error probability for such a measurement is:

ε̃M ≈
(

2m + 1
m + 1

)

(pI + pM )m+1 + (2m + 1) pL. (2)

For example, with pI = pM = 5% and pL = 10−4, we
need m = 5 to achieve ε̃M ≈ 0.14%. The time needed for
robust measurement is

t̃M = (2m + 1) (tI + tL + tM ) . (3)

We now use robust measurement and entanglement gen-
eration to perform entanglement pumping [26, 27].

Suppose the raw Bell pairs have initial fidelity F due
to depolarizing error. We apply two-level entanglement
pumping. The first level uses nb ≥ 1 steps of bit-error
pumping using raw Bell pairs (Fig. 2(b)) to produce a
bit-error purified entangled pair. The second level uses
these bit-error purified pairs for np ≥ 1 steps of phase-
error pumping (Fig. 2(c)). The overall success proba-
bility can be defined as the probability that successive
steps all succeed. We may use the model of Markov
process with (nb + 1) (np + 1) states to directly calculate
the probability of having a successful two-level (nb, np)
pumping from a total of N raw pairs, pnb,np

(Ntot). For
example, for initial pair fidelity F = 90%, robust mea-
surement error probability ε̃M = 0.14%, pL = 10−4, and
purification with (nb, np) = (3, 4), we find a failure prob-
ability εE,fail = 0.02, 0.002, 0.0002 for a number of pu-
rification attempts Ntot = 50, 75, and 100, respectively.
This indicates an exponential decrease in error for large
Ntot.

For successful purification, the infidelity of the puri-

fied pair ε
(nb,np)
E depends on both the control parameters

(nb, np) and the imperfection parameters (1−F, ε̃M , pL)
[36]. With optimized choice of

(

n∗

b , n
∗

p

)

, we can minize
the infidelity

ε
(n∗

b ,n∗

p)
E = neffpL (4)

where neff is a pre-factor relating how errors in local op-
erations lead to the final infidelity. neff depends logrith-
mically on the imperfection parameters 1 − F , ε̃M , and
pL.

The total infidelity is bounded by the combination of
the above two errors [37]

ε̃E ≈ ε
(n∗

b ,n∗

p)
E + εE,fail ≈ neffpL (5)

where the second step neglects the exponentially de-
creasing failure probability for sufficiently large Ntot

(! 100). Numerically, we have ε̃E ≈ neffpL ≈ 20pL

for the entanglement pumping scheme of (np, nb, Ntot) =
(3, 4, 100) and imperfection parameters (1 − F, ε̃M , pL) =
(

10%, 0.14%, 10−4
)

. The total time for robust generation
of Bell pair t̃E is proportional to the average number of
raw Bell pairs generated 〈Ntot〉:

t̃E ≈ 〈Ntot〉 ×
(

tE + tL + t̃M
)

. (6)

This time t̃E and error probability ε̃E will determine the
performance of the non-local C-NOT operation used be-
tween registers.

We remark that a faster and less resource intensive
approach may be used if the unpurified Bell pair is dom-
inated by dephasing error. Then, one-level pumping
may be sufficient (i.e. no bit-error purification, nb = 1
[38]). For example, with the same imperfection param-
eters as above, the entanglement pumping scheme of
(np, nb, Ntot) = (4, 1, 35) can purify the dephasing error
more efficiently and achieve ε̃E ≈ neffpL = 12pL.

To confirm this analytical estimate, we have performed
a numerical calculation for all errors from purification
failure and other imperfections. The relationship be-
tween the optimized fidelity (over choices of nb, np) and
the total time (proportional to 〈Ntot〉) has been plotted
in Fig. 3 for cases with depolarization error and cases
with dephasing error. Asymptotically, the optimal pu-
rification of Bell pair is limited by the imperfections from
local unitary operations (pL and ε̃M ).

Scaling and thresholds With the robust measurement
and entanglement generation techniques now developed,
we may consider the register-based quantum computer
design in the context of standard models of quantum
error correction [34, 35]. We map our specific ap-
proach to a general error model, in which operations
are bounded with some error probability p0 and take
a characteristic “clock cycle” time tC . Since the col-
lection of local unitary operations and robust initial-
ization/measurement/entanglement generation are suf-
ficient for universal quantum computation, their error
probabilities and operational time determine p0 and tC ,
respectively. We estimate

p0 = max {pL, ε̃I , ε̃M , ε̃E} ≈ neffpL (7)

tC = max
{

tL, t̃I , t̃M , t̃E
}

' Ntot

(

tE + tL + t̃M
)

(8)

Robust measurement
•  imperfect initialization, measurement (pI,pM ~ 5%)
•  near-perfect local operation  (pL ~ 0.01%)

Further improvements: 
better collection efficiency via 
optical cavities (Purcell effect) 
— improves both speed and fidelity

Robust entanglement generation
•  Large time overhead 
      (tC ~100–1000 tL)
•  Initial F=0.9 gives final F>0.995
      (Neff ~ 20)
•  Good quantum memory critical
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Atomic systems in regular lattices are intriguing systems for implementing ideas in quantum
simulation and information processing. Focusing on ionic systems, which can be laser cooled to form
2- and 3-D Wigner crystals in Penning traps, we find a robust and simple approach to engineering
non-trivial 2-body phase terms sufficient for universal quantum computation. We then consider a
non-local architecture using an asymmetric entanglement generation procedure between a Penning
trap system and well-established linear Paul trap designs, and extensions of our approach to the
fast generation of large cluster-states.

PACS numbers:

Quantum information processing using trapped ions
has been the focus of tremendous theoretical [1–3] and
experimental [4–8] advances over the past decade. The
coherence times of ions can sometimes exceed seconds,
while manipulation times and entanglement time scales
can be as fast as tens of microseconds. However, so far
approaches to scaling these systems to many ions have
met with tremendous difficulties, both in linear Paul
trap systems, where increasing numbers of ions leads to
tremendous control difficulties, and in proposed trap ar-
rays, where “shuttling” of quantum information using
gate electrodes would allow for a scalable architecture [9].
A possible solution is to separate the processing elements
(processor qubits) from the memory elements [10].

For ion-based schemes, a natural system to consider as
a quantum memory is a Wigner crystal of ions in a Pen-
ning trap [11]. Such crystals can be robustly formed [12],
and are dynamically stable, with tens of thousands of
ions in a given trap. In addition, the strength of the
Coulomb interaction leads to large separations between
individual ions, making individual addressing of ions in
such lattices a distinct possibility, in contrast to present
quantum control in neutral atom and polar molecule lat-
tices [13, 14].

In this letter we develop an approach to building a
quantum memory and large entangled states that takes
full advantage of the advances in ion trap technology for
building large Wigner crystals of ions in Penning traps.
Using a modulated-carrier “push” gate adapted from lin-
ear ion trap quantum computing schemes [15–19], we find
a fast but adiabatic method for building small clusters
of entanglement which is insensitive to thermal phonons
in 2D and 3D Wigner crystals. Non-deterministic en-
tanglement generation between distant ions suggests a
processor (linear Paul trap) and memory (2D Wigner
crystal) architecture based upon a quantum register ap-
proach [20], where the low photon collection efficiency
from ions in the memory is offset by an asymmetric en-
tanglement generation scheme using a weak cavity cou-
pled to ions in the processor [5, 21]. Finally, we take ad-
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FIG. 1: a) Schematic of a quantum processor (such as a linear
Paul trap) coupled via a high finesse cavity to a photodetector
system to allow interference with photons from an ion Wigner
crystal in a Penning trap nearby. b) Level structure of an
ion, with Raman transitions allowed between two metastable
qubit states (0 and 1) and a cycling transition at a different
frequency for 1 only to allow state-dependent flouresence.

vantage of some of the unique features of penning traps,
such as rotation of the crystal, to provide simplifications
in the necessary hardware to implement these ideas in 2D
Wigner crystals. We further show that such a quantum
memory device can also be used directly for cluster state
quantum computation, though fault-tolerance requires
extensions of the approach to quasi-3D crystals [22, 23].
Our approach follows recent work (Ref. 24) on perform-
ing quantum gates in 2D Wigner crystals.

We start by considering a 2D or 3D Wigner crystal of
ions, rotating in a Penning trap [11] with harmonic con-
finement with frequencies ωxy (in the lateral directions)
and ωz (in the vertical direction). With characteristic
ion spacings ∼ 10 µm, tightly focused lasers allow for
individual addressing of ions (Fig. 1). Laser cooling can
reduce the temperature ≈ 1 mK, yielding on the order of
102 − 103 phonons in lateral modes. We will assume the
coherence time of the memory states to be much longer
than any other time scale in the problem, and thus mem-
ory errors can be neglected. Non-deterministic entangle-
ment generation between two ions can be accomplished
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efforts in World War II to produce high-power radiation
sources for radar. A seminal paper from this period is
that by Brillouin (1945). In the late 1960s and early
1970s nonneutral plasma physics experienced a period of
rapid development, borrowing techniques and ideas
from traditional plasma physics (Davidson, 1974). Re-
search in the atomic physics and plasma physics commu-
nities proceeded rather independently until the early
1980s, when collaboration began. The two communities
brought different and complementary techniques to the
table. The atomic physicists started from rather small
plasma samples (N!102!104), but brought substantial
experience with Penning traps, a tradition of precision
measurements, and the powerful techniques of laser
cooling and diagnostics. Plasma physicists started with
much larger plasmas (N!1010) and brought experience
with and understanding of collective phenomena and
many-body physics. The two communities have learned
from each other, borrowed diagnostic techniques and
trap designs, exchanged postdocs, and held joint meet-
ings. Much of the work discussed here results from this
collaboration.

As general references on nonneutral plasmas, we rec-
ommend the two monographs by Davidson (1974, 1990)
and the two AIP conference proceedings on Nonneutral
Plasma Physics (Roberson and Driscoll, 1988; Fajans
and Dubin, 1994). These latter two references focus
more explicitly on nonneutral plasmas in traps and in-
clude papers from atomic physicists and plasma physi-
cists. A general reference on strongly coupled OCPs is
the review article by Ichimaru (1982). A more recent
review (Ichimaru, Iyetomi, and Tanaka, 1987) discusses
theoretical schemes in the analysis of multiparticle cor-
relations as well as transport calculations in the strongly
correlated regime. The proceedings of the recent Nobel
Symposium on Trapped Charged Particles and Funda-
mental Physics (Bergström, Carlberg, and Schuch, 1995)
provides a good overview of trap physics from the per-
spective of atomic physics. Likewise the review article
by Brown and Gabrielse (1986) provides an in-depth
discussion of the use of Penning traps for confinement of
small numbers of charges.

II. CONFINEMENT AND CONSTANTS OF THE MOTION

A. Confinement geometry

Figure 1 shows a simple example of a Penning trap
(Penning, 1936). A conducting cylinder is divided axially
into three sections, with the central section held at

ground potential and the two end sections held at posi-
tive potential. (Throughout the paper, the figures and
discussion refer to positively charged particles, but the
case of negative charges is covered by obvious sign
changes.) In addition, there is a uniform-axial magnetic
field. The plasma resides in the region of the central
grounded section, with radial confinement provided by
the magnetic field and axial confinement by the electric
fields. To understand radial force balance, one must re-
alize that the plasma rotates about the axis of symmetry
of the trap. The associated Lorentz force (ev"B/c),
where v is the rotational velocity, is directed radially
inward and balances all of the radially outward forces
(centrifugal, pressure, and electrostatic). This simple
form of the trap (with cylindrical electrodes) is often
called a Malmberg-Penning trap, since the late John
Malmberg pioneered its use for the confinement of non-
neutral plasmas (deGrassie and Malmberg, 1977, 1980).
Figure 2 shows a Penning trap in which the cylindrical
electrodes are replaced by hyperbolas of revolution.
Such traps were developed originally to confine small
numbers of charged particles (Dehmelt, 1967; Brown
and Gabrielse, 1986), but more recently have been used
to confine charge clouds that are large and dense enough
to qualify as a plasma. Penning traps of the form shown
in these two figures have been used to confine electron
plasmas (deGrassie and Malmberg, 1980; Driscoll,
Malmberg, and Fine, 1988; Gould and LaPointe, 1991;
Hart, 1991; Tan and Gabrielse, 1993; Chu et al., 1993;
Tinkle et al., 1994), positive-ion plasmas of one or more
species (Brewer et al., 1988; Bollinger, Wineland, and
Dubin, 1994), positron plasmas (Surko and Murphy,
1990; Cowan et al., 1993; Greaves et al., 1994; Mohri
et al., 1995), and electron-antiproton plasmas (Gabrielse
et al., 1989; Holzscheiter et al., 1996). We shall develop
the theory with traps of this form in mind. To be specific,
we shall assume that the trap electrode structure is cy-
lindrically symmetrical, that the potentials on the elec-
trodes are maintained at constant values, and that the
magnetic field is uniform and axial and constant in time.

However, it should be noted that this is not the most
general trap for which confinement in a state of thermal
equilibrium is possible. Confinement requires the
plasma to rotate through the magnetic field, and thermal
equilibrium requires the trap fields to be stationary in

FIG. 1. Schematic diagram of a Malmberg-Penning trap.

FIG. 2. Penning trap for which the electrodes are hyperbolas
of revolution.

90 Daniel H. E. Dubin and T. M. O’Neil: Trapped nonneutral plasmas . . .

Rev. Mod. Phys., Vol. 71, No. 1, January 1999

Wigner crystal-based quantum memory

[ Dubin & O’Neil, RMP (1999) ]

Advantages:
• many ions (good memory)
• self-organized, stable
• optically resolved sites

Problems:
• high temperature
• finite size
• low collection efficiency

[ QCMC 2006 ]



efforts in World War II to produce high-power radiation
sources for radar. A seminal paper from this period is
that by Brillouin (1945). In the late 1960s and early
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ings. Much of the work discussed here results from this
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relations as well as transport calculations in the strongly
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provides a good overview of trap physics from the per-
spective of atomic physics. Likewise the review article
by Brown and Gabrielse (1986) provides an in-depth
discussion of the use of Penning traps for confinement of
small numbers of charges.

II. CONFINEMENT AND CONSTANTS OF THE MOTION

A. Confinement geometry

Figure 1 shows a simple example of a Penning trap
(Penning, 1936). A conducting cylinder is divided axially
into three sections, with the central section held at

ground potential and the two end sections held at posi-
tive potential. (Throughout the paper, the figures and
discussion refer to positively charged particles, but the
case of negative charges is covered by obvious sign
changes.) In addition, there is a uniform-axial magnetic
field. The plasma resides in the region of the central
grounded section, with radial confinement provided by
the magnetic field and axial confinement by the electric
fields. To understand radial force balance, one must re-
alize that the plasma rotates about the axis of symmetry
of the trap. The associated Lorentz force (ev"B/c),
where v is the rotational velocity, is directed radially
inward and balances all of the radially outward forces
(centrifugal, pressure, and electrostatic). This simple
form of the trap (with cylindrical electrodes) is often
called a Malmberg-Penning trap, since the late John
Malmberg pioneered its use for the confinement of non-
neutral plasmas (deGrassie and Malmberg, 1977, 1980).
Figure 2 shows a Penning trap in which the cylindrical
electrodes are replaced by hyperbolas of revolution.
Such traps were developed originally to confine small
numbers of charged particles (Dehmelt, 1967; Brown
and Gabrielse, 1986), but more recently have been used
to confine charge clouds that are large and dense enough
to qualify as a plasma. Penning traps of the form shown
in these two figures have been used to confine electron
plasmas (deGrassie and Malmberg, 1980; Driscoll,
Malmberg, and Fine, 1988; Gould and LaPointe, 1991;
Hart, 1991; Tan and Gabrielse, 1993; Chu et al., 1993;
Tinkle et al., 1994), positive-ion plasmas of one or more
species (Brewer et al., 1988; Bollinger, Wineland, and
Dubin, 1994), positron plasmas (Surko and Murphy,
1990; Cowan et al., 1993; Greaves et al., 1994; Mohri
et al., 1995), and electron-antiproton plasmas (Gabrielse
et al., 1989; Holzscheiter et al., 1996). We shall develop
the theory with traps of this form in mind. To be specific,
we shall assume that the trap electrode structure is cy-
lindrically symmetrical, that the potentials on the elec-
trodes are maintained at constant values, and that the
magnetic field is uniform and axial and constant in time.

However, it should be noted that this is not the most
general trap for which confinement in a state of thermal
equilibrium is possible. Confinement requires the
plasma to rotate through the magnetic field, and thermal
equilibrium requires the trap fields to be stationary in

FIG. 1. Schematic diagram of a Malmberg-Penning trap.

FIG. 2. Penning trap for which the electrodes are hyperbolas
of revolution.
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Atomic systems in regular lattices are intriguing systems for implementing ideas in quantum
simulation and information processing. Focusing on ionic systems, which can be laser cooled to form
2- and 3-D Wigner crystals in Penning traps, we find a robust and simple approach to engineering
non-trivial 2-body phase terms sufficient for universal quantum computation. We then consider a
non-local architecture using an asymmetric entanglement generation procedure between a Penning
trap system and well-established linear Paul trap designs, and extensions of our approach to the
fast generation of large cluster-states.
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Quantum information processing using trapped ions
has been the focus of tremendous theoretical [1–3] and
experimental [4–8] advances over the past decade. The
coherence times of ions can sometimes exceed seconds,
while manipulation times and entanglement time scales
can be as fast as tens of microseconds. However, so far
approaches to scaling these systems to many ions have
met with tremendous difficulties, both in linear Paul
trap systems, where increasing numbers of ions leads to
tremendous control difficulties, and in proposed trap ar-
rays, where “shuttling” of quantum information using
gate electrodes would allow for a scalable architecture [9].
A possible solution is to separate the processing elements
(processor qubits) from the memory elements [10].

For ion-based schemes, a natural system to consider as
a quantum memory is a Wigner crystal of ions in a Pen-
ning trap [11]. Such crystals can be robustly formed [12],
and are dynamically stable, with tens of thousands of
ions in a given trap. In addition, the strength of the
Coulomb interaction leads to large separations between
individual ions, making individual addressing of ions in
such lattices a distinct possibility, in contrast to present
quantum control in neutral atom and polar molecule lat-
tices [13, 14].

In this letter we develop an approach to building a
quantum memory and large entangled states that takes
full advantage of the advances in ion trap technology for
building large Wigner crystals of ions in Penning traps.
Using a modulated-carrier “push” gate adapted from lin-
ear ion trap quantum computing schemes [15–19], we find
a fast but adiabatic method for building small clusters
of entanglement which is insensitive to thermal phonons
in 2D and 3D Wigner crystals. Non-deterministic en-
tanglement generation between distant ions suggests a
processor (linear Paul trap) and memory (2D Wigner
crystal) architecture based upon a quantum register ap-
proach [20], where the low photon collection efficiency
from ions in the memory is offset by an asymmetric en-
tanglement generation scheme using a weak cavity cou-
pled to ions in the processor [5, 21]. Finally, we take ad-
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FIG. 1: a) Schematic of a quantum processor (such as a linear
Paul trap) coupled via a high finesse cavity to a photodetector
system to allow interference with photons from an ion Wigner
crystal in a Penning trap nearby. b) Level structure of an
ion, with Raman transitions allowed between two metastable
qubit states (0 and 1) and a cycling transition at a different
frequency for 1 only to allow state-dependent flouresence.

vantage of some of the unique features of penning traps,
such as rotation of the crystal, to provide simplifications
in the necessary hardware to implement these ideas in 2D
Wigner crystals. We further show that such a quantum
memory device can also be used directly for cluster state
quantum computation, though fault-tolerance requires
extensions of the approach to quasi-3D crystals [22, 23].
Our approach follows recent work (Ref. 24) on perform-
ing quantum gates in 2D Wigner crystals.

We start by considering a 2D or 3D Wigner crystal of
ions, rotating in a Penning trap [11] with harmonic con-
finement with frequencies ωxy (in the lateral directions)
and ωz (in the vertical direction). With characteristic
ion spacings ∼ 10 µm, tightly focused lasers allow for
individual addressing of ions (Fig. 1). Laser cooling can
reduce the temperature ≈ 1 mK, yielding on the order of
102 − 103 phonons in lateral modes. We will assume the
coherence time of the memory states to be much longer
than any other time scale in the problem, and thus mem-
ory errors can be neglected. Non-deterministic entangle-
ment generation between two ions can be accomplished
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table. The atomic physicists started from rather small
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measurements, and the powerful techniques of laser
cooling and diagnostics. Plasma physicists started with
much larger plasmas (N!1010) and brought experience
with and understanding of collective phenomena and
many-body physics. The two communities have learned
from each other, borrowed diagnostic techniques and
trap designs, exchanged postdocs, and held joint meet-
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collaboration.
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and the two AIP conference proceedings on Nonneutral
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and Dubin, 1994). These latter two references focus
more explicitly on nonneutral plasmas in traps and in-
clude papers from atomic physicists and plasma physi-
cists. A general reference on strongly coupled OCPs is
the review article by Ichimaru (1982). A more recent
review (Ichimaru, Iyetomi, and Tanaka, 1987) discusses
theoretical schemes in the analysis of multiparticle cor-
relations as well as transport calculations in the strongly
correlated regime. The proceedings of the recent Nobel
Symposium on Trapped Charged Particles and Funda-
mental Physics (Bergström, Carlberg, and Schuch, 1995)
provides a good overview of trap physics from the per-
spective of atomic physics. Likewise the review article
by Brown and Gabrielse (1986) provides an in-depth
discussion of the use of Penning traps for confinement of
small numbers of charges.

II. CONFINEMENT AND CONSTANTS OF THE MOTION

A. Confinement geometry

Figure 1 shows a simple example of a Penning trap
(Penning, 1936). A conducting cylinder is divided axially
into three sections, with the central section held at

ground potential and the two end sections held at posi-
tive potential. (Throughout the paper, the figures and
discussion refer to positively charged particles, but the
case of negative charges is covered by obvious sign
changes.) In addition, there is a uniform-axial magnetic
field. The plasma resides in the region of the central
grounded section, with radial confinement provided by
the magnetic field and axial confinement by the electric
fields. To understand radial force balance, one must re-
alize that the plasma rotates about the axis of symmetry
of the trap. The associated Lorentz force (ev"B/c),
where v is the rotational velocity, is directed radially
inward and balances all of the radially outward forces
(centrifugal, pressure, and electrostatic). This simple
form of the trap (with cylindrical electrodes) is often
called a Malmberg-Penning trap, since the late John
Malmberg pioneered its use for the confinement of non-
neutral plasmas (deGrassie and Malmberg, 1977, 1980).
Figure 2 shows a Penning trap in which the cylindrical
electrodes are replaced by hyperbolas of revolution.
Such traps were developed originally to confine small
numbers of charged particles (Dehmelt, 1967; Brown
and Gabrielse, 1986), but more recently have been used
to confine charge clouds that are large and dense enough
to qualify as a plasma. Penning traps of the form shown
in these two figures have been used to confine electron
plasmas (deGrassie and Malmberg, 1980; Driscoll,
Malmberg, and Fine, 1988; Gould and LaPointe, 1991;
Hart, 1991; Tan and Gabrielse, 1993; Chu et al., 1993;
Tinkle et al., 1994), positive-ion plasmas of one or more
species (Brewer et al., 1988; Bollinger, Wineland, and
Dubin, 1994), positron plasmas (Surko and Murphy,
1990; Cowan et al., 1993; Greaves et al., 1994; Mohri
et al., 1995), and electron-antiproton plasmas (Gabrielse
et al., 1989; Holzscheiter et al., 1996). We shall develop
the theory with traps of this form in mind. To be specific,
we shall assume that the trap electrode structure is cy-
lindrically symmetrical, that the potentials on the elec-
trodes are maintained at constant values, and that the
magnetic field is uniform and axial and constant in time.

However, it should be noted that this is not the most
general trap for which confinement in a state of thermal
equilibrium is possible. Confinement requires the
plasma to rotate through the magnetic field, and thermal
equilibrium requires the trap fields to be stationary in

FIG. 1. Schematic diagram of a Malmberg-Penning trap.

FIG. 2. Penning trap for which the electrodes are hyperbolas
of revolution.
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Quantum information processing using trapped ions
has been the focus of tremendous theoretical [1–3] and
experimental [4–8] advances over the past decade. The
coherence times of ions can sometimes exceed seconds,
while manipulation times and entanglement time scales
can be as fast as tens of microseconds. However, so far
approaches to scaling these systems to many ions have
met with tremendous difficulties, both in linear Paul
trap systems, where increasing numbers of ions leads to
tremendous control difficulties, and in proposed trap ar-
rays, where “shuttling” of quantum information using
gate electrodes would allow for a scalable architecture [9].
A possible solution is to separate the processing elements
(processor qubits) from the memory elements [10].

For ion-based schemes, a natural system to consider as
a quantum memory is a Wigner crystal of ions in a Pen-
ning trap [11]. Such crystals can be robustly formed [12],
and are dynamically stable, with tens of thousands of
ions in a given trap. In addition, the strength of the
Coulomb interaction leads to large separations between
individual ions, making individual addressing of ions in
such lattices a distinct possibility, in contrast to present
quantum control in neutral atom and polar molecule lat-
tices [13, 14].

In this letter we develop an approach to building a
quantum memory and large entangled states that takes
full advantage of the advances in ion trap technology for
building large Wigner crystals of ions in Penning traps.
Using a modulated-carrier “push” gate adapted from lin-
ear ion trap quantum computing schemes [15–19], we find
a fast but adiabatic method for building small clusters
of entanglement which is insensitive to thermal phonons
in 2D and 3D Wigner crystals. Non-deterministic en-
tanglement generation between distant ions suggests a
processor (linear Paul trap) and memory (2D Wigner
crystal) architecture based upon a quantum register ap-
proach [20], where the low photon collection efficiency
from ions in the memory is offset by an asymmetric en-
tanglement generation scheme using a weak cavity cou-
pled to ions in the processor [5, 21]. Finally, we take ad-
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FIG. 1: a) Schematic of a quantum processor (such as a linear
Paul trap) coupled via a high finesse cavity to a photodetector
system to allow interference with photons from an ion Wigner
crystal in a Penning trap nearby. b) Level structure of an
ion, with Raman transitions allowed between two metastable
qubit states (0 and 1) and a cycling transition at a different
frequency for 1 only to allow state-dependent flouresence.

vantage of some of the unique features of penning traps,
such as rotation of the crystal, to provide simplifications
in the necessary hardware to implement these ideas in 2D
Wigner crystals. We further show that such a quantum
memory device can also be used directly for cluster state
quantum computation, though fault-tolerance requires
extensions of the approach to quasi-3D crystals [22, 23].
Our approach follows recent work (Ref. 24) on perform-
ing quantum gates in 2D Wigner crystals.

We start by considering a 2D or 3D Wigner crystal of
ions, rotating in a Penning trap [11] with harmonic con-
finement with frequencies ωxy (in the lateral directions)
and ωz (in the vertical direction). With characteristic
ion spacings ∼ 10 µm, tightly focused lasers allow for
individual addressing of ions (Fig. 1). Laser cooling can
reduce the temperature ≈ 1 mK, yielding on the order of
102 − 103 phonons in lateral modes. We will assume the
coherence time of the memory states to be much longer
than any other time scale in the problem, and thus mem-
ory errors can be neglected. Non-deterministic entangle-
ment generation between two ions can be accomplished
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using a variety of quantum communication techniques de-
veloped for quantum repeater protocols. When used in
conjunction with the deterministic phase gate developed
below and local single ion operations (performed, e.g.,
via Raman transitions), this will suffice for performing
large scale quantum algorithms [20] by using the remote
CNOT gate [25].

Modulated-carrier gate— A spatially inhomogeneous
laser detuned from the appropriate transitions between
internal (qubit) states of the ion produces a pondermo-
tive force due to the gradient in its intensity. Using an ap-
propriate combination of polarizations and frequencies,
the sign of the force becomes dependent upon the inter-
nal state of the ion, with the associated perturbation to
the system:

V =
∑

i

(!xi · !fi(t))σ
z
i (1)

where !xi is the displacement of ion i away from its equi-
librium position. As the ion displacements are coupled
(via phonons), the “push” leads to an effective σz

i σz
j in-

teraction. In Ref. 24, the authors used an adiabatic ap-
proach to remove any temperature dependence, which
relied on the finite gap present for the vertical (tightly
confined) direction in 2D crystals

We now introduce a simple variant of the fast-kick
“push” gate which allows us to use even the soft (lat-
eral) modes when their temperature is extremely high.
Our variant uses slow modulation of a fast, oscillating
state-dependent force. The oscillation averages any ion
motion to zero over the course of the gate, while the
in-phase oscillation of nearby ions leads to a non-trivial
phase evolution and the desired quantum gate between
ions in the crystal. In addition, as our gate allows for
non-trivial oscillation of ion positions in all three spatial
dimensions (versus only in the tightly confined direction
for the vertical gate), it can work using a single laser
beam and in three dimensional crystals.

It is instructive to recall the general approach to
“push” phase gates when in a complex crystal [18, 24].
We start by rewriting the hamiltonian of N interacting
ions to second order in displacement from the equilib-
rium positions H =

∑

K !ωK â†
K âK , using normal-mode

coordinates indexed by K = {!k, λ} (the wavevector and
polarization):

!xi =
∑

K

MiK!eK
αK√

2
(âK + â†

K) . (2)

The αK =
√

!/mωK are the oscillator ground state
lengths. We recall that the matrix M is orthogonal
(M tM = MM t = 1).

The perturbation V can now be written

V =
∑

K

αKfK(t)√
2

(â†
K + âK) (3)

where fK(t) is the state-dependent force pushing on nor-
mal mode K defined via Eqns. 2,1.

The problem factorizes into 3N independent, driven
oscillators. For scenarios with limt→±∞f(t) = 0 and
[Htot, σz

i ] = 0 for all i, the oscillator evolution is given
by the unitary transform UK(t) = e−iφK(t) exp(βK â†

K −
β∗

K â) where φK and βK satisfy the differential equa-
tions [18]:

β̇K = −iωKβK + i
αK

!
√

2
fK(t) (4)

φ̇K =
αK

!
√

2
fK(t)Re[βk(t)] (5)

These equations are exact up to second order in the ion
displacements; higher order, anharmonic terms lead to
small additional terms and errors [24].

We now seek an approach which still maintains no net
change in displacement and no dependence of the overall
phase on phonon state, but can operate on time scales
on the order of ωK . We add a sinusodial variation to
the force (f(t) → cos(νt)f(t)). The carrier frequencies ν
must be fast with respect to ωK ; qualitatively, this av-
erages out any net displacement. If the modulation f(t)
is slow with respect to ν (but with no restriction with
respect to ωK), we can perform a similar adiabatic elim-
ination as above, and get a gate with the same desirable
properties that can operate non-trivially on arbitrarily
“soft” phonon modes at very high tempeatures.

For adiabatic elimination with respect to ν, we choose
an ansatz β = β+eiνt + βie−iνt (subscripts omitted for
clarity). Thus,

β̇+ = −i(ω + ν)β+ + i
α

2
√

2!
f(t)

+e−2iνt[−β̇− − i(ω − ν)β− + i
α

2
√

2!
f(t)] (6)

Separate adiabatic elimination of β− and β+ yields β± =
αf(t)

2
√

2!(ω±ν)
. We find the displacement of a normal mode

induced by the gate is proportional to the force applied,
and can be made zero independent of initial phonon state
by starting and ending with zero force. This eliminates
any potential error due to entanglement between phonons
and the internal states of the ions.

We now examine the two-body phase induced in this
new scenario. The differential equation for phase is now:

φ̇ =
α2

2!2
f2(t)

ω

(ω2 − ν2)
cos2(νt) (7)

Removing the quickly varying component lets us replace
cos2(νt) with 1/2.

Returning the mode index, K, we find the overall phase
accumulated,

∑

K φK(T ), for a gate occurring over a time
0 to T does not depend on the phonon initial state. How-
ever, the internal states of the ions are affected by the
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using a variety of quantum communication techniques de-
veloped for quantum repeater protocols. When used in
conjunction with the deterministic phase gate developed
below and local single ion operations (performed, e.g.,
via Raman transitions), this will suffice for performing
large scale quantum algorithms [20] by using the remote
CNOT gate [25].

Modulated-carrier gate— A spatially inhomogeneous
laser detuned from the appropriate transitions between
internal (qubit) states of the ion produces a pondermo-
tive force due to the gradient in its intensity. Using an ap-
propriate combination of polarizations and frequencies,
the sign of the force becomes dependent upon the inter-
nal state of the ion, with the associated perturbation to
the system:

V =
∑

i

(!xi · !fi(t))σ
z
i (1)

where !xi is the displacement of ion i away from its equi-
librium position. As the ion displacements are coupled
(via phonons), the “push” leads to an effective σz

i σz
j in-

teraction. In Ref. 24, the authors used an adiabatic ap-
proach to remove any temperature dependence, which
relied on the finite gap present for the vertical (tightly
confined) direction in 2D crystals

We now introduce a simple variant of the fast-kick
“push” gate which allows us to use even the soft (lat-
eral) modes when their temperature is extremely high.
Our variant uses slow modulation of a fast, oscillating
state-dependent force. The oscillation averages any ion
motion to zero over the course of the gate, while the
in-phase oscillation of nearby ions leads to a non-trivial
phase evolution and the desired quantum gate between
ions in the crystal. In addition, as our gate allows for
non-trivial oscillation of ion positions in all three spatial
dimensions (versus only in the tightly confined direction
for the vertical gate), it can work using a single laser
beam and in three dimensional crystals.

It is instructive to recall the general approach to
“push” phase gates when in a complex crystal [18, 24].
We start by rewriting the hamiltonian of N interacting
ions to second order in displacement from the equilib-
rium positions H =

∑

K !ωK â†
K âK , using normal-mode

coordinates indexed by K = {!k, λ} (the wavevector and
polarization):

!xi =
∑

K

MiK!eK
αK√

2
(âK + â†

K) . (2)

The αK =
√

!/mωK are the oscillator ground state
lengths. We recall that the matrix M is orthogonal
(M tM = MM t = 1).

The perturbation V can now be written

V =
∑

K

αKfK(t)√
2

(â†
K + âK) (3)

where fK(t) is the state-dependent force pushing on nor-
mal mode K defined via Eqns. 2,1.

The problem factorizes into 3N independent, driven
oscillators. For scenarios with limt→±∞f(t) = 0 and
[Htot, σz

i ] = 0 for all i, the oscillator evolution is given
by the unitary transform UK(t) = e−iφK(t) exp(βK â†

K −
β∗

K â) where φK and βK satisfy the differential equa-
tions [18]:

β̇K = −iωKβK + i
αK

!
√

2
fK(t) (4)

φ̇K =
αK

!
√

2
fK(t)Re[βk(t)] (5)

These equations are exact up to second order in the ion
displacements; higher order, anharmonic terms lead to
small additional terms and errors [24].

We now seek an approach which still maintains no net
change in displacement and no dependence of the overall
phase on phonon state, but can operate on time scales
on the order of ωK . We add a sinusodial variation to
the force (f(t) → cos(νt)f(t)). The carrier frequencies ν
must be fast with respect to ωK ; qualitatively, this av-
erages out any net displacement. If the modulation f(t)
is slow with respect to ν (but with no restriction with
respect to ωK), we can perform a similar adiabatic elim-
ination as above, and get a gate with the same desirable
properties that can operate non-trivially on arbitrarily
“soft” phonon modes at very high tempeatures.

For adiabatic elimination with respect to ν, we choose
an ansatz β = β+eiνt + βie−iνt (subscripts omitted for
clarity). Thus,

β̇+ = −i(ω + ν)β+ + i
α

2
√

2!
f(t)

+e−2iνt[−β̇− − i(ω − ν)β− + i
α

2
√

2!
f(t)] (6)

Separate adiabatic elimination of β− and β+ yields β± =
αf(t)

2
√

2!(ω±ν)
. We find the displacement of a normal mode

induced by the gate is proportional to the force applied,
and can be made zero independent of initial phonon state
by starting and ending with zero force. This eliminates
any potential error due to entanglement between phonons
and the internal states of the ions.

We now examine the two-body phase induced in this
new scenario. The differential equation for phase is now:

φ̇ =
α2

2!2
f2(t)

ω

(ω2 − ν2)
cos2(νt) (7)

Removing the quickly varying component lets us replace
cos2(νt) with 1/2.

Returning the mode index, K, we find the overall phase
accumulated,

∑

K φK(T ), for a gate occurring over a time
0 to T does not depend on the phonon initial state. How-
ever, the internal states of the ions are affected by the
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using a variety of quantum communication techniques de-
veloped for quantum repeater protocols. When used in
conjunction with the deterministic phase gate developed
below and local single ion operations (performed, e.g.,
via Raman transitions), this will suffice for performing
large scale quantum algorithms [20] by using the remote
CNOT gate [25].

Modulated-carrier gate— A spatially inhomogeneous
laser detuned from the appropriate transitions between
internal (qubit) states of the ion produces a pondermo-
tive force due to the gradient in its intensity. Using an ap-
propriate combination of polarizations and frequencies,
the sign of the force becomes dependent upon the inter-
nal state of the ion, with the associated perturbation to
the system:

V =
∑

i

(!xi · !fi(t))σ
z
i (1)

where !xi is the displacement of ion i away from its equi-
librium position. As the ion displacements are coupled
(via phonons), the “push” leads to an effective σz

i σz
j in-

teraction. In Ref. 24, the authors used an adiabatic ap-
proach to remove any temperature dependence, which
relied on the finite gap present for the vertical (tightly
confined) direction in 2D crystals

We now introduce a simple variant of the fast-kick
“push” gate which allows us to use even the soft (lat-
eral) modes when their temperature is extremely high.
Our variant uses slow modulation of a fast, oscillating
state-dependent force. The oscillation averages any ion
motion to zero over the course of the gate, while the
in-phase oscillation of nearby ions leads to a non-trivial
phase evolution and the desired quantum gate between
ions in the crystal. In addition, as our gate allows for
non-trivial oscillation of ion positions in all three spatial
dimensions (versus only in the tightly confined direction
for the vertical gate), it can work using a single laser
beam and in three dimensional crystals.

It is instructive to recall the general approach to
“push” phase gates when in a complex crystal [18, 24].
We start by rewriting the hamiltonian of N interacting
ions to second order in displacement from the equilib-
rium positions H =

∑

K !ωK â†
K âK , using normal-mode

coordinates indexed by K = {!k, λ} (the wavevector and
polarization):

!xi =
∑

K

MiK!eK
αK√

2
(âK + â†

K) . (2)

The αK =
√

!/mωK are the oscillator ground state
lengths. We recall that the matrix M is orthogonal
(M tM = MM t = 1).

The perturbation V can now be written

V =
∑

K

αKfK(t)√
2

(â†
K + âK) (3)

where fK(t) is the state-dependent force pushing on nor-
mal mode K defined via Eqns. 2,1.

The problem factorizes into 3N independent, driven
oscillators. For scenarios with limt→±∞f(t) = 0 and
[Htot, σz

i ] = 0 for all i, the oscillator evolution is given
by the unitary transform UK(t) = e−iφK(t) exp(βK â†

K −
β∗

K â) where φK and βK satisfy the differential equa-
tions [18]:

β̇K = −iωKβK + i
αK

!
√

2
fK(t) (4)

φ̇K =
αK

!
√

2
fK(t)Re[βk(t)] (5)

These equations are exact up to second order in the ion
displacements; higher order, anharmonic terms lead to
small additional terms and errors [24].

We now seek an approach which still maintains no net
change in displacement and no dependence of the overall
phase on phonon state, but can operate on time scales
on the order of ωK . We add a sinusodial variation to
the force (f(t) → cos(νt)f(t)). The carrier frequencies ν
must be fast with respect to ωK ; qualitatively, this av-
erages out any net displacement. If the modulation f(t)
is slow with respect to ν (but with no restriction with
respect to ωK), we can perform a similar adiabatic elim-
ination as above, and get a gate with the same desirable
properties that can operate non-trivially on arbitrarily
“soft” phonon modes at very high tempeatures.

For adiabatic elimination with respect to ν, we choose
an ansatz β = β+eiνt + βie−iνt (subscripts omitted for
clarity). Thus,

β̇+ = −i(ω + ν)β+ + i
α

2
√

2!
f(t)

+e−2iνt[−β̇− − i(ω − ν)β− + i
α

2
√

2!
f(t)] (6)

Separate adiabatic elimination of β− and β+ yields β± =
αf(t)

2
√

2!(ω±ν)
. We find the displacement of a normal mode

induced by the gate is proportional to the force applied,
and can be made zero independent of initial phonon state
by starting and ending with zero force. This eliminates
any potential error due to entanglement between phonons
and the internal states of the ions.

We now examine the two-body phase induced in this
new scenario. The differential equation for phase is now:

φ̇ =
α2

2!2
f2(t)

ω

(ω2 − ν2)
cos2(νt) (7)

Removing the quickly varying component lets us replace
cos2(νt) with 1/2.

Returning the mode index, K, we find the overall phase
accumulated,

∑

K φK(T ), for a gate occurring over a time
0 to T does not depend on the phonon initial state. How-
ever, the internal states of the ions are affected by the
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using a variety of quantum communication techniques de-
veloped for quantum repeater protocols. When used in
conjunction with the deterministic phase gate developed
below and local single ion operations (performed, e.g.,
via Raman transitions), this will suffice for performing
large scale quantum algorithms [20] by using the remote
CNOT gate [25].

Modulated-carrier gate— A spatially inhomogeneous
laser detuned from the appropriate transitions between
internal (qubit) states of the ion produces a pondermo-
tive force due to the gradient in its intensity. Using an ap-
propriate combination of polarizations and frequencies,
the sign of the force becomes dependent upon the inter-
nal state of the ion, with the associated perturbation to
the system:

V =
∑

i

(!xi · !fi(t))σ
z
i (1)

where !xi is the displacement of ion i away from its equi-
librium position. As the ion displacements are coupled
(via phonons), the “push” leads to an effective σz

i σz
j in-

teraction. In Ref. 24, the authors used an adiabatic ap-
proach to remove any temperature dependence, which
relied on the finite gap present for the vertical (tightly
confined) direction in 2D crystals

We now introduce a simple variant of the fast-kick
“push” gate which allows us to use even the soft (lat-
eral) modes when their temperature is extremely high.
Our variant uses slow modulation of a fast, oscillating
state-dependent force. The oscillation averages any ion
motion to zero over the course of the gate, while the
in-phase oscillation of nearby ions leads to a non-trivial
phase evolution and the desired quantum gate between
ions in the crystal. In addition, as our gate allows for
non-trivial oscillation of ion positions in all three spatial
dimensions (versus only in the tightly confined direction
for the vertical gate), it can work using a single laser
beam and in three dimensional crystals.

It is instructive to recall the general approach to
“push” phase gates when in a complex crystal [18, 24].
We start by rewriting the hamiltonian of N interacting
ions to second order in displacement from the equilib-
rium positions H =

∑

K !ωK â†
K âK , using normal-mode

coordinates indexed by K = {!k, λ} (the wavevector and
polarization):

!xi =
∑

K

MiK!eK
αK√

2
(âK + â†

K) . (2)

The αK =
√

!/mωK are the oscillator ground state
lengths. We recall that the matrix M is orthogonal
(M tM = MM t = 1).

The perturbation V can now be written

V =
∑

K

αKfK(t)√
2

(â†
K + âK) (3)

where fK(t) is the state-dependent force pushing on nor-
mal mode K defined via Eqns. 2,1.

The problem factorizes into 3N independent, driven
oscillators. For scenarios with limt→±∞f(t) = 0 and
[Htot, σz

i ] = 0 for all i, the oscillator evolution is given
by the unitary transform UK(t) = e−iφK(t) exp(βK â†

K −
β∗

K â) where φK and βK satisfy the differential equa-
tions [18]:

β̇K = −iωKβK + i
αK

!
√

2
fK(t) (4)

φ̇K =
αK

!
√

2
fK(t)Re[βk(t)] (5)

These equations are exact up to second order in the ion
displacements; higher order, anharmonic terms lead to
small additional terms and errors [24].

We now seek an approach which still maintains no net
change in displacement and no dependence of the overall
phase on phonon state, but can operate on time scales
on the order of ωK . We add a sinusodial variation to
the force (f(t) → cos(νt)f(t)). The carrier frequencies ν
must be fast with respect to ωK ; qualitatively, this av-
erages out any net displacement. If the modulation f(t)
is slow with respect to ν (but with no restriction with
respect to ωK), we can perform a similar adiabatic elim-
ination as above, and get a gate with the same desirable
properties that can operate non-trivially on arbitrarily
“soft” phonon modes at very high tempeatures.

For adiabatic elimination with respect to ν, we choose
an ansatz β = β+eiνt + βie−iνt (subscripts omitted for
clarity). Thus,

β̇+ = −i(ω + ν)β+ + i
α

2
√

2!
f(t)

+e−2iνt[−β̇− − i(ω − ν)β− + i
α

2
√

2!
f(t)] (6)

Separate adiabatic elimination of β− and β+ yields β± =
αf(t)

2
√

2!(ω±ν)
. We find the displacement of a normal mode

induced by the gate is proportional to the force applied,
and can be made zero independent of initial phonon state
by starting and ending with zero force. This eliminates
any potential error due to entanglement between phonons
and the internal states of the ions.

We now examine the two-body phase induced in this
new scenario. The differential equation for phase is now:

φ̇ =
α2

2!2
f2(t)

ω

(ω2 − ν2)
cos2(νt) (7)

Removing the quickly varying component lets us replace
cos2(νt) with 1/2.

Returning the mode index, K, we find the overall phase
accumulated,

∑

K φK(T ), for a gate occurring over a time
0 to T does not depend on the phonon initial state. How-
ever, the internal states of the ions are affected by the
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using a variety of quantum communication techniques de-
veloped for quantum repeater protocols. When used in
conjunction with the deterministic phase gate developed
below and local single ion operations (performed, e.g.,
via Raman transitions), this will suffice for performing
large scale quantum algorithms [20] by using the remote
CNOT gate [25].

Modulated-carrier gate— A spatially inhomogeneous
laser detuned from the appropriate transitions between
internal (qubit) states of the ion produces a pondermo-
tive force due to the gradient in its intensity. Using an ap-
propriate combination of polarizations and frequencies,
the sign of the force becomes dependent upon the inter-
nal state of the ion, with the associated perturbation to
the system:

V =
∑

i

(!xi · !fi(t))σ
z
i (1)

where !xi is the displacement of ion i away from its equi-
librium position. As the ion displacements are coupled
(via phonons), the “push” leads to an effective σz

i σz
j in-

teraction. In Ref. 24, the authors used an adiabatic ap-
proach to remove any temperature dependence, which
relied on the finite gap present for the vertical (tightly
confined) direction in 2D crystals

We now introduce a simple variant of the fast-kick
“push” gate which allows us to use even the soft (lat-
eral) modes when their temperature is extremely high.
Our variant uses slow modulation of a fast, oscillating
state-dependent force. The oscillation averages any ion
motion to zero over the course of the gate, while the
in-phase oscillation of nearby ions leads to a non-trivial
phase evolution and the desired quantum gate between
ions in the crystal. In addition, as our gate allows for
non-trivial oscillation of ion positions in all three spatial
dimensions (versus only in the tightly confined direction
for the vertical gate), it can work using a single laser
beam and in three dimensional crystals.

It is instructive to recall the general approach to
“push” phase gates when in a complex crystal [18, 24].
We start by rewriting the hamiltonian of N interacting
ions to second order in displacement from the equilib-
rium positions H =

∑

K !ωK â†
K âK , using normal-mode

coordinates indexed by K = {!k, λ} (the wavevector and
polarization):

!xi =
∑

K

MiK!eK
αK√

2
(âK + â†

K) . (2)

The αK =
√

!/mωK are the oscillator ground state
lengths. We recall that the matrix M is orthogonal
(M tM = MM t = 1).

The perturbation V can now be written

V =
∑

K

αKfK(t)√
2

(â†
K + âK) (3)

where fK(t) is the state-dependent force pushing on nor-
mal mode K defined via Eqns. 2,1.

The problem factorizes into 3N independent, driven
oscillators. For scenarios with limt→±∞f(t) = 0 and
[Htot, σz

i ] = 0 for all i, the oscillator evolution is given
by the unitary transform UK(t) = e−iφK(t) exp(βK â†

K −
β∗

K â) where φK and βK satisfy the differential equa-
tions [18]:

β̇K = −iωKβK + i
αK

!
√

2
fK(t) (4)

φ̇K =
αK

!
√

2
fK(t)Re[βk(t)] (5)

These equations are exact up to second order in the ion
displacements; higher order, anharmonic terms lead to
small additional terms and errors [24].

We now seek an approach which still maintains no net
change in displacement and no dependence of the overall
phase on phonon state, but can operate on time scales
on the order of ωK . We add a sinusodial variation to
the force (f(t) → cos(νt)f(t)). The carrier frequencies ν
must be fast with respect to ωK ; qualitatively, this av-
erages out any net displacement. If the modulation f(t)
is slow with respect to ν (but with no restriction with
respect to ωK), we can perform a similar adiabatic elim-
ination as above, and get a gate with the same desirable
properties that can operate non-trivially on arbitrarily
“soft” phonon modes at very high tempeatures.

For adiabatic elimination with respect to ν, we choose
an ansatz β = β+eiνt + βie−iνt (subscripts omitted for
clarity). Thus,

β̇+ = −i(ω + ν)β+ + i
α

2
√

2!
f(t)

+e−2iνt[−β̇− − i(ω − ν)β− + i
α

2
√

2!
f(t)] (6)

Separate adiabatic elimination of β− and β+ yields β± =
αf(t)

2
√

2!(ω±ν)
. We find the displacement of a normal mode

induced by the gate is proportional to the force applied,
and can be made zero independent of initial phonon state
by starting and ending with zero force. This eliminates
any potential error due to entanglement between phonons
and the internal states of the ions.

We now examine the two-body phase induced in this
new scenario. The differential equation for phase is now:

φ̇ =
α2

2!2
f2(t)

ω

(ω2 − ν2)
cos2(νt) (7)

Removing the quickly varying component lets us replace
cos2(νt) with 1/2.

Returning the mode index, K, we find the overall phase
accumulated,

∑

K φK(T ), for a gate occurring over a time
0 to T does not depend on the phonon initial state. How-
ever, the internal states of the ions are affected by the
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using a variety of quantum communication techniques de-
veloped for quantum repeater protocols. When used in
conjunction with the deterministic phase gate developed
below and local single ion operations (performed, e.g.,
via Raman transitions), this will suffice for performing
large scale quantum algorithms [20] by using the remote
CNOT gate [25].

Modulated-carrier gate— A spatially inhomogeneous
laser detuned from the appropriate transitions between
internal (qubit) states of the ion produces a pondero-
motive force due to the gradient in its intensity. Using
an appropriate combination of polarizations and frequen-
cies, the sign of the force becomes dependent upon the
internal state of the ion, with the associated perturbation
to the system:

V =
∑

i

(!xi · !fi(t))σ
z
i (1)

where !xi is the displacement of ion i away from its equi-
librium position. As the ion displacements are coupled
(via phonons), the “push” leads to an effective σz

i σz
j in-

teraction. In Ref. 24, the authors used an adiabatic ap-
proach to remove any temperature dependence, which
relied on the finite gap present for the vertical (tightly
confined) direction in 2D crystals

We now introduce a simple variant of the fast-kick
“push” gate which allows us to use even the soft (lat-
eral) modes when their temperature is extremely high.
Our variant uses slow modulation of a fast, oscillating
state-dependent force. The oscillation averages any ion
motion to zero over the course of the gate, while the
in-phase oscillation of nearby ions leads to a non-trivial
phase evolution and the desired quantum gate between
ions in the crystal. In addition, as our gate allows for
non-trivial oscillation of ion positions in all three spatial
dimensions (versus only in the tightly confined direction
for the vertical gate), it can work using a single laser
beam and in three dimensional crystals.

It is instructive to recall the general approach to
“push” phase gates when in a complex crystal [18, 24].
We start by rewriting the hamiltonian of N interact-
ing ions to second order in displacement from the equi-
librium positions H =

∑

K !ωK â†
K âK , using normal-

mode coordinates indexed by K = {!k, λ} (the wavevec-
tor and polarization), !xi =

∑

K MiK!eK
αK√

2
(âK + â†

K).

The αK =
√

!/mωK are the oscillator ground state
lengths. We recall that the matrix M is orthogonal
(M tM = MM t = 1).

The perturbation V can now be written

V =
∑

K

αKfK(t)√
2

(â†
K + âK) (2)

where fK(t) is the state-dependent force pushing on
normal mode K defined via the transformaton M and
Eqn. 1.

The problem factorizes into 3N independent, driven
oscillators. For scenarios with limt→±∞f(t) = 0, the
oscillator evolution is given by the unitary transform
UK(t) = e−iφK(t) exp(βK â†

K − β∗
K â) where φK and βK

satisfy the differential equations [18], which are exact to
second order

β̇K = −iωKβK + i
αK

!
√

2
fK(t) (3)

φ̇K =
αK

!
√

2
fK(t)Re[βk(t)] . (4)

We now seek an approach which still maintains no net
change in displacement and no dependence of the overall
phase on phonon state, but can operate on time scales
on the order of ωK . We add a sinusodial variation to
the force (f(t) → cos(νt)f(t)). The carrier frequencies ν
must be fast with respect to ωK ; qualitatively, this av-
erages out any net displacement. If the modulation f(t)
is slow with respect to ν (but with no restriction with
respect to ωK), we can perform a similar adiabatic elim-
ination as above, and get a gate with the same desirable
properties that can operate non-trivially on arbitrarily
“soft” phonon modes at very high tempeatures.

For adiabatic elimination with respect to ν, we choose
an ansatz β = β+eiνt + βie−iνt (subscripts omitted for

clarity). Setting β̇ = 0 yields β± = αf(t)

2
√

2!(ω±ν)
. We find

the displacement of a normal mode induced by the gate is
proportional to the force applied, and can be made zero
independent of initial phonon state by starting and end-
ing with zero force. This eliminates any potential error
due to entanglement between phonons and the internal
states of the ions.

We now examine the two-body phase induced in this
new scenario. The differential equation for phase is now:

φ̇ =
α2

2!2
f2(t)

ω

(ω2 − ν2)
cos2(νt) (5)

Removing the quickly varying component lets us replace
cos2(νt) with 1/2.

Returning the mode index, K, we find the overall phase
accumulated,

∑

K φK(T ), for a gate occurring over a time
0 to T does not depend on the phonon initial state. How-
ever, the internal states of the ions are affected by the
unitary exp(−i

∑

ij φijσz
i σz

j ) where the two-body phases
are given by

φij =
∑

λ

Sλ
ij

∫ T

0
(!fi(t) · !eλ)(!fj(t) · !eλ)dt (6)

The pulse-shape independent form factor is

Sλ
ij = −

∑

k

α2
k,λωk,λ

4!2(ν2 − ω2
k,λ)

Mik,λMjk,λ . (7)

(the polarization vectors !eK only depend on λ).

Fast carrier-modulated gate

Idea: modulate force fast w.r.t. phonons (fast-kick)
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using a variety of quantum communication techniques de-
veloped for quantum repeater protocols. When used in
conjunction with the deterministic phase gate developed
below and local single ion operations (performed, e.g.,
via Raman transitions), this will suffice for performing
large scale quantum algorithms [20] by using the remote
CNOT gate [25].

Modulated-carrier gate— A spatially inhomogeneous
laser detuned from the appropriate transitions between
internal (qubit) states of the ion produces a pondero-
motive force due to the gradient in its intensity. Using
an appropriate combination of polarizations and frequen-
cies, the sign of the force becomes dependent upon the
internal state of the ion, with the associated perturbation
to the system:

V =
∑

i

(!xi · !fi(t))σ
z
i (1)

where !xi is the displacement of ion i away from its equi-
librium position. As the ion displacements are coupled
(via phonons), the “push” leads to an effective σz

i σz
j in-

teraction. In Ref. 24, the authors used an adiabatic ap-
proach to remove any temperature dependence, which
relied on the finite gap present for the vertical (tightly
confined) direction in 2D crystals

We now introduce a simple variant of the fast-kick
“push” gate which allows us to use even the soft (lat-
eral) modes when their temperature is extremely high.
Our variant uses slow modulation of a fast, oscillating
state-dependent force. The oscillation averages any ion
motion to zero over the course of the gate, while the
in-phase oscillation of nearby ions leads to a non-trivial
phase evolution and the desired quantum gate between
ions in the crystal. In addition, as our gate allows for
non-trivial oscillation of ion positions in all three spatial
dimensions (versus only in the tightly confined direction
for the vertical gate), it can work using a single laser
beam and in three dimensional crystals.

It is instructive to recall the general approach to
“push” phase gates when in a complex crystal [18, 24].
We start by rewriting the hamiltonian of N interact-
ing ions to second order in displacement from the equi-
librium positions H =

∑

K !ωK â†
K âK , using normal-

mode coordinates indexed by K = {!k, λ} (the wavevec-
tor and polarization), !xi =

∑

K MiK!eK
αK√

2
(âK + â†

K).

The αK =
√

!/mωK are the oscillator ground state
lengths. We recall that the matrix M is orthogonal
(M tM = MM t = 1).

The perturbation V can now be written

V =
∑

K

αKfK(t)√
2

(â†
K + âK) (2)

where fK(t) is the state-dependent force pushing on
normal mode K defined via the transformaton M and
Eqn. 1.

The problem factorizes into 3N independent, driven
oscillators. For scenarios with limt→±∞f(t) = 0, the
oscillator evolution is given by the unitary transform
UK(t) = e−iφK(t) exp(βK â†

K − β∗
K â) where φK and βK

satisfy the differential equations [18], which are exact to
second order

β̇K = −iωKβK + i
αK

!
√

2
fK(t) (3)

φ̇K =
αK

!
√

2
fK(t)Re[βk(t)] . (4)

We now seek an approach which still maintains no net
change in displacement and no dependence of the overall
phase on phonon state, but can operate on time scales
on the order of ωK . We add a sinusodial variation to
the force (f(t) → cos(νt)f(t)). The carrier frequencies ν
must be fast with respect to ωK ; qualitatively, this av-
erages out any net displacement. If the modulation f(t)
is slow with respect to ν (but with no restriction with
respect to ωK), we can perform a similar adiabatic elim-
ination as above, and get a gate with the same desirable
properties that can operate non-trivially on arbitrarily
“soft” phonon modes at very high tempeatures.

For adiabatic elimination with respect to ν, we choose
an ansatz β = β+eiνt + βie−iνt (subscripts omitted for

clarity). Setting β̇ = 0 yields β± = αf(t)

2
√

2!(ω±ν)
. We find

the displacement of a normal mode induced by the gate is
proportional to the force applied, and can be made zero
independent of initial phonon state by starting and end-
ing with zero force. This eliminates any potential error
due to entanglement between phonons and the internal
states of the ions.

We now examine the two-body phase induced in this
new scenario. The differential equation for phase is now:

φ̇ =
α2

2!2
f2(t)

ω

(ω2 − ν2)
cos2(νt) (5)

Removing the quickly varying component lets us replace
cos2(νt) with 1/2.

Returning the mode index, K, we find the overall phase
accumulated,

∑

K φK(T ), for a gate occurring over a time
0 to T does not depend on the phonon initial state. How-
ever, the internal states of the ions are affected by the
unitary exp(−i

∑

ij φijσz
i σz

j ) where the two-body phases
are given by

φij =
∑

λ

Sλ
ij

∫ T

0
(!fi(t) · !eλ)(!fj(t) · !eλ)dt (6)

The pulse-shape independent form factor is

Sλ
ij = −

∑

k

α2
k,λωk,λ

4!2(ν2 − ω2
k,λ)

Mik,λMjk,λ . (7)

(the polarization vectors !eK only depend on λ).

Fast carrier-modulated gate

Idea: modulate force fast w.r.t. phonons (fast-kick)
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using a variety of quantum communication techniques de-
veloped for quantum repeater protocols. When used in
conjunction with the deterministic phase gate developed
below and local single ion operations (performed, e.g.,
via Raman transitions), this will suffice for performing
large scale quantum algorithms [20] by using the remote
CNOT gate [25].

Modulated-carrier gate— A spatially inhomogeneous
laser detuned from the appropriate transitions between
internal (qubit) states of the ion produces a pondero-
motive force due to the gradient in its intensity. Using
an appropriate combination of polarizations and frequen-
cies, the sign of the force becomes dependent upon the
internal state of the ion, with the associated perturbation
to the system:

V =
∑

i

(!xi · !fi(t))σ
z
i (1)

where !xi is the displacement of ion i away from its equi-
librium position. As the ion displacements are coupled
(via phonons), the “push” leads to an effective σz

i σz
j in-

teraction. In Ref. 24, the authors used an adiabatic ap-
proach to remove any temperature dependence, which
relied on the finite gap present for the vertical (tightly
confined) direction in 2D crystals

We now introduce a simple variant of the fast-kick
“push” gate which allows us to use even the soft (lat-
eral) modes when their temperature is extremely high.
Our variant uses slow modulation of a fast, oscillating
state-dependent force. The oscillation averages any ion
motion to zero over the course of the gate, while the
in-phase oscillation of nearby ions leads to a non-trivial
phase evolution and the desired quantum gate between
ions in the crystal. In addition, as our gate allows for
non-trivial oscillation of ion positions in all three spatial
dimensions (versus only in the tightly confined direction
for the vertical gate), it can work using a single laser
beam and in three dimensional crystals.

It is instructive to recall the general approach to
“push” phase gates when in a complex crystal [18, 24].
We start by rewriting the hamiltonian of N interact-
ing ions to second order in displacement from the equi-
librium positions H =

∑

K !ωK â†
K âK , using normal-

mode coordinates indexed by K = {!k, λ} (the wavevec-
tor and polarization), !xi =

∑

K MiK!eK
αK√

2
(âK + â†

K).

The αK =
√

!/mωK are the oscillator ground state
lengths. We recall that the matrix M is orthogonal
(M tM = MM t = 1).

The perturbation V can now be written

V =
∑

K

αKfK(t)√
2

(â†
K + âK) (2)

where fK(t) is the state-dependent force pushing on
normal mode K defined via the transformaton M and
Eqn. 1.

The problem factorizes into 3N independent, driven
oscillators. For scenarios with limt→±∞f(t) = 0, the
oscillator evolution is given by the unitary transform
UK(t) = e−iφK(t) exp(βK â†

K − β∗
K â) where φK and βK

satisfy the differential equations [18], which are exact to
second order

β̇K = −iωKβK + i
αK

!
√

2
fK(t) (3)

φ̇K =
αK

!
√

2
fK(t)Re[βk(t)] . (4)

We now seek an approach which still maintains no net
change in displacement and no dependence of the overall
phase on phonon state, but can operate on time scales
on the order of ωK . We add a sinusodial variation to
the force (f(t) → cos(νt)f(t)). The carrier frequencies ν
must be fast with respect to ωK ; qualitatively, this av-
erages out any net displacement. If the modulation f(t)
is slow with respect to ν (but with no restriction with
respect to ωK), we can perform a similar adiabatic elim-
ination as above, and get a gate with the same desirable
properties that can operate non-trivially on arbitrarily
“soft” phonon modes at very high tempeatures.

For adiabatic elimination with respect to ν, we choose
an ansatz β = β+eiνt + βie−iνt (subscripts omitted for

clarity). Setting β̇ = 0 yields β± = αf(t)

2
√

2!(ω±ν)
. We find

the displacement of a normal mode induced by the gate is
proportional to the force applied, and can be made zero
independent of initial phonon state by starting and end-
ing with zero force. This eliminates any potential error
due to entanglement between phonons and the internal
states of the ions.

We now examine the two-body phase induced in this
new scenario. The differential equation for phase is now:

φ̇ =
α2

2!2
f2(t)

ω

(ω2 − ν2)
cos2(νt) (5)

Removing the quickly varying component lets us replace
cos2(νt) with 1/2.

Returning the mode index, K, we find the overall phase
accumulated,

∑

K φK(T ), for a gate occurring over a time
0 to T does not depend on the phonon initial state. How-
ever, the internal states of the ions are affected by the
unitary exp(−i

∑

ij φijσz
i σz

j ) where the two-body phases
are given by

φij =
∑

λ

Sλ
ij

∫ T

0
(!fi(t) · !eλ)(!fj(t) · !eλ)dt (6)

The pulse-shape independent form factor is

Sλ
ij = −

∑

k

α2
k,λωk,λ

4!2(ν2 − ω2
k,λ)

Mik,λMjk,λ . (7)

(the polarization vectors !eK only depend on λ).

Fast carrier-modulated gate

Idea: modulate force fast w.r.t. phonons (fast-kick)
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using a variety of quantum communication techniques de-
veloped for quantum repeater protocols. When used in
conjunction with the deterministic phase gate developed
below and local single ion operations (performed, e.g.,
via Raman transitions), this will suffice for performing
large scale quantum algorithms [20] by using the remote
CNOT gate [25].

Modulated-carrier gate— A spatially inhomogeneous
laser detuned from the appropriate transitions between
internal (qubit) states of the ion produces a pondero-
motive force due to the gradient in its intensity. Using
an appropriate combination of polarizations and frequen-
cies, the sign of the force becomes dependent upon the
internal state of the ion, with the associated perturbation
to the system:

V =
∑

i

(!xi · !fi(t))σ
z
i (1)

where !xi is the displacement of ion i away from its equi-
librium position. As the ion displacements are coupled
(via phonons), the “push” leads to an effective σz

i σz
j in-

teraction. In Ref. 24, the authors used an adiabatic ap-
proach to remove any temperature dependence, which
relied on the finite gap present for the vertical (tightly
confined) direction in 2D crystals

We now introduce a simple variant of the fast-kick
“push” gate which allows us to use even the soft (lat-
eral) modes when their temperature is extremely high.
Our variant uses slow modulation of a fast, oscillating
state-dependent force. The oscillation averages any ion
motion to zero over the course of the gate, while the
in-phase oscillation of nearby ions leads to a non-trivial
phase evolution and the desired quantum gate between
ions in the crystal. In addition, as our gate allows for
non-trivial oscillation of ion positions in all three spatial
dimensions (versus only in the tightly confined direction
for the vertical gate), it can work using a single laser
beam and in three dimensional crystals.

It is instructive to recall the general approach to
“push” phase gates when in a complex crystal [18, 24].
We start by rewriting the hamiltonian of N interact-
ing ions to second order in displacement from the equi-
librium positions H =

∑

K !ωK â†
K âK , using normal-

mode coordinates indexed by K = {!k, λ} (the wavevec-
tor and polarization), !xi =

∑

K MiK!eK
αK√

2
(âK + â†

K).

The αK =
√

!/mωK are the oscillator ground state
lengths. We recall that the matrix M is orthogonal
(M tM = MM t = 1).

The perturbation V can now be written

V =
∑

K

αKfK(t)√
2

(â†
K + âK) (2)

where fK(t) is the state-dependent force pushing on
normal mode K defined via the transformaton M and
Eqn. 1.

The problem factorizes into 3N independent, driven
oscillators. For scenarios with limt→±∞f(t) = 0, the
oscillator evolution is given by the unitary transform
UK(t) = e−iφK(t) exp(βK â†

K − β∗
K â) where φK and βK

satisfy the differential equations [18], which are exact to
second order

β̇K = −iωKβK + i
αK

!
√

2
fK(t) (3)

φ̇K =
αK

!
√

2
fK(t)Re[βk(t)] . (4)

We now seek an approach which still maintains no net
change in displacement and no dependence of the overall
phase on phonon state, but can operate on time scales
on the order of ωK . We add a sinusodial variation to
the force (f(t) → cos(νt)f(t)). The carrier frequencies ν
must be fast with respect to ωK ; qualitatively, this av-
erages out any net displacement. If the modulation f(t)
is slow with respect to ν (but with no restriction with
respect to ωK), we can perform a similar adiabatic elim-
ination as above, and get a gate with the same desirable
properties that can operate non-trivially on arbitrarily
“soft” phonon modes at very high tempeatures.

For adiabatic elimination with respect to ν, we choose
an ansatz β = β+eiνt + βie−iνt (subscripts omitted for

clarity). Setting β̇ = 0 yields β± = αf(t)

2
√

2!(ω±ν)
. We find

the displacement of a normal mode induced by the gate is
proportional to the force applied, and can be made zero
independent of initial phonon state by starting and end-
ing with zero force. This eliminates any potential error
due to entanglement between phonons and the internal
states of the ions.

We now examine the two-body phase induced in this
new scenario. The differential equation for phase is now:

φ̇ =
α2

2!2
f2(t)

ω

(ω2 − ν2)
cos2(νt) (5)

Removing the quickly varying component lets us replace
cos2(νt) with 1/2.

Returning the mode index, K, we find the overall phase
accumulated,

∑

K φK(T ), for a gate occurring over a time
0 to T does not depend on the phonon initial state. How-
ever, the internal states of the ions are affected by the
unitary exp(−i

∑

ij φijσz
i σz

j ) where the two-body phases
are given by

φij =
∑

λ

Sλ
ij

∫ T

0
(!fi(t) · !eλ)(!fj(t) · !eλ)dt (6)

The pulse-shape independent form factor is

Sλ
ij = −

∑

k

α2
k,λωk,λ

4!2(ν2 − ω2
k,λ)

Mik,λMjk,λ . (7)

(the polarization vectors !eK only depend on λ).

Fast carrier-modulated gate

Idea: modulate force fast w.r.t. phonons (fast-kick)
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using a variety of quantum communication techniques de-
veloped for quantum repeater protocols. When used in
conjunction with the deterministic phase gate developed
below and local single ion operations (performed, e.g.,
via Raman transitions), this will suffice for performing
large scale quantum algorithms [20] by using the remote
CNOT gate [25].

Modulated-carrier gate— A spatially inhomogeneous
laser detuned from the appropriate transitions between
internal (qubit) states of the ion produces a pondero-
motive force due to the gradient in its intensity. Using
an appropriate combination of polarizations and frequen-
cies, the sign of the force becomes dependent upon the
internal state of the ion, with the associated perturbation
to the system:

V =
∑

i

(!xi · !fi(t))σ
z
i (1)

where !xi is the displacement of ion i away from its equi-
librium position. As the ion displacements are coupled
(via phonons), the “push” leads to an effective σz

i σz
j in-

teraction. In Ref. 24, the authors used an adiabatic ap-
proach to remove any temperature dependence, which
relied on the finite gap present for the vertical (tightly
confined) direction in 2D crystals

We now introduce a simple variant of the fast-kick
“push” gate which allows us to use even the soft (lat-
eral) modes when their temperature is extremely high.
Our variant uses slow modulation of a fast, oscillating
state-dependent force. The oscillation averages any ion
motion to zero over the course of the gate, while the
in-phase oscillation of nearby ions leads to a non-trivial
phase evolution and the desired quantum gate between
ions in the crystal. In addition, as our gate allows for
non-trivial oscillation of ion positions in all three spatial
dimensions (versus only in the tightly confined direction
for the vertical gate), it can work using a single laser
beam and in three dimensional crystals.

It is instructive to recall the general approach to
“push” phase gates when in a complex crystal [18, 24].
We start by rewriting the hamiltonian of N interact-
ing ions to second order in displacement from the equi-
librium positions H =

∑

K !ωK â†
K âK , using normal-

mode coordinates indexed by K = {!k, λ} (the wavevec-
tor and polarization), !xi =

∑

K MiK!eK
αK√

2
(âK + â†

K).

The αK =
√

!/mωK are the oscillator ground state
lengths. We recall that the matrix M is orthogonal
(M tM = MM t = 1).

The perturbation V can now be written

V =
∑

K

αKfK(t)√
2

(â†
K + âK) (2)

where fK(t) is the state-dependent force pushing on
normal mode K defined via the transformaton M and
Eqn. 1.

The problem factorizes into 3N independent, driven
oscillators. For scenarios with limt→±∞f(t) = 0, the
oscillator evolution is given by the unitary transform
UK(t) = e−iφK(t) exp(βK â†

K − β∗
K â) where φK and βK

satisfy the differential equations [18], which are exact to
second order

β̇K = −iωKβK + i
αK

!
√

2
fK(t) (3)

φ̇K =
αK

!
√

2
fK(t)Re[βk(t)] . (4)

We now seek an approach which still maintains no net
change in displacement and no dependence of the overall
phase on phonon state, but can operate on time scales
on the order of ωK . We add a sinusodial variation to
the force (f(t) → cos(νt)f(t)). The carrier frequencies ν
must be fast with respect to ωK ; qualitatively, this av-
erages out any net displacement. If the modulation f(t)
is slow with respect to ν (but with no restriction with
respect to ωK), we can perform a similar adiabatic elim-
ination as above, and get a gate with the same desirable
properties that can operate non-trivially on arbitrarily
“soft” phonon modes at very high tempeatures.

For adiabatic elimination with respect to ν, we choose
an ansatz β = β+eiνt + βie−iνt (subscripts omitted for

clarity). Setting β̇ = 0 yields β± = αf(t)

2
√

2!(ω±ν)
. We find

the displacement of a normal mode induced by the gate is
proportional to the force applied, and can be made zero
independent of initial phonon state by starting and end-
ing with zero force. This eliminates any potential error
due to entanglement between phonons and the internal
states of the ions.

We now examine the two-body phase induced in this
new scenario. The differential equation for phase is now:

φ̇ =
α2

2!2
f2(t)

ω

(ω2 − ν2)
cos2(νt) (5)

Removing the quickly varying component lets us replace
cos2(νt) with 1/2.

Returning the mode index, K, we find the overall phase
accumulated,

∑

K φK(T ), for a gate occurring over a time
0 to T does not depend on the phonon initial state. How-
ever, the internal states of the ions are affected by the
unitary exp(−i

∑

ij φijσz
i σz

j ) where the two-body phases
are given by

φij =
∑

λ

Sλ
ij

∫ T

0
(!fi(t) · !eλ)(!fj(t) · !eλ)dt (6)

The pulse-shape independent form factor is

Sλ
ij = −

∑

k

α2
k,λωk,λ

4!2(ν2 − ω2
k,λ)

Mik,λMjk,λ . (7)

(the polarization vectors !eK only depend on λ).
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unitary exp(−i
∑

ij φijσz
i σz

j ) where the two-body phases
are given by

φij =
∑

λ

Sλ
ij

∫ T

0
(#fi(t) · #eλ)(#fj(t) · #eλ)dt (8)

The pulse-shape independent form factor is

S̃λ
ij = −

∑

k

α2
k,λωk,λ

4!2(ν2 − ω2
k,λ)

Mik,λMjk,λ . (9)

(the polarization vectors #eK only depend on λ).
Expanding in inverse powers of the large carrier fre-

quency, ν, we remark that the first term (O(ν−2)) is
proportional to

∑

k Mik,λMjk,λ = 0 (due to the orthog-
onality of the matrix M). [26] The first non-zero term
is

S̃λ
ij = −

1

4!mν4

∑

k

ω2
k,λMik,λMjk,λ + O(

1

ν6
) (10)

Compared to adiabatic gates, this modulated-carrier
push gate is inverted in sign and reduced in phase induced
by a factor (ω/ν)4/2, where for lateral gates, ω ∼ e2

!d is
a characteristic confinement energy for a single ion in
the crystal with lattice spacing d, and for vertical gates,
ω ∼ ωz.

We performed numerical simulations of our modulated-
carrier gate’s performance for a finite size Wigner crystal
(N = 147 shown in Fig. 2) to allow direct comparison to
the equivalent adiabatic gate and the proposed vertical
gate of Ref. [24]. Our simulations minimized the clas-
sical energy of the ions in a Penning trap to determine
the equilibrium configuration. Then, expanding to sec-
ond order in displacements from equilibrium, the normal
mode coordinates were found. The displacement βK and
phase φK were computed for each phonon mode, and the
fidelity calculated by considering the overlap of the fi-
nal state with the desired state, traced over the phonon
degrees of freedom. We find that for the same physical
parameters, the ratio of forces required for achieving a
π phase for the vertical gate and the fast carrier gate go
as (ωz/ν)2, consistent with the ratio between adiabatic
and fast carrier gates derived above. Thus, the fast car-
rier gate requires substantially less laser power for the
same conditions with negligible reduction in fidelity. Al-
ternatively, the gate time could be reduced, enhancing
the overall performance of quantum information proto-
cols. For specificity, setting ωxy = 200 kHz, ωz = 10
MHz, and a gate time τ = 5 µs, we find ν = 2.2 MHz
provides 1 − F < 10−5 with negligible heating.

Asymmetric entanglement generation— We now con-
sider limits and improvements to the standard entangle-
ment generation procedures. As it may be difficult to
bring a high numerical aperture lens near the Wigner
crystal (and similarly with a high-finesse cavity), we will
assume that our collection efficiency η # 1, where η is
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FIG. 2: (top) Phonon spectrum for vertical and lateral
phonons for a trap with N = 147 ions and ωz/ωxy = 50,
and (right) the associated Wigner crystal in position space.
(bottom) Results of numerical simulations of fidelity versus
temperature for the vertical (vertical phonon mode) gate of
Ref. [24] (red-dashed line) and for the fast carrier gate with
ν = 11ωxy between the center-most pair of ions. The inset
shows the fast carrier gate’s and the vertical gate’s forces on
one of the two ions over the gate time; both gates operate in
a time τ ∼ 1/ωxy . Anharmonic corrections to the fidelity are
not included here. We remark for this choice of parameters,
the vertical gate requires 20 times the force (and laser power)
of the fast carrier gate to achieve the same final π two-body
phase.

the probability that a photon emitted from an ion will
be detected on a photodetector. One approach for en-
tanglement generation with low collection efficiency is to
use state-dependent fluorescence (the 1 − E transition
with rate Γ) in a so-called one-click scheme. The scheme
takes a time (Γηp)−1, where p is the excitation probabil-
ity. The infidelity of this scheme is O(p), i.e., the higher
fidelity a pair one wishes to generate, the longer it takes.

We now describe improvements to the entanglement
generation rates by using a quantum processor unit (such
as a linear Paul trap) which is separate from the quantum
memory unit (our Wigner-crystal-based quantum hard
drive). Without loss of generality, we will assume that
the other ion may have a different, possibly higher col-
lection efficiency η′, for example for the second ion in a
linear Paul trap with a high finesse cavity [5, 21]. Thus,
an asymmetric entanglement generation procedure may
be beneficial. We consider a two-click scheme, starting
with an equally weighted superposition, |+〉 = |0〉 + |1〉.
Again, an optical π pulse produces photons from the 1−E

3

unitary exp(−i
∑

ij φijσz
i σz

j ) where the two-body phases
are given by

φij =
∑

λ

Sλ
ij

∫ T

0
(#fi(t) · #eλ)(#fj(t) · #eλ)dt (8)

The pulse-shape independent form factor is

S̃λ
ij = −

∑

k

α2
k,λωk,λ

4!2(ν2 − ω2
k,λ)

Mik,λMjk,λ . (9)

(the polarization vectors #eK only depend on λ).
Expanding in inverse powers of the large carrier fre-

quency, ν, we remark that the first term (O(ν−2)) is
proportional to

∑

k Mik,λMjk,λ = 0 (due to the orthog-
onality of the matrix M). [26] The first non-zero term
is

S̃λ
ij = −
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4!mν4

∑
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ω2
k,λMik,λMjk,λ + O(

1

ν6
) (10)

Compared to adiabatic gates, this modulated-carrier
push gate is inverted in sign and reduced in phase induced
by a factor (ω/ν)4/2, where for lateral gates, ω ∼ e2

!d is
a characteristic confinement energy for a single ion in
the crystal with lattice spacing d, and for vertical gates,
ω ∼ ωz.

We performed numerical simulations of our modulated-
carrier gate’s performance for a finite size Wigner crystal
(N = 147 shown in Fig. 2) to allow direct comparison to
the equivalent adiabatic gate and the proposed vertical
gate of Ref. [24]. Our simulations minimized the clas-
sical energy of the ions in a Penning trap to determine
the equilibrium configuration. Then, expanding to sec-
ond order in displacements from equilibrium, the normal
mode coordinates were found. The displacement βK and
phase φK were computed for each phonon mode, and the
fidelity calculated by considering the overlap of the fi-
nal state with the desired state, traced over the phonon
degrees of freedom. We find that for the same physical
parameters, the ratio of forces required for achieving a
π phase for the vertical gate and the fast carrier gate go
as (ωz/ν)2, consistent with the ratio between adiabatic
and fast carrier gates derived above. Thus, the fast car-
rier gate requires substantially less laser power for the
same conditions with negligible reduction in fidelity. Al-
ternatively, the gate time could be reduced, enhancing
the overall performance of quantum information proto-
cols. For specificity, setting ωxy = 200 kHz, ωz = 10
MHz, and a gate time τ = 5 µs, we find ν = 2.2 MHz
provides 1 − F < 10−5 with negligible heating.

Asymmetric entanglement generation— We now con-
sider limits and improvements to the standard entangle-
ment generation procedures. As it may be difficult to
bring a high numerical aperture lens near the Wigner
crystal (and similarly with a high-finesse cavity), we will
assume that our collection efficiency η # 1, where η is
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FIG. 2: (top) Phonon spectrum for vertical and lateral
phonons for a trap with N = 147 ions and ωz/ωxy = 50,
and (right) the associated Wigner crystal in position space.
(bottom) Results of numerical simulations of fidelity versus
temperature for the vertical (vertical phonon mode) gate of
Ref. [24] (red-dashed line) and for the fast carrier gate with
ν = 11ωxy between the center-most pair of ions. The inset
shows the fast carrier gate’s and the vertical gate’s forces on
one of the two ions over the gate time; both gates operate in
a time τ ∼ 1/ωxy . Anharmonic corrections to the fidelity are
not included here. We remark for this choice of parameters,
the vertical gate requires 20 times the force (and laser power)
of the fast carrier gate to achieve the same final π two-body
phase.

the probability that a photon emitted from an ion will
be detected on a photodetector. One approach for en-
tanglement generation with low collection efficiency is to
use state-dependent fluorescence (the 1 − E transition
with rate Γ) in a so-called one-click scheme. The scheme
takes a time (Γηp)−1, where p is the excitation probabil-
ity. The infidelity of this scheme is O(p), i.e., the higher
fidelity a pair one wishes to generate, the longer it takes.

We now describe improvements to the entanglement
generation rates by using a quantum processor unit (such
as a linear Paul trap) which is separate from the quantum
memory unit (our Wigner-crystal-based quantum hard
drive). Without loss of generality, we will assume that
the other ion may have a different, possibly higher col-
lection efficiency η′, for example for the second ion in a
linear Paul trap with a high finesse cavity [5, 21]. Thus,
an asymmetric entanglement generation procedure may
be beneficial. We consider a two-click scheme, starting
with an equally weighted superposition, |+〉 = |0〉 + |1〉.
Again, an optical π pulse produces photons from the 1−E
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Expanding in inverse powers of the large carrier fre-
quency, ν, we remark that the first term (O(ν−2)) is
proportional to

∑

k Mik,λMjk,λ = 0 (due to the orthog-
onality of the matrix M). [26] The first non-zero term
is O(ν−4). Thus, compared to adiabatic gates, this
modulated-carrier push gate is inverted in sign and re-
duced in phase induced by a factor (ω/ν)4/2, where for

lateral gates, ω ∼ e2

!d is a characteristic confinement en-
ergy for a single ion in the crystal with lattice spacing d,
and for vertical gates, ω ∼ ωz.

We performed numerical simulations of our modulated-
carrier gate’s performance for a finite size Wigner crystal
(N = 147 shown in Fig. 2) to allow direct comparison to
the equivalent adiabatic gate and the proposed vertical
gate of Ref. [24]. Our simulations minimized the clas-
sical energy of the ions in a Penning trap to determine
the equilibrium configuration. Then, expanding to sec-
ond order in displacements from equilibrium, the normal
mode coordinates were found. The displacement βK and
phase φK were computed for each phonon mode, and the
fidelity calculated by considering the overlap of the fi-
nal state with the desired state, traced over the phonon
degrees of freedom. We find that for the same physical
parameters, the ratio of forces required for achieving a
π phase for the vertical gate and the fast carrier gate go
as (ωz/ν)2, consistent with the ratio between adiabatic
and fast carrier gates derived above. Thus, the fast car-
rier gate requires substantially less laser power for the
same conditions with negligible reduction in fidelity. Al-
ternatively, the gate time could be reduced, enhancing
the overall performance of quantum information proto-
cols. For specificity, setting ωxy = 200 kHz, ωz = 10
MHz, and a gate time τ = 5 µs, we find ν = 2.2 MHz
provides 1 − F < 10−5 with negligible heating.

Asymmetric entanglement generation— We now con-
sider limits and improvements to the standard entangle-
ment generation procedures. As it may be difficult to
bring a high numerical aperture lens near the Wigner
crystal (and similarly with a high-finesse cavity), we will
assume that our collection efficiency η # 1, where η is
the probability that a photon emitted from an ion will
be detected on a photodetector. One approach for en-
tanglement generation with low collection efficiency is to
use state-dependent fluorescence (the 1 − E transition
with rate Γ) in a so-called one-click scheme. The scheme
takes a time (Γηp)−1, where p is the excitation probabil-
ity. The infidelity of this scheme is O(p), i.e., the higher
fidelity a pair one wishes to generate, the longer it takes.

We now describe improvements to the entanglement
generation rates by using a quantum processor unit (such
as a linear Paul trap) which is separate from the quantum
memory unit (our Wigner-crystal-based quantum hard
drive). Without loss of generality, we will assume that
the quantum processor unit may have a different, possi-
bly higher collection efficiency η′, such as in linear Paul
traps with high finesse cavities [5, 21]. Thus, an asym-
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FIG. 2: (top) Phonon spectrum for vertical and lateral
phonons for a trap with N = 147 ions and ωz/ωxy = 50,
and (right) the associated Wigner crystal in position space.
(bottom) Results of numerical simulations of fidelity versus
temperature for the vertical (vertical phonon mode) gate of
Ref. [24] (red-dashed line) and for the fast carrier gate with
ν = 11ωxy between the center-most pair of ions. The inset
shows the fast carrier gate’s and the vertical gate’s forces on
one of the two ions over the gate time; both gates operate in
a time τ ∼ 1/ωxy . Anharmonic corrections to the fidelity are
not included here. We remark for this choice of parameters,
the vertical gate requires 20 times the force (and laser power)
of the fast carrier gate to achieve the same final π two-body
phase.

metric entanglement generation procedure may be bene-
ficial. We consider a two-click scheme, starting with an
equally weighted superposition, |+〉 = |0〉+|1〉. Again, an
optical π pulse produces photons from the 1 − E transi-
tion, which interfere on a beam splitter. Without assum-
ing photon number resolving detectors, the state after
one “click” becomes

η′
(

√

η

η′ |01〉± |10〉
) (

√

η

η′ 〈01| ± 〈10|
)

+O(
√

η′)|11〉〈11|

(8)
To symmetrize the entangled state and simultaneously
remove the |11〉 component, a π pulse between the
metastable states (|1〉 ↔ |0〉) followed by repetition of
the above protocol results in a pure state |Φ+〉 = (|01〉±
|10〉)/

√
2. The overall procedure succeeds with proba-

bility ηη′, indicating that the time required is (Γηη′)−1.
However, unlike the single click scheme, above, the fi-
delity of the state can be high without a further increase
in generation time.

Thus, for large-scale computation, a central proces-

3

Expanding in inverse powers of the large carrier fre-
quency, ν, we remark that the first term (O(ν−2)) is
proportional to

∑

k Mik,λMjk,λ = 0 (due to the orthog-
onality of the matrix M). [26] The first non-zero term
is O(ν−4). Thus, compared to adiabatic gates, this
modulated-carrier push gate is inverted in sign and re-
duced in phase induced by a factor (ω/ν)4/2, where for

lateral gates, ω ∼ e2

!d is a characteristic confinement en-
ergy for a single ion in the crystal with lattice spacing d,
and for vertical gates, ω ∼ ωz.

We performed numerical simulations of our modulated-
carrier gate’s performance for a finite size Wigner crystal
(N = 147 shown in Fig. 2) to allow direct comparison to
the equivalent adiabatic gate and the proposed vertical
gate of Ref. [24]. Our simulations minimized the clas-
sical energy of the ions in a Penning trap to determine
the equilibrium configuration. Then, expanding to sec-
ond order in displacements from equilibrium, the normal
mode coordinates were found. The displacement βK and
phase φK were computed for each phonon mode, and the
fidelity calculated by considering the overlap of the fi-
nal state with the desired state, traced over the phonon
degrees of freedom. We find that for the same physical
parameters, the ratio of forces required for achieving a
π phase for the vertical gate and the fast carrier gate go
as (ωz/ν)2, consistent with the ratio between adiabatic
and fast carrier gates derived above. Thus, the fast car-
rier gate requires substantially less laser power for the
same conditions with negligible reduction in fidelity. Al-
ternatively, the gate time could be reduced, enhancing
the overall performance of quantum information proto-
cols. For specificity, setting ωxy = 200 kHz, ωz = 10
MHz, and a gate time τ = 5 µs, we find ν = 2.2 MHz
provides 1 − F < 10−5 with negligible heating.

Asymmetric entanglement generation— We now con-
sider limits and improvements to the standard entangle-
ment generation procedures. As it may be difficult to
bring a high numerical aperture lens near the Wigner
crystal (and similarly with a high-finesse cavity), we will
assume that our collection efficiency η # 1, where η is
the probability that a photon emitted from an ion will
be detected on a photodetector. One approach for en-
tanglement generation with low collection efficiency is to
use state-dependent fluorescence (the 1 − E transition
with rate Γ) in a so-called one-click scheme. The scheme
takes a time (Γηp)−1, where p is the excitation probabil-
ity. The infidelity of this scheme is O(p), i.e., the higher
fidelity a pair one wishes to generate, the longer it takes.

We now describe improvements to the entanglement
generation rates by using a quantum processor unit (such
as a linear Paul trap) which is separate from the quantum
memory unit (our Wigner-crystal-based quantum hard
drive). Without loss of generality, we will assume that
the quantum processor unit may have a different, possi-
bly higher collection efficiency η′, such as in linear Paul
traps with high finesse cavities [5, 21]. Thus, an asym-
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FIG. 2: (top) Phonon spectrum for vertical and lateral
phonons for a trap with N = 147 ions and ωz/ωxy = 50,
and (right) the associated Wigner crystal in position space.
(bottom) Results of numerical simulations of fidelity versus
temperature for the vertical (vertical phonon mode) gate of
Ref. [24] (red-dashed line) and for the fast carrier gate with
ν = 11ωxy between the center-most pair of ions. The inset
shows the fast carrier gate’s and the vertical gate’s forces on
one of the two ions over the gate time; both gates operate in
a time τ ∼ 1/ωxy . Anharmonic corrections to the fidelity are
not included here. We remark for this choice of parameters,
the vertical gate requires 20 times the force (and laser power)
of the fast carrier gate to achieve the same final π two-body
phase.

metric entanglement generation procedure may be bene-
ficial. We consider a two-click scheme, starting with an
equally weighted superposition, |+〉 = |0〉+|1〉. Again, an
optical π pulse produces photons from the 1 − E transi-
tion, which interfere on a beam splitter. Without assum-
ing photon number resolving detectors, the state after
one “click” becomes

η′
(

√

η

η′ |01〉± |10〉
) (

√

η

η′ 〈01| ± 〈10|
)

+O(
√

η′)|11〉〈11|

(8)
To symmetrize the entangled state and simultaneously
remove the |11〉 component, a π pulse between the
metastable states (|1〉 ↔ |0〉) followed by repetition of
the above protocol results in a pure state |Φ+〉 = (|01〉±
|10〉)/

√
2. The overall procedure succeeds with proba-

bility ηη′, indicating that the time required is (Γηη′)−1.
However, unlike the single click scheme, above, the fi-
delity of the state can be high without a further increase
in generation time.

Thus, for large-scale computation, a central proces-

[ Taylor & Calarco (0706.1951) ]



Asymmetric protocols for 
quantum register-based computation

Entanglement generation

Emitter

0 1

State-selective
transition 

(atom, ion, etc.)

3

Expanding in inverse powers of the large carrier fre-
quency, ν, we remark that the first term (O(ν−2)) is
proportional to

∑

k Mik,λMjk,λ = 0 (due to the orthog-
onality of the matrix M). [26] The first non-zero term
is O(ν−4). Thus, compared to adiabatic gates, this
modulated-carrier push gate is inverted in sign and re-
duced in phase induced by a factor (ω/ν)4/2, where for

lateral gates, ω ∼ e2

!d is a characteristic confinement en-
ergy for a single ion in the crystal with lattice spacing d,
and for vertical gates, ω ∼ ωz.

We performed numerical simulations of our modulated-
carrier gate’s performance for a finite size Wigner crystal
(N = 147 shown in Fig. 2) to allow direct comparison to
the equivalent adiabatic gate and the proposed vertical
gate of Ref. [24]. Our simulations minimized the clas-
sical energy of the ions in a Penning trap to determine
the equilibrium configuration. Then, expanding to sec-
ond order in displacements from equilibrium, the normal
mode coordinates were found. The displacement βK and
phase φK were computed for each phonon mode, and the
fidelity calculated by considering the overlap of the fi-
nal state with the desired state, traced over the phonon
degrees of freedom. We find that for the same physical
parameters, the ratio of forces required for achieving a
π phase for the vertical gate and the fast carrier gate go
as (ωz/ν)2, consistent with the ratio between adiabatic
and fast carrier gates derived above. Thus, the fast car-
rier gate requires substantially less laser power for the
same conditions with negligible reduction in fidelity. Al-
ternatively, the gate time could be reduced, enhancing
the overall performance of quantum information proto-
cols. For specificity, setting ωxy = 200 kHz, ωz = 10
MHz, and a gate time τ = 5 µs, we find ν = 2.2 MHz
provides 1 − F < 10−5 with negligible heating.

Asymmetric entanglement generation— We now con-
sider limits and improvements to the standard entangle-
ment generation procedures. As it may be difficult to
bring a high numerical aperture lens near the Wigner
crystal (and similarly with a high-finesse cavity), we will
assume that our collection efficiency η # 1, where η is
the probability that a photon emitted from an ion will
be detected on a photodetector. One approach for en-
tanglement generation with low collection efficiency is to
use state-dependent fluorescence (the 1 − E transition
with rate Γ) in a so-called one-click scheme. The scheme
takes a time (Γηp)−1, where p is the excitation probabil-
ity. The infidelity of this scheme is O(p), i.e., the higher
fidelity a pair one wishes to generate, the longer it takes.

We now describe improvements to the entanglement
generation rates by using a quantum processor unit (such
as a linear Paul trap) which is separate from the quantum
memory unit (our Wigner-crystal-based quantum hard
drive). Without loss of generality, we will assume that
the quantum processor unit may have a different, possi-
bly higher collection efficiency η′, such as in linear Paul
traps with high finesse cavities [5, 21]. Thus, an asym-
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FIG. 2: (top) Phonon spectrum for vertical and lateral
phonons for a trap with N = 147 ions and ωz/ωxy = 50,
and (right) the associated Wigner crystal in position space.
(bottom) Results of numerical simulations of fidelity versus
temperature for the vertical (vertical phonon mode) gate of
Ref. [24] (red-dashed line) and for the fast carrier gate with
ν = 11ωxy between the center-most pair of ions. The inset
shows the fast carrier gate’s and the vertical gate’s forces on
one of the two ions over the gate time; both gates operate in
a time τ ∼ 1/ωxy . Anharmonic corrections to the fidelity are
not included here. We remark for this choice of parameters,
the vertical gate requires 20 times the force (and laser power)
of the fast carrier gate to achieve the same final π two-body
phase.

metric entanglement generation procedure may be bene-
ficial. We consider a two-click scheme, starting with an
equally weighted superposition, |+〉 = |0〉+|1〉. Again, an
optical π pulse produces photons from the 1 − E transi-
tion, which interfere on a beam splitter. Without assum-
ing photon number resolving detectors, the state after
one “click” becomes

η′
(

√

η

η′ |01〉± |10〉
) (

√

η

η′ 〈01| ± 〈10|
)

+O(
√

η′)|11〉〈11|

(8)
To symmetrize the entangled state and simultaneously
remove the |11〉 component, a π pulse between the
metastable states (|1〉 ↔ |0〉) followed by repetition of
the above protocol results in a pure state |Φ+〉 = (|01〉±
|10〉)/

√
2. The overall procedure succeeds with proba-

bility ηη′, indicating that the time required is (Γηη′)−1.
However, unlike the single click scheme, above, the fi-
delity of the state can be high without a further increase
in generation time.

Thus, for large-scale computation, a central proces-

3

Expanding in inverse powers of the large carrier fre-
quency, ν, we remark that the first term (O(ν−2)) is
proportional to

∑

k Mik,λMjk,λ = 0 (due to the orthog-
onality of the matrix M). [26] The first non-zero term
is O(ν−4). Thus, compared to adiabatic gates, this
modulated-carrier push gate is inverted in sign and re-
duced in phase induced by a factor (ω/ν)4/2, where for

lateral gates, ω ∼ e2

!d is a characteristic confinement en-
ergy for a single ion in the crystal with lattice spacing d,
and for vertical gates, ω ∼ ωz.

We performed numerical simulations of our modulated-
carrier gate’s performance for a finite size Wigner crystal
(N = 147 shown in Fig. 2) to allow direct comparison to
the equivalent adiabatic gate and the proposed vertical
gate of Ref. [24]. Our simulations minimized the clas-
sical energy of the ions in a Penning trap to determine
the equilibrium configuration. Then, expanding to sec-
ond order in displacements from equilibrium, the normal
mode coordinates were found. The displacement βK and
phase φK were computed for each phonon mode, and the
fidelity calculated by considering the overlap of the fi-
nal state with the desired state, traced over the phonon
degrees of freedom. We find that for the same physical
parameters, the ratio of forces required for achieving a
π phase for the vertical gate and the fast carrier gate go
as (ωz/ν)2, consistent with the ratio between adiabatic
and fast carrier gates derived above. Thus, the fast car-
rier gate requires substantially less laser power for the
same conditions with negligible reduction in fidelity. Al-
ternatively, the gate time could be reduced, enhancing
the overall performance of quantum information proto-
cols. For specificity, setting ωxy = 200 kHz, ωz = 10
MHz, and a gate time τ = 5 µs, we find ν = 2.2 MHz
provides 1 − F < 10−5 with negligible heating.

Asymmetric entanglement generation— We now con-
sider limits and improvements to the standard entangle-
ment generation procedures. As it may be difficult to
bring a high numerical aperture lens near the Wigner
crystal (and similarly with a high-finesse cavity), we will
assume that our collection efficiency η # 1, where η is
the probability that a photon emitted from an ion will
be detected on a photodetector. One approach for en-
tanglement generation with low collection efficiency is to
use state-dependent fluorescence (the 1 − E transition
with rate Γ) in a so-called one-click scheme. The scheme
takes a time (Γηp)−1, where p is the excitation probabil-
ity. The infidelity of this scheme is O(p), i.e., the higher
fidelity a pair one wishes to generate, the longer it takes.

We now describe improvements to the entanglement
generation rates by using a quantum processor unit (such
as a linear Paul trap) which is separate from the quantum
memory unit (our Wigner-crystal-based quantum hard
drive). Without loss of generality, we will assume that
the quantum processor unit may have a different, possi-
bly higher collection efficiency η′, such as in linear Paul
traps with high finesse cavities [5, 21]. Thus, an asym-
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FIG. 2: (top) Phonon spectrum for vertical and lateral
phonons for a trap with N = 147 ions and ωz/ωxy = 50,
and (right) the associated Wigner crystal in position space.
(bottom) Results of numerical simulations of fidelity versus
temperature for the vertical (vertical phonon mode) gate of
Ref. [24] (red-dashed line) and for the fast carrier gate with
ν = 11ωxy between the center-most pair of ions. The inset
shows the fast carrier gate’s and the vertical gate’s forces on
one of the two ions over the gate time; both gates operate in
a time τ ∼ 1/ωxy . Anharmonic corrections to the fidelity are
not included here. We remark for this choice of parameters,
the vertical gate requires 20 times the force (and laser power)
of the fast carrier gate to achieve the same final π two-body
phase.

metric entanglement generation procedure may be bene-
ficial. We consider a two-click scheme, starting with an
equally weighted superposition, |+〉 = |0〉+|1〉. Again, an
optical π pulse produces photons from the 1 − E transi-
tion, which interfere on a beam splitter. Without assum-
ing photon number resolving detectors, the state after
one “click” becomes

η′
(

√

η

η′ |01〉± |10〉
) (

√

η

η′ 〈01| ± 〈10|
)

+O(
√

η′)|11〉〈11|

(8)
To symmetrize the entangled state and simultaneously
remove the |11〉 component, a π pulse between the
metastable states (|1〉 ↔ |0〉) followed by repetition of
the above protocol results in a pure state |Φ+〉 = (|01〉±
|10〉)/

√
2. The overall procedure succeeds with proba-

bility ηη′, indicating that the time required is (Γηη′)−1.
However, unlike the single click scheme, above, the fi-
delity of the state can be high without a further increase
in generation time.

Thus, for large-scale computation, a central proces-
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Expanding in inverse powers of the large carrier fre-
quency, ν, we remark that the first term (O(ν−2)) is
proportional to

∑

k Mik,λMjk,λ = 0 (due to the orthog-
onality of the matrix M). [26] The first non-zero term
is O(ν−4). Thus, compared to adiabatic gates, this
modulated-carrier push gate is inverted in sign and re-
duced in phase induced by a factor (ω/ν)4/2, where for

lateral gates, ω ∼ e2

!d is a characteristic confinement en-
ergy for a single ion in the crystal with lattice spacing d,
and for vertical gates, ω ∼ ωz.

We performed numerical simulations of our modulated-
carrier gate’s performance for a finite size Wigner crystal
(N = 147 shown in Fig. 2) to allow direct comparison to
the equivalent adiabatic gate and the proposed vertical
gate of Ref. [24]. Our simulations minimized the clas-
sical energy of the ions in a Penning trap to determine
the equilibrium configuration. Then, expanding to sec-
ond order in displacements from equilibrium, the normal
mode coordinates were found. The displacement βK and
phase φK were computed for each phonon mode, and the
fidelity calculated by considering the overlap of the fi-
nal state with the desired state, traced over the phonon
degrees of freedom. We find that for the same physical
parameters, the ratio of forces required for achieving a
π phase for the vertical gate and the fast carrier gate go
as (ωz/ν)2, consistent with the ratio between adiabatic
and fast carrier gates derived above. Thus, the fast car-
rier gate requires substantially less laser power for the
same conditions with negligible reduction in fidelity. Al-
ternatively, the gate time could be reduced, enhancing
the overall performance of quantum information proto-
cols. For specificity, setting ωxy = 200 kHz, ωz = 10
MHz, and a gate time τ = 5 µs, we find ν = 2.2 MHz
provides 1 − F < 10−5 with negligible heating.

Asymmetric entanglement generation— We now con-
sider limits and improvements to the standard entangle-
ment generation procedures. As it may be difficult to
bring a high numerical aperture lens near the Wigner
crystal (and similarly with a high-finesse cavity), we will
assume that our collection efficiency η # 1, where η is
the probability that a photon emitted from an ion will
be detected on a photodetector. One approach for en-
tanglement generation with low collection efficiency is to
use state-dependent fluorescence (the 1 − E transition
with rate Γ) in a so-called one-click scheme. The scheme
takes a time (Γηp)−1, where p is the excitation probabil-
ity. The infidelity of this scheme is O(p), i.e., the higher
fidelity a pair one wishes to generate, the longer it takes.

We now describe improvements to the entanglement
generation rates by using a quantum processor unit (such
as a linear Paul trap) which is separate from the quantum
memory unit (our Wigner-crystal-based quantum hard
drive). Without loss of generality, we will assume that
the quantum processor unit may have a different, possi-
bly higher collection efficiency η′, such as in linear Paul
traps with high finesse cavities [5, 21]. Thus, an asym-
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FIG. 2: (top) Phonon spectrum for vertical and lateral
phonons for a trap with N = 147 ions and ωz/ωxy = 50,
and (right) the associated Wigner crystal in position space.
(bottom) Results of numerical simulations of fidelity versus
temperature for the vertical (vertical phonon mode) gate of
Ref. [24] (red-dashed line) and for the fast carrier gate with
ν = 11ωxy between the center-most pair of ions. The inset
shows the fast carrier gate’s and the vertical gate’s forces on
one of the two ions over the gate time; both gates operate in
a time τ ∼ 1/ωxy . Anharmonic corrections to the fidelity are
not included here. We remark for this choice of parameters,
the vertical gate requires 20 times the force (and laser power)
of the fast carrier gate to achieve the same final π two-body
phase.

metric entanglement generation procedure may be bene-
ficial. We consider a two-click scheme, starting with an
equally weighted superposition, |+〉 = |0〉+|1〉. Again, an
optical π pulse produces photons from the 1 − E transi-
tion, which interfere on a beam splitter. Without assum-
ing photon number resolving detectors, the state after
one “click” becomes

η′
(

√

η

η′ |01〉± |10〉
) (

√

η

η′ 〈01| ± 〈10|
)

+O(
√

η′)|11〉〈11|

(8)
To symmetrize the entangled state and simultaneously
remove the |11〉 component, a π pulse between the
metastable states (|1〉 ↔ |0〉) followed by repetition of
the above protocol results in a pure state |Φ+〉 = (|01〉±
|10〉)/

√
2. The overall procedure succeeds with proba-

bility ηη′, indicating that the time required is (Γηη′)−1.
However, unlike the single click scheme, above, the fi-
delity of the state can be high without a further increase
in generation time.

Thus, for large-scale computation, a central proces-
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Expanding in inverse powers of the large carrier fre-
quency, ν, we remark that the first term (O(ν−2)) is
proportional to

∑

k Mik,λMjk,λ = 0 (due to the orthog-
onality of the matrix M). [26] The first non-zero term
is O(ν−4). Thus, compared to adiabatic gates, this
modulated-carrier push gate is inverted in sign and re-
duced in phase induced by a factor (ω/ν)4/2, where for

lateral gates, ω ∼ e2

!d is a characteristic confinement en-
ergy for a single ion in the crystal with lattice spacing d,
and for vertical gates, ω ∼ ωz.

We performed numerical simulations of our modulated-
carrier gate’s performance for a finite size Wigner crystal
(N = 147 shown in Fig. 2) to allow direct comparison to
the equivalent adiabatic gate and the proposed vertical
gate of Ref. [24]. Our simulations minimized the clas-
sical energy of the ions in a Penning trap to determine
the equilibrium configuration. Then, expanding to sec-
ond order in displacements from equilibrium, the normal
mode coordinates were found. The displacement βK and
phase φK were computed for each phonon mode, and the
fidelity calculated by considering the overlap of the fi-
nal state with the desired state, traced over the phonon
degrees of freedom. We find that for the same physical
parameters, the ratio of forces required for achieving a
π phase for the vertical gate and the fast carrier gate go
as (ωz/ν)2, consistent with the ratio between adiabatic
and fast carrier gates derived above. Thus, the fast car-
rier gate requires substantially less laser power for the
same conditions with negligible reduction in fidelity. Al-
ternatively, the gate time could be reduced, enhancing
the overall performance of quantum information proto-
cols. For specificity, setting ωxy = 200 kHz, ωz = 10
MHz, and a gate time τ = 5 µs, we find ν = 2.2 MHz
provides 1 − F < 10−5 with negligible heating.

Asymmetric entanglement generation— We now con-
sider limits and improvements to the standard entangle-
ment generation procedures. As it may be difficult to
bring a high numerical aperture lens near the Wigner
crystal (and similarly with a high-finesse cavity), we will
assume that our collection efficiency η # 1, where η is
the probability that a photon emitted from an ion will
be detected on a photodetector. One approach for en-
tanglement generation with low collection efficiency is to
use state-dependent fluorescence (the 1 − E transition
with rate Γ) in a so-called one-click scheme. The scheme
takes a time (Γηp)−1, where p is the excitation probabil-
ity. The infidelity of this scheme is O(p), i.e., the higher
fidelity a pair one wishes to generate, the longer it takes.

We now describe improvements to the entanglement
generation rates by using a quantum processor unit (such
as a linear Paul trap) which is separate from the quantum
memory unit (our Wigner-crystal-based quantum hard
drive). Without loss of generality, we will assume that
the quantum processor unit may have a different, possi-
bly higher collection efficiency η′, such as in linear Paul
traps with high finesse cavities [5, 21]. Thus, an asym-
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FIG. 2: (top) Phonon spectrum for vertical and lateral
phonons for a trap with N = 147 ions and ωz/ωxy = 50,
and (right) the associated Wigner crystal in position space.
(bottom) Results of numerical simulations of fidelity versus
temperature for the vertical (vertical phonon mode) gate of
Ref. [24] (red-dashed line) and for the fast carrier gate with
ν = 11ωxy between the center-most pair of ions. The inset
shows the fast carrier gate’s and the vertical gate’s forces on
one of the two ions over the gate time; both gates operate in
a time τ ∼ 1/ωxy . Anharmonic corrections to the fidelity are
not included here. We remark for this choice of parameters,
the vertical gate requires 20 times the force (and laser power)
of the fast carrier gate to achieve the same final π two-body
phase.

metric entanglement generation procedure may be bene-
ficial. We consider a two-click scheme, starting with an
equally weighted superposition, |+〉 = |0〉+|1〉. Again, an
optical π pulse produces photons from the 1 − E transi-
tion, which interfere on a beam splitter. Without assum-
ing photon number resolving detectors, the state after
one “click” becomes

η′
(

√

η

η′ |01〉± |10〉
) (

√

η

η′ 〈01| ± 〈10|
)

+O(
√

η′)|11〉〈11|

(8)
To symmetrize the entangled state and simultaneously
remove the |11〉 component, a π pulse between the
metastable states (|1〉 ↔ |0〉) followed by repetition of
the above protocol results in a pure state |Φ+〉 = (|01〉±
|10〉)/

√
2. The overall procedure succeeds with proba-

bility ηη′, indicating that the time required is (Γηη′)−1.
However, unlike the single click scheme, above, the fi-
delity of the state can be high without a further increase
in generation time.

Thus, for large-scale computation, a central proces-
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Expanding in inverse powers of the large carrier fre-
quency, ν, we remark that the first term (O(ν−2)) is
proportional to

∑

k Mik,λMjk,λ = 0 (due to the orthog-
onality of the matrix M). [26] The first non-zero term
is O(ν−4). Thus, compared to adiabatic gates, this
modulated-carrier push gate is inverted in sign and re-
duced in phase induced by a factor (ω/ν)4/2, where for

lateral gates, ω ∼ e2

!d is a characteristic confinement en-
ergy for a single ion in the crystal with lattice spacing d,
and for vertical gates, ω ∼ ωz.

We performed numerical simulations of our modulated-
carrier gate’s performance for a finite size Wigner crystal
(N = 147 shown in Fig. 2) to allow direct comparison to
the equivalent adiabatic gate and the proposed vertical
gate of Ref. [24]. Our simulations minimized the clas-
sical energy of the ions in a Penning trap to determine
the equilibrium configuration. Then, expanding to sec-
ond order in displacements from equilibrium, the normal
mode coordinates were found. The displacement βK and
phase φK were computed for each phonon mode, and the
fidelity calculated by considering the overlap of the fi-
nal state with the desired state, traced over the phonon
degrees of freedom. We find that for the same physical
parameters, the ratio of forces required for achieving a
π phase for the vertical gate and the fast carrier gate go
as (ωz/ν)2, consistent with the ratio between adiabatic
and fast carrier gates derived above. Thus, the fast car-
rier gate requires substantially less laser power for the
same conditions with negligible reduction in fidelity. Al-
ternatively, the gate time could be reduced, enhancing
the overall performance of quantum information proto-
cols. For specificity, setting ωxy = 200 kHz, ωz = 10
MHz, and a gate time τ = 5 µs, we find ν = 2.2 MHz
provides 1 − F < 10−5 with negligible heating.

Asymmetric entanglement generation— We now con-
sider limits and improvements to the standard entangle-
ment generation procedures. As it may be difficult to
bring a high numerical aperture lens near the Wigner
crystal (and similarly with a high-finesse cavity), we will
assume that our collection efficiency η # 1, where η is
the probability that a photon emitted from an ion will
be detected on a photodetector. One approach for en-
tanglement generation with low collection efficiency is to
use state-dependent fluorescence (the 1 − E transition
with rate Γ) in a so-called one-click scheme. The scheme
takes a time (Γηp)−1, where p is the excitation probabil-
ity. The infidelity of this scheme is O(p), i.e., the higher
fidelity a pair one wishes to generate, the longer it takes.

We now describe improvements to the entanglement
generation rates by using a quantum processor unit (such
as a linear Paul trap) which is separate from the quantum
memory unit (our Wigner-crystal-based quantum hard
drive). Without loss of generality, we will assume that
the quantum processor unit may have a different, possi-
bly higher collection efficiency η′, such as in linear Paul
traps with high finesse cavities [5, 21]. Thus, an asym-
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FIG. 2: (top) Phonon spectrum for vertical and lateral
phonons for a trap with N = 147 ions and ωz/ωxy = 50,
and (right) the associated Wigner crystal in position space.
(bottom) Results of numerical simulations of fidelity versus
temperature for the vertical (vertical phonon mode) gate of
Ref. [24] (red-dashed line) and for the fast carrier gate with
ν = 11ωxy between the center-most pair of ions. The inset
shows the fast carrier gate’s and the vertical gate’s forces on
one of the two ions over the gate time; both gates operate in
a time τ ∼ 1/ωxy . Anharmonic corrections to the fidelity are
not included here. We remark for this choice of parameters,
the vertical gate requires 20 times the force (and laser power)
of the fast carrier gate to achieve the same final π two-body
phase.

metric entanglement generation procedure may be bene-
ficial. We consider a two-click scheme, starting with an
equally weighted superposition, |+〉 = |0〉+|1〉. Again, an
optical π pulse produces photons from the 1 − E transi-
tion, which interfere on a beam splitter. Without assum-
ing photon number resolving detectors, the state after
one “click” becomes

η′
(
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η′ |01〉± |10〉
) (

√
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η′ 〈01| ± 〈10|
)

+O(
√

η′)|11〉〈11|

(8)
To symmetrize the entangled state and simultaneously
remove the |11〉 component, a π pulse between the
metastable states (|1〉 ↔ |0〉) followed by repetition of
the above protocol results in a pure state |Φ+〉 = (|01〉±
|10〉)/

√
2. The overall procedure succeeds with proba-

bility ηη′, indicating that the time required is (Γηη′)−1.
However, unlike the single click scheme, above, the fi-
delity of the state can be high without a further increase
in generation time.

Thus, for large-scale computation, a central proces-
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Expanding in inverse powers of the large carrier fre-
quency, ν, we remark that the first term (O(ν−2)) is
proportional to

∑

k Mik,λMjk,λ = 0 (due to the orthog-
onality of the matrix M). [26] The first non-zero term
is O(ν−4). Thus, compared to adiabatic gates, this
modulated-carrier push gate is inverted in sign and re-
duced in phase induced by a factor (ω/ν)4/2, where for

lateral gates, ω ∼ e2

!d is a characteristic confinement en-
ergy for a single ion in the crystal with lattice spacing d,
and for vertical gates, ω ∼ ωz.

We performed numerical simulations of our modulated-
carrier gate’s performance for a finite size Wigner crystal
(N = 147 shown in Fig. 2) to allow direct comparison to
the equivalent adiabatic gate and the proposed vertical
gate of Ref. [24]. Our simulations minimized the clas-
sical energy of the ions in a Penning trap to determine
the equilibrium configuration. Then, expanding to sec-
ond order in displacements from equilibrium, the normal
mode coordinates were found. The displacement βK and
phase φK were computed for each phonon mode, and the
fidelity calculated by considering the overlap of the fi-
nal state with the desired state, traced over the phonon
degrees of freedom. We find that for the same physical
parameters, the ratio of forces required for achieving a
π phase for the vertical gate and the fast carrier gate go
as (ωz/ν)2, consistent with the ratio between adiabatic
and fast carrier gates derived above. Thus, the fast car-
rier gate requires substantially less laser power for the
same conditions with negligible reduction in fidelity. Al-
ternatively, the gate time could be reduced, enhancing
the overall performance of quantum information proto-
cols. For specificity, setting ωxy = 200 kHz, ωz = 10
MHz, and a gate time τ = 5 µs, we find ν = 2.2 MHz
provides 1 − F < 10−5 with negligible heating.

Asymmetric entanglement generation— We now con-
sider limits and improvements to the standard entangle-
ment generation procedures. As it may be difficult to
bring a high numerical aperture lens near the Wigner
crystal (and similarly with a high-finesse cavity), we will
assume that our collection efficiency η # 1, where η is
the probability that a photon emitted from an ion will
be detected on a photodetector. One approach for en-
tanglement generation with low collection efficiency is to
use state-dependent fluorescence (the 1 − E transition
with rate Γ) in a so-called one-click scheme. The scheme
takes a time (Γηp)−1, where p is the excitation probabil-
ity. The infidelity of this scheme is O(p), i.e., the higher
fidelity a pair one wishes to generate, the longer it takes.

We now describe improvements to the entanglement
generation rates by using a quantum processor unit (such
as a linear Paul trap) which is separate from the quantum
memory unit (our Wigner-crystal-based quantum hard
drive). Without loss of generality, we will assume that
the quantum processor unit may have a different, possi-
bly higher collection efficiency η′, such as in linear Paul
traps with high finesse cavities [5, 21]. Thus, an asym-
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FIG. 2: (top) Phonon spectrum for vertical and lateral
phonons for a trap with N = 147 ions and ωz/ωxy = 50,
and (right) the associated Wigner crystal in position space.
(bottom) Results of numerical simulations of fidelity versus
temperature for the vertical (vertical phonon mode) gate of
Ref. [24] (red-dashed line) and for the fast carrier gate with
ν = 11ωxy between the center-most pair of ions. The inset
shows the fast carrier gate’s and the vertical gate’s forces on
one of the two ions over the gate time; both gates operate in
a time τ ∼ 1/ωxy . Anharmonic corrections to the fidelity are
not included here. We remark for this choice of parameters,
the vertical gate requires 20 times the force (and laser power)
of the fast carrier gate to achieve the same final π two-body
phase.

metric entanglement generation procedure may be bene-
ficial. We consider a two-click scheme, starting with an
equally weighted superposition, |+〉 = |0〉+|1〉. Again, an
optical π pulse produces photons from the 1 − E transi-
tion, which interfere on a beam splitter. Without assum-
ing photon number resolving detectors, the state after
one “click” becomes

η′
(

√

η

η′ |01〉± |10〉
) (

√

η

η′ 〈01| ± 〈10|
)

+O(
√

η′)|11〉〈11|

(8)
To symmetrize the entangled state and simultaneously
remove the |11〉 component, a π pulse between the
metastable states (|1〉 ↔ |0〉) followed by repetition of
the above protocol results in a pure state |Φ+〉 = (|01〉±
|10〉)/

√
2. The overall procedure succeeds with proba-

bility ηη′, indicating that the time required is (Γηη′)−1.
However, unlike the single click scheme, above, the fi-
delity of the state can be high without a further increase
in generation time.

Thus, for large-scale computation, a central proces-

[ Taylor & Calarco (0706.1951) ]



4

transition, which interfere on a beam splitter. Without
assuming photon number resolving detectors, the state
after one “click” becomes

η′
(

√

η

η′ |01〉± |10〉
) (

√

η

η′ 〈01| ± 〈10|
)

+O(
√

η′)|11〉〈11|

(11)
To symmetrize the entangled state and simultaneously
remove the |11〉 component, a π pulse between the
metastable states (|1〉 ↔ |0〉) followed by repetition of
the above protocol results in a pure state |Φ+〉 = (|01〉±
|10〉)/

√
2. The overall procedure succeeds with proba-

bility ηη′, indicating that the time required is (Γηη′)−1.
However, unlike the single click scheme, above, the fi-
delity of the state can be high without a further increase
in generation time.

Thus, for large-scale computation, a central proces-
sor unit with high collection efficiency allows for high-
fidelity gates between elements of the “hard drive” mem-
ory on a timescale 2/Γηη′ (see Ref. 20 for further im-
provements). For concreteness, we take a radiative decay
rate of Γ = (2π)10 MHz, η = 10−3 (confocal approach
with low numerical aperture lens), and desired infidelity
1 − F < 10−4. Entanglement generation between two
such ions would take a time ∼ 10 ms or longer; in con-
trast, for η′ ∼ 0.1, using the intermediate quantum pro-
cessor leads to entanglement generation between proces-
sor and both ions in a time of order 100 µs. This is
comparable to the phase gate operation times described
above.

Quantum cluster state generation— We now consider
a simpler approach that takes of the Coulomb interac-
tions in the lattice to generate elements of a cluster state
for measurement-based computation. While extending
this to fault-tolerant computation requires quasi-3D crys-
tals [22, 23], it nonetheless is a useful starting point for
eliminating the quantum processor element.

More specifically, the goal is to obtain a weighted-
graph phase

U ≡ exp
(

i
∑

ij

|1〉i 〈1|⊗ |1〉j 〈1|ϑij

)

, (12)

where ϑij = π between nearest neighbors on a square
lattice, and it is zero otherwise. On a triangular lattice
like the one available in many-ion Penning traps, this can
be achieved if ϑij is made to vanish along one side of each
lattice cell, and to equal π on the other two. The basic
idea here is to obtain this via a push gate acting on all
three cell vertices at the same time, possibly with a laser
swept at constant velocity through the cell itself, to take
advantage of the uniform circular motion of the lattice.

We start by considering a focused laser beam of waist
σ (in units of the lattice length ρ) adiabatically swept at
constant velocity v through the Wigner crystal, along a
direction parallel to one of the lattice vectors (Fig. 3),
at half the height of a triangular cell. The effect of this

FIG. 3: A laser is swept adiabatically from left to right, lead-
ing to a weighted graph state with different phases for solid
and dashed lines. A laser is then swept adiabatically from
lower left to upper right, leading to additional phase on two
of three links in each triangle (solid black) versus the remain-
ing link (large dashed). With proper settings, the solid black
phase is (2n + 1)π while the large dashed phase is (2n)π.

sweep is, apart from a global single-qubit rotation, to
generate a weighted-graph phase as in Eq. (12), where
ϑij takes value εθ(ω) on the cell side that is parallel to
the sweep direction, and θ(ω) on the other two sides, with

ε = e−3/(8σ2)(11 − 8σ2)/(σ2 + 8), while

θ(ω) =
Ω4

0

ω2∆2

α4

ρ4

q2

!ε0v

e−1/(2σ2)

√
8πσ

(

1

σ2
+

1

8

)

, (13)

where α =
√

!/(mω), Ω0 is the peak Rabi frequency
corresponding to the center of the laser beam, ∆ is its
detuning from the ion’s internal transition, and q is the
electron charge. This procedure would be immune from
phononic decoherence only if the sweep is adiabatic with
respect to the lowest phonon frequency. However, it can
be made much faster by applying the fast carrier mod-
ulation described above. In this case the semiclassical
calculation of Eq. (13) is no longer valid, but the discus-
sion of Eq. (10) shows that the resulting phase is simply
−θ(ν)/2. A cluster state is then obtained by making ε
vanish via an appropriate choice of the laser waist (nu-
merically, σ ≈ 1.1726), while tuning θ(ν)/2 to π by ad-
justing the other experimental parameters. Care needs
to be taken to ensure a sweep having a given distance ξ
from the trap center and velocity v in the rotating crys-
tal’s frame. To this end we apply to the laser, initially
focused at a distance d from the center, a displacement
δdξ(t) = {δxξ(t), δyξ(t)} of the form

δxξ(t) = [d − ξ/ cos(Ωt)]Θ(χ − |Ωt|) , (14)

δyξ(t) = ξ[Ωt tan(χ)/χ − tan(Ωt)]Θ(χ − |Ωt|) ,(15)

where χ ≡ arccos(ξ/d) and Ω is the crystal angular fre-
quency.

The resulting cluster state is universal for computa-
tion. In addition, we can exploit the rotation of the
Wigner crystal in the Penning trap to make dynamic gen-
eration of a cluster state, necessary for arbitrary length
and fault tolerant computation [22, 23]. Measurements
and initialization of new qubits for addition to the clus-
ter occur immediately after and before the entanglement
generation stage, respectively.

This approach should be constrasted with the quantum
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Expanding in inverse powers of the large carrier fre-
quency, ν, we remark that the first term (O(ν−2)) is
proportional to

∑

k Mik,λMjk,λ = 0 (due to the orthog-
onality of the matrix M). [26] The first non-zero term
is O(ν−4). Thus, compared to adiabatic gates, this
modulated-carrier push gate is inverted in sign and re-
duced in phase induced by a factor (ω/ν)4/2, where for

lateral gates, ω ∼ e2

!d is a characteristic confinement en-
ergy for a single ion in the crystal with lattice spacing d,
and for vertical gates, ω ∼ ωz.

We performed numerical simulations of our modulated-
carrier gate’s performance for a finite size Wigner crystal
(N = 147 shown in Fig. 2) to allow direct comparison to
the equivalent adiabatic gate and the proposed vertical
gate of Ref. [24]. Our simulations minimized the clas-
sical energy of the ions in a Penning trap to determine
the equilibrium configuration. Then, expanding to sec-
ond order in displacements from equilibrium, the normal
mode coordinates were found. The displacement βK and
phase φK were computed for each phonon mode, and the
fidelity calculated by considering the overlap of the fi-
nal state with the desired state, traced over the phonon
degrees of freedom. We find that for the same physical
parameters, the ratio of forces required for achieving a
π phase for the vertical gate and the fast carrier gate go
as (ωz/ν)2, consistent with the ratio between adiabatic
and fast carrier gates derived above. Thus, the fast car-
rier gate requires substantially less laser power for the
same conditions with negligible reduction in fidelity. Al-
ternatively, the gate time could be reduced, enhancing
the overall performance of quantum information proto-
cols. For specificity, setting ωxy = 200 kHz, ωz = 10
MHz, and a gate time τ = 5 µs, we find ν = 2.2 MHz
provides 1 − F < 10−5 with negligible heating.

Asymmetric entanglement generation— We now con-
sider limits and improvements to the standard entangle-
ment generation procedures. As it may be difficult to
bring a high numerical aperture lens near the Wigner
crystal (and similarly with a high-finesse cavity), we will
assume that our collection efficiency η # 1, where η is
the probability that a photon emitted from an ion will
be detected on a photodetector. One approach for en-
tanglement generation with low collection efficiency is to
use state-dependent fluorescence (the 1 − E transition
with rate Γ) in a so-called one-click scheme. The scheme
takes a time (Γηp)−1, where p is the excitation probabil-
ity. The infidelity of this scheme is O(p), i.e., the higher
fidelity a pair one wishes to generate, the longer it takes.

We now describe improvements to the entanglement
generation rates by using a quantum processor unit (such
as a linear Paul trap) which is separate from the quantum
memory unit (our Wigner-crystal-based quantum hard
drive). Without loss of generality, we will assume that
the quantum processor unit may have a different, possi-
bly higher collection efficiency η′, such as in linear Paul
traps with high finesse cavities [5, 21]. Thus, an asym-
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FIG. 2: (top) Phonon spectrum for vertical and lateral
phonons for a trap with N = 147 ions and ωz/ωxy = 50,
and (right) the associated Wigner crystal in position space.
(bottom) Results of numerical simulations of fidelity versus
temperature for the vertical (vertical phonon mode) gate of
Ref. [24] (red-dashed line) and for the fast carrier gate with
ν = 11ωxy between the center-most pair of ions. The inset
shows the fast carrier gate’s and the vertical gate’s forces on
one of the two ions over the gate time; both gates operate in
a time τ ∼ 1/ωxy . Anharmonic corrections to the fidelity are
not included here. We remark for this choice of parameters,
the vertical gate requires 20 times the force (and laser power)
of the fast carrier gate to achieve the same final π two-body
phase.

metric entanglement generation procedure may be bene-
ficial. We consider a two-click scheme, starting with an
equally weighted superposition, |+〉 = |0〉+|1〉. Again, an
optical π pulse produces photons from the 1 − E transi-
tion, which interfere on a beam splitter. Without assum-
ing photon number resolving detectors, the state after
one “click” becomes

η′
(

√

η

η′ |01〉± |10〉
) (

√

η

η′ 〈01| ± 〈10|
)

+O(
√

η′)|11〉〈11|

(8)
To symmetrize the entangled state and simultaneously
remove the |11〉 component, a π pulse between the
metastable states (|1〉 ↔ |0〉) followed by repetition of
the above protocol results in a pure state |Φ+〉 = (|01〉±
|10〉)/

√
2. The overall procedure succeeds with proba-

bility ηη′, indicating that the time required is (Γηη′)−1.
However, unlike the single click scheme, above, the fi-
delity of the state can be high without a further increase
in generation time.

Thus, for large-scale computation, a central proces-
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Expanding in inverse powers of the large carrier fre-
quency, ν, we remark that the first term (O(ν−2)) is
proportional to

∑

k Mik,λMjk,λ = 0 (due to the orthog-
onality of the matrix M). [26] The first non-zero term
is O(ν−4). Thus, compared to adiabatic gates, this
modulated-carrier push gate is inverted in sign and re-
duced in phase induced by a factor (ω/ν)4/2, where for

lateral gates, ω ∼ e2

!d is a characteristic confinement en-
ergy for a single ion in the crystal with lattice spacing d,
and for vertical gates, ω ∼ ωz.

We performed numerical simulations of our modulated-
carrier gate’s performance for a finite size Wigner crystal
(N = 147 shown in Fig. 2) to allow direct comparison to
the equivalent adiabatic gate and the proposed vertical
gate of Ref. [24]. Our simulations minimized the clas-
sical energy of the ions in a Penning trap to determine
the equilibrium configuration. Then, expanding to sec-
ond order in displacements from equilibrium, the normal
mode coordinates were found. The displacement βK and
phase φK were computed for each phonon mode, and the
fidelity calculated by considering the overlap of the fi-
nal state with the desired state, traced over the phonon
degrees of freedom. We find that for the same physical
parameters, the ratio of forces required for achieving a
π phase for the vertical gate and the fast carrier gate go
as (ωz/ν)2, consistent with the ratio between adiabatic
and fast carrier gates derived above. Thus, the fast car-
rier gate requires substantially less laser power for the
same conditions with negligible reduction in fidelity. Al-
ternatively, the gate time could be reduced, enhancing
the overall performance of quantum information proto-
cols. For specificity, setting ωxy = 200 kHz, ωz = 10
MHz, and a gate time τ = 5 µs, we find ν = 2.2 MHz
provides 1 − F < 10−5 with negligible heating.

Asymmetric entanglement generation— We now con-
sider limits and improvements to the standard entangle-
ment generation procedures. As it may be difficult to
bring a high numerical aperture lens near the Wigner
crystal (and similarly with a high-finesse cavity), we will
assume that our collection efficiency η # 1, where η is
the probability that a photon emitted from an ion will
be detected on a photodetector. One approach for en-
tanglement generation with low collection efficiency is to
use state-dependent fluorescence (the 1 − E transition
with rate Γ) in a so-called one-click scheme. The scheme
takes a time (Γηp)−1, where p is the excitation probabil-
ity. The infidelity of this scheme is O(p), i.e., the higher
fidelity a pair one wishes to generate, the longer it takes.

We now describe improvements to the entanglement
generation rates by using a quantum processor unit (such
as a linear Paul trap) which is separate from the quantum
memory unit (our Wigner-crystal-based quantum hard
drive). Without loss of generality, we will assume that
the quantum processor unit may have a different, possi-
bly higher collection efficiency η′, such as in linear Paul
traps with high finesse cavities [5, 21]. Thus, an asym-
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FIG. 2: (top) Phonon spectrum for vertical and lateral
phonons for a trap with N = 147 ions and ωz/ωxy = 50,
and (right) the associated Wigner crystal in position space.
(bottom) Results of numerical simulations of fidelity versus
temperature for the vertical (vertical phonon mode) gate of
Ref. [24] (red-dashed line) and for the fast carrier gate with
ν = 11ωxy between the center-most pair of ions. The inset
shows the fast carrier gate’s and the vertical gate’s forces on
one of the two ions over the gate time; both gates operate in
a time τ ∼ 1/ωxy . Anharmonic corrections to the fidelity are
not included here. We remark for this choice of parameters,
the vertical gate requires 20 times the force (and laser power)
of the fast carrier gate to achieve the same final π two-body
phase.

metric entanglement generation procedure may be bene-
ficial. We consider a two-click scheme, starting with an
equally weighted superposition, |+〉 = |0〉+|1〉. Again, an
optical π pulse produces photons from the 1 − E transi-
tion, which interfere on a beam splitter. Without assum-
ing photon number resolving detectors, the state after
one “click” becomes

η′
(

√

η

η′ |01〉± |10〉
) (

√

η

η′ 〈01| ± 〈10|
)

+O(
√

η′)|11〉〈11|

(8)
To symmetrize the entangled state and simultaneously
remove the |11〉 component, a π pulse between the
metastable states (|1〉 ↔ |0〉) followed by repetition of
the above protocol results in a pure state |Φ+〉 = (|01〉±
|10〉)/

√
2. The overall procedure succeeds with proba-

bility ηη′, indicating that the time required is (Γηη′)−1.
However, unlike the single click scheme, above, the fi-
delity of the state can be high without a further increase
in generation time.

Thus, for large-scale computation, a central proces-
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transition, which interfere on a beam splitter. Without
assuming photon number resolving detectors, the state
after one “click” becomes

η′
(

√

η

η′ |01〉± |10〉
) (

√

η

η′ 〈01| ± 〈10|
)

+O(
√

η′)|11〉〈11|

(11)
To symmetrize the entangled state and simultaneously
remove the |11〉 component, a π pulse between the
metastable states (|1〉 ↔ |0〉) followed by repetition of
the above protocol results in a pure state |Φ+〉 = (|01〉±
|10〉)/

√
2. The overall procedure succeeds with proba-

bility ηη′, indicating that the time required is (Γηη′)−1.
However, unlike the single click scheme, above, the fi-
delity of the state can be high without a further increase
in generation time.

Thus, for large-scale computation, a central proces-
sor unit with high collection efficiency allows for high-
fidelity gates between elements of the “hard drive” mem-
ory on a timescale 2/Γηη′ (see Ref. 20 for further im-
provements). For concreteness, we take a radiative decay
rate of Γ = (2π)10 MHz, η = 10−3 (confocal approach
with low numerical aperture lens), and desired infidelity
1 − F < 10−4. Entanglement generation between two
such ions would take a time ∼ 10 ms or longer; in con-
trast, for η′ ∼ 0.1, using the intermediate quantum pro-
cessor leads to entanglement generation between proces-
sor and both ions in a time of order 100 µs. This is
comparable to the phase gate operation times described
above.

Quantum cluster state generation— We now consider
a simpler approach that takes of the Coulomb interac-
tions in the lattice to generate elements of a cluster state
for measurement-based computation. While extending
this to fault-tolerant computation requires quasi-3D crys-
tals [22, 23], it nonetheless is a useful starting point for
eliminating the quantum processor element.

More specifically, the goal is to obtain a weighted-
graph phase

U ≡ exp
(

i
∑

ij

|1〉i 〈1|⊗ |1〉j 〈1|ϑij

)

, (12)

where ϑij = π between nearest neighbors on a square
lattice, and it is zero otherwise. On a triangular lattice
like the one available in many-ion Penning traps, this can
be achieved if ϑij is made to vanish along one side of each
lattice cell, and to equal π on the other two. The basic
idea here is to obtain this via a push gate acting on all
three cell vertices at the same time, possibly with a laser
swept at constant velocity through the cell itself, to take
advantage of the uniform circular motion of the lattice.

We start by considering a focused laser beam of waist
σ (in units of the lattice length ρ) adiabatically swept at
constant velocity v through the Wigner crystal, along a
direction parallel to one of the lattice vectors (Fig. 3),
at half the height of a triangular cell. The effect of this

FIG. 3: A laser is swept adiabatically from left to right, lead-
ing to a weighted graph state with different phases for solid
and dashed lines. A laser is then swept adiabatically from
lower left to upper right, leading to additional phase on two
of three links in each triangle (solid black) versus the remain-
ing link (large dashed). With proper settings, the solid black
phase is (2n + 1)π while the large dashed phase is (2n)π.

sweep is, apart from a global single-qubit rotation, to
generate a weighted-graph phase as in Eq. (12), where
ϑij takes value εθ(ω) on the cell side that is parallel to
the sweep direction, and θ(ω) on the other two sides, with

ε = e−3/(8σ2)(11 − 8σ2)/(σ2 + 8), while

θ(ω) =
Ω4

0

ω2∆2

α4

ρ4

q2

!ε0v

e−1/(2σ2)

√
8πσ

(

1

σ2
+

1

8

)

, (13)

where α =
√

!/(mω), Ω0 is the peak Rabi frequency
corresponding to the center of the laser beam, ∆ is its
detuning from the ion’s internal transition, and q is the
electron charge. This procedure would be immune from
phononic decoherence only if the sweep is adiabatic with
respect to the lowest phonon frequency. However, it can
be made much faster by applying the fast carrier mod-
ulation described above. In this case the semiclassical
calculation of Eq. (13) is no longer valid, but the discus-
sion of Eq. (10) shows that the resulting phase is simply
−θ(ν)/2. A cluster state is then obtained by making ε
vanish via an appropriate choice of the laser waist (nu-
merically, σ ≈ 1.1726), while tuning θ(ν)/2 to π by ad-
justing the other experimental parameters. Care needs
to be taken to ensure a sweep having a given distance ξ
from the trap center and velocity v in the rotating crys-
tal’s frame. To this end we apply to the laser, initially
focused at a distance d from the center, a displacement
δdξ(t) = {δxξ(t), δyξ(t)} of the form

δxξ(t) = [d − ξ/ cos(Ωt)]Θ(χ − |Ωt|) , (14)

δyξ(t) = ξ[Ωt tan(χ)/χ − tan(Ωt)]Θ(χ − |Ωt|) ,(15)

where χ ≡ arccos(ξ/d) and Ω is the crystal angular fre-
quency.

The resulting cluster state is universal for computa-
tion. In addition, we can exploit the rotation of the
Wigner crystal in the Penning trap to make dynamic gen-
eration of a cluster state, necessary for arbitrary length
and fault tolerant computation [22, 23]. Measurements
and initialization of new qubits for addition to the clus-
ter occur immediately after and before the entanglement
generation stage, respectively.

This approach should be constrasted with the quantum
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Expanding in inverse powers of the large carrier fre-
quency, ν, we remark that the first term (O(ν−2)) is
proportional to

∑

k Mik,λMjk,λ = 0 (due to the orthog-
onality of the matrix M). [26] The first non-zero term
is O(ν−4). Thus, compared to adiabatic gates, this
modulated-carrier push gate is inverted in sign and re-
duced in phase induced by a factor (ω/ν)4/2, where for

lateral gates, ω ∼ e2

!d is a characteristic confinement en-
ergy for a single ion in the crystal with lattice spacing d,
and for vertical gates, ω ∼ ωz.

We performed numerical simulations of our modulated-
carrier gate’s performance for a finite size Wigner crystal
(N = 147 shown in Fig. 2) to allow direct comparison to
the equivalent adiabatic gate and the proposed vertical
gate of Ref. [24]. Our simulations minimized the clas-
sical energy of the ions in a Penning trap to determine
the equilibrium configuration. Then, expanding to sec-
ond order in displacements from equilibrium, the normal
mode coordinates were found. The displacement βK and
phase φK were computed for each phonon mode, and the
fidelity calculated by considering the overlap of the fi-
nal state with the desired state, traced over the phonon
degrees of freedom. We find that for the same physical
parameters, the ratio of forces required for achieving a
π phase for the vertical gate and the fast carrier gate go
as (ωz/ν)2, consistent with the ratio between adiabatic
and fast carrier gates derived above. Thus, the fast car-
rier gate requires substantially less laser power for the
same conditions with negligible reduction in fidelity. Al-
ternatively, the gate time could be reduced, enhancing
the overall performance of quantum information proto-
cols. For specificity, setting ωxy = 200 kHz, ωz = 10
MHz, and a gate time τ = 5 µs, we find ν = 2.2 MHz
provides 1 − F < 10−5 with negligible heating.

Asymmetric entanglement generation— We now con-
sider limits and improvements to the standard entangle-
ment generation procedures. As it may be difficult to
bring a high numerical aperture lens near the Wigner
crystal (and similarly with a high-finesse cavity), we will
assume that our collection efficiency η # 1, where η is
the probability that a photon emitted from an ion will
be detected on a photodetector. One approach for en-
tanglement generation with low collection efficiency is to
use state-dependent fluorescence (the 1 − E transition
with rate Γ) in a so-called one-click scheme. The scheme
takes a time (Γηp)−1, where p is the excitation probabil-
ity. The infidelity of this scheme is O(p), i.e., the higher
fidelity a pair one wishes to generate, the longer it takes.

We now describe improvements to the entanglement
generation rates by using a quantum processor unit (such
as a linear Paul trap) which is separate from the quantum
memory unit (our Wigner-crystal-based quantum hard
drive). Without loss of generality, we will assume that
the quantum processor unit may have a different, possi-
bly higher collection efficiency η′, such as in linear Paul
traps with high finesse cavities [5, 21]. Thus, an asym-
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FIG. 2: (top) Phonon spectrum for vertical and lateral
phonons for a trap with N = 147 ions and ωz/ωxy = 50,
and (right) the associated Wigner crystal in position space.
(bottom) Results of numerical simulations of fidelity versus
temperature for the vertical (vertical phonon mode) gate of
Ref. [24] (red-dashed line) and for the fast carrier gate with
ν = 11ωxy between the center-most pair of ions. The inset
shows the fast carrier gate’s and the vertical gate’s forces on
one of the two ions over the gate time; both gates operate in
a time τ ∼ 1/ωxy . Anharmonic corrections to the fidelity are
not included here. We remark for this choice of parameters,
the vertical gate requires 20 times the force (and laser power)
of the fast carrier gate to achieve the same final π two-body
phase.

metric entanglement generation procedure may be bene-
ficial. We consider a two-click scheme, starting with an
equally weighted superposition, |+〉 = |0〉+|1〉. Again, an
optical π pulse produces photons from the 1 − E transi-
tion, which interfere on a beam splitter. Without assum-
ing photon number resolving detectors, the state after
one “click” becomes

η′
(

√

η

η′ |01〉± |10〉
) (

√

η

η′ 〈01| ± 〈10|
)

+O(
√

η′)|11〉〈11|

(8)
To symmetrize the entangled state and simultaneously
remove the |11〉 component, a π pulse between the
metastable states (|1〉 ↔ |0〉) followed by repetition of
the above protocol results in a pure state |Φ+〉 = (|01〉±
|10〉)/

√
2. The overall procedure succeeds with proba-

bility ηη′, indicating that the time required is (Γηη′)−1.
However, unlike the single click scheme, above, the fi-
delity of the state can be high without a further increase
in generation time.

Thus, for large-scale computation, a central proces-

3

Expanding in inverse powers of the large carrier fre-
quency, ν, we remark that the first term (O(ν−2)) is
proportional to

∑

k Mik,λMjk,λ = 0 (due to the orthog-
onality of the matrix M). [26] The first non-zero term
is O(ν−4). Thus, compared to adiabatic gates, this
modulated-carrier push gate is inverted in sign and re-
duced in phase induced by a factor (ω/ν)4/2, where for

lateral gates, ω ∼ e2

!d is a characteristic confinement en-
ergy for a single ion in the crystal with lattice spacing d,
and for vertical gates, ω ∼ ωz.

We performed numerical simulations of our modulated-
carrier gate’s performance for a finite size Wigner crystal
(N = 147 shown in Fig. 2) to allow direct comparison to
the equivalent adiabatic gate and the proposed vertical
gate of Ref. [24]. Our simulations minimized the clas-
sical energy of the ions in a Penning trap to determine
the equilibrium configuration. Then, expanding to sec-
ond order in displacements from equilibrium, the normal
mode coordinates were found. The displacement βK and
phase φK were computed for each phonon mode, and the
fidelity calculated by considering the overlap of the fi-
nal state with the desired state, traced over the phonon
degrees of freedom. We find that for the same physical
parameters, the ratio of forces required for achieving a
π phase for the vertical gate and the fast carrier gate go
as (ωz/ν)2, consistent with the ratio between adiabatic
and fast carrier gates derived above. Thus, the fast car-
rier gate requires substantially less laser power for the
same conditions with negligible reduction in fidelity. Al-
ternatively, the gate time could be reduced, enhancing
the overall performance of quantum information proto-
cols. For specificity, setting ωxy = 200 kHz, ωz = 10
MHz, and a gate time τ = 5 µs, we find ν = 2.2 MHz
provides 1 − F < 10−5 with negligible heating.

Asymmetric entanglement generation— We now con-
sider limits and improvements to the standard entangle-
ment generation procedures. As it may be difficult to
bring a high numerical aperture lens near the Wigner
crystal (and similarly with a high-finesse cavity), we will
assume that our collection efficiency η # 1, where η is
the probability that a photon emitted from an ion will
be detected on a photodetector. One approach for en-
tanglement generation with low collection efficiency is to
use state-dependent fluorescence (the 1 − E transition
with rate Γ) in a so-called one-click scheme. The scheme
takes a time (Γηp)−1, where p is the excitation probabil-
ity. The infidelity of this scheme is O(p), i.e., the higher
fidelity a pair one wishes to generate, the longer it takes.

We now describe improvements to the entanglement
generation rates by using a quantum processor unit (such
as a linear Paul trap) which is separate from the quantum
memory unit (our Wigner-crystal-based quantum hard
drive). Without loss of generality, we will assume that
the quantum processor unit may have a different, possi-
bly higher collection efficiency η′, such as in linear Paul
traps with high finesse cavities [5, 21]. Thus, an asym-
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FIG. 2: (top) Phonon spectrum for vertical and lateral
phonons for a trap with N = 147 ions and ωz/ωxy = 50,
and (right) the associated Wigner crystal in position space.
(bottom) Results of numerical simulations of fidelity versus
temperature for the vertical (vertical phonon mode) gate of
Ref. [24] (red-dashed line) and for the fast carrier gate with
ν = 11ωxy between the center-most pair of ions. The inset
shows the fast carrier gate’s and the vertical gate’s forces on
one of the two ions over the gate time; both gates operate in
a time τ ∼ 1/ωxy . Anharmonic corrections to the fidelity are
not included here. We remark for this choice of parameters,
the vertical gate requires 20 times the force (and laser power)
of the fast carrier gate to achieve the same final π two-body
phase.

metric entanglement generation procedure may be bene-
ficial. We consider a two-click scheme, starting with an
equally weighted superposition, |+〉 = |0〉+|1〉. Again, an
optical π pulse produces photons from the 1 − E transi-
tion, which interfere on a beam splitter. Without assum-
ing photon number resolving detectors, the state after
one “click” becomes

η′
(

√

η

η′ |01〉± |10〉
) (

√

η

η′ 〈01| ± 〈10|
)

+O(
√

η′)|11〉〈11|

(8)
To symmetrize the entangled state and simultaneously
remove the |11〉 component, a π pulse between the
metastable states (|1〉 ↔ |0〉) followed by repetition of
the above protocol results in a pure state |Φ+〉 = (|01〉±
|10〉)/

√
2. The overall procedure succeeds with proba-

bility ηη′, indicating that the time required is (Γηη′)−1.
However, unlike the single click scheme, above, the fi-
delity of the state can be high without a further increase
in generation time.

Thus, for large-scale computation, a central proces-
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transition, which interfere on a beam splitter. Without
assuming photon number resolving detectors, the state
after one “click” becomes

η′
(

√

η

η′ |01〉± |10〉
) (

√

η

η′ 〈01| ± 〈10|
)

+O(
√

η′)|11〉〈11|

(11)
To symmetrize the entangled state and simultaneously
remove the |11〉 component, a π pulse between the
metastable states (|1〉 ↔ |0〉) followed by repetition of
the above protocol results in a pure state |Φ+〉 = (|01〉±
|10〉)/

√
2. The overall procedure succeeds with proba-

bility ηη′, indicating that the time required is (Γηη′)−1.
However, unlike the single click scheme, above, the fi-
delity of the state can be high without a further increase
in generation time.

Thus, for large-scale computation, a central proces-
sor unit with high collection efficiency allows for high-
fidelity gates between elements of the “hard drive” mem-
ory on a timescale 2/Γηη′ (see Ref. 20 for further im-
provements). For concreteness, we take a radiative decay
rate of Γ = (2π)10 MHz, η = 10−3 (confocal approach
with low numerical aperture lens), and desired infidelity
1 − F < 10−4. Entanglement generation between two
such ions would take a time ∼ 10 ms or longer; in con-
trast, for η′ ∼ 0.1, using the intermediate quantum pro-
cessor leads to entanglement generation between proces-
sor and both ions in a time of order 100 µs. This is
comparable to the phase gate operation times described
above.

Quantum cluster state generation— We now consider
a simpler approach that takes of the Coulomb interac-
tions in the lattice to generate elements of a cluster state
for measurement-based computation. While extending
this to fault-tolerant computation requires quasi-3D crys-
tals [22, 23], it nonetheless is a useful starting point for
eliminating the quantum processor element.

More specifically, the goal is to obtain a weighted-
graph phase

U ≡ exp
(

i
∑

ij

|1〉i 〈1|⊗ |1〉j 〈1|ϑij

)

, (12)

where ϑij = π between nearest neighbors on a square
lattice, and it is zero otherwise. On a triangular lattice
like the one available in many-ion Penning traps, this can
be achieved if ϑij is made to vanish along one side of each
lattice cell, and to equal π on the other two. The basic
idea here is to obtain this via a push gate acting on all
three cell vertices at the same time, possibly with a laser
swept at constant velocity through the cell itself, to take
advantage of the uniform circular motion of the lattice.

We start by considering a focused laser beam of waist
σ (in units of the lattice length ρ) adiabatically swept at
constant velocity v through the Wigner crystal, along a
direction parallel to one of the lattice vectors (Fig. 3),
at half the height of a triangular cell. The effect of this

FIG. 3: A laser is swept adiabatically from left to right, lead-
ing to a weighted graph state with different phases for solid
and dashed lines. A laser is then swept adiabatically from
lower left to upper right, leading to additional phase on two
of three links in each triangle (solid black) versus the remain-
ing link (large dashed). With proper settings, the solid black
phase is (2n + 1)π while the large dashed phase is (2n)π.

sweep is, apart from a global single-qubit rotation, to
generate a weighted-graph phase as in Eq. (12), where
ϑij takes value εθ(ω) on the cell side that is parallel to
the sweep direction, and θ(ω) on the other two sides, with

ε = e−3/(8σ2)(11 − 8σ2)/(σ2 + 8), while

θ(ω) =
Ω4

0

ω2∆2

α4

ρ4

q2

!ε0v

e−1/(2σ2)

√
8πσ

(

1

σ2
+

1

8

)

, (13)

where α =
√

!/(mω), Ω0 is the peak Rabi frequency
corresponding to the center of the laser beam, ∆ is its
detuning from the ion’s internal transition, and q is the
electron charge. This procedure would be immune from
phononic decoherence only if the sweep is adiabatic with
respect to the lowest phonon frequency. However, it can
be made much faster by applying the fast carrier mod-
ulation described above. In this case the semiclassical
calculation of Eq. (13) is no longer valid, but the discus-
sion of Eq. (10) shows that the resulting phase is simply
−θ(ν)/2. A cluster state is then obtained by making ε
vanish via an appropriate choice of the laser waist (nu-
merically, σ ≈ 1.1726), while tuning θ(ν)/2 to π by ad-
justing the other experimental parameters. Care needs
to be taken to ensure a sweep having a given distance ξ
from the trap center and velocity v in the rotating crys-
tal’s frame. To this end we apply to the laser, initially
focused at a distance d from the center, a displacement
δdξ(t) = {δxξ(t), δyξ(t)} of the form

δxξ(t) = [d − ξ/ cos(Ωt)]Θ(χ − |Ωt|) , (14)

δyξ(t) = ξ[Ωt tan(χ)/χ − tan(Ωt)]Θ(χ − |Ωt|) ,(15)

where χ ≡ arccos(ξ/d) and Ω is the crystal angular fre-
quency.

The resulting cluster state is universal for computa-
tion. In addition, we can exploit the rotation of the
Wigner crystal in the Penning trap to make dynamic gen-
eration of a cluster state, necessary for arbitrary length
and fault tolerant computation [22, 23]. Measurements
and initialization of new qubits for addition to the clus-
ter occur immediately after and before the entanglement
generation stage, respectively.

This approach should be constrasted with the quantum
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Expanding in inverse powers of the large carrier fre-
quency, ν, we remark that the first term (O(ν−2)) is
proportional to

∑

k Mik,λMjk,λ = 0 (due to the orthog-
onality of the matrix M). [26] The first non-zero term
is O(ν−4). Thus, compared to adiabatic gates, this
modulated-carrier push gate is inverted in sign and re-
duced in phase induced by a factor (ω/ν)4/2, where for

lateral gates, ω ∼ e2

!d is a characteristic confinement en-
ergy for a single ion in the crystal with lattice spacing d,
and for vertical gates, ω ∼ ωz.

We performed numerical simulations of our modulated-
carrier gate’s performance for a finite size Wigner crystal
(N = 147 shown in Fig. 2) to allow direct comparison to
the equivalent adiabatic gate and the proposed vertical
gate of Ref. [24]. Our simulations minimized the clas-
sical energy of the ions in a Penning trap to determine
the equilibrium configuration. Then, expanding to sec-
ond order in displacements from equilibrium, the normal
mode coordinates were found. The displacement βK and
phase φK were computed for each phonon mode, and the
fidelity calculated by considering the overlap of the fi-
nal state with the desired state, traced over the phonon
degrees of freedom. We find that for the same physical
parameters, the ratio of forces required for achieving a
π phase for the vertical gate and the fast carrier gate go
as (ωz/ν)2, consistent with the ratio between adiabatic
and fast carrier gates derived above. Thus, the fast car-
rier gate requires substantially less laser power for the
same conditions with negligible reduction in fidelity. Al-
ternatively, the gate time could be reduced, enhancing
the overall performance of quantum information proto-
cols. For specificity, setting ωxy = 200 kHz, ωz = 10
MHz, and a gate time τ = 5 µs, we find ν = 2.2 MHz
provides 1 − F < 10−5 with negligible heating.

Asymmetric entanglement generation— We now con-
sider limits and improvements to the standard entangle-
ment generation procedures. As it may be difficult to
bring a high numerical aperture lens near the Wigner
crystal (and similarly with a high-finesse cavity), we will
assume that our collection efficiency η # 1, where η is
the probability that a photon emitted from an ion will
be detected on a photodetector. One approach for en-
tanglement generation with low collection efficiency is to
use state-dependent fluorescence (the 1 − E transition
with rate Γ) in a so-called one-click scheme. The scheme
takes a time (Γηp)−1, where p is the excitation probabil-
ity. The infidelity of this scheme is O(p), i.e., the higher
fidelity a pair one wishes to generate, the longer it takes.

We now describe improvements to the entanglement
generation rates by using a quantum processor unit (such
as a linear Paul trap) which is separate from the quantum
memory unit (our Wigner-crystal-based quantum hard
drive). Without loss of generality, we will assume that
the quantum processor unit may have a different, possi-
bly higher collection efficiency η′, such as in linear Paul
traps with high finesse cavities [5, 21]. Thus, an asym-
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FIG. 2: (top) Phonon spectrum for vertical and lateral
phonons for a trap with N = 147 ions and ωz/ωxy = 50,
and (right) the associated Wigner crystal in position space.
(bottom) Results of numerical simulations of fidelity versus
temperature for the vertical (vertical phonon mode) gate of
Ref. [24] (red-dashed line) and for the fast carrier gate with
ν = 11ωxy between the center-most pair of ions. The inset
shows the fast carrier gate’s and the vertical gate’s forces on
one of the two ions over the gate time; both gates operate in
a time τ ∼ 1/ωxy . Anharmonic corrections to the fidelity are
not included here. We remark for this choice of parameters,
the vertical gate requires 20 times the force (and laser power)
of the fast carrier gate to achieve the same final π two-body
phase.

metric entanglement generation procedure may be bene-
ficial. We consider a two-click scheme, starting with an
equally weighted superposition, |+〉 = |0〉+|1〉. Again, an
optical π pulse produces photons from the 1 − E transi-
tion, which interfere on a beam splitter. Without assum-
ing photon number resolving detectors, the state after
one “click” becomes

η′
(

√

η

η′ |01〉± |10〉
) (

√

η

η′ 〈01| ± 〈10|
)

+O(
√

η′)|11〉〈11|

(8)
To symmetrize the entangled state and simultaneously
remove the |11〉 component, a π pulse between the
metastable states (|1〉 ↔ |0〉) followed by repetition of
the above protocol results in a pure state |Φ+〉 = (|01〉±
|10〉)/

√
2. The overall procedure succeeds with proba-

bility ηη′, indicating that the time required is (Γηη′)−1.
However, unlike the single click scheme, above, the fi-
delity of the state can be high without a further increase
in generation time.

Thus, for large-scale computation, a central proces-
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Expanding in inverse powers of the large carrier fre-
quency, ν, we remark that the first term (O(ν−2)) is
proportional to

∑

k Mik,λMjk,λ = 0 (due to the orthog-
onality of the matrix M). [26] The first non-zero term
is O(ν−4). Thus, compared to adiabatic gates, this
modulated-carrier push gate is inverted in sign and re-
duced in phase induced by a factor (ω/ν)4/2, where for

lateral gates, ω ∼ e2

!d is a characteristic confinement en-
ergy for a single ion in the crystal with lattice spacing d,
and for vertical gates, ω ∼ ωz.

We performed numerical simulations of our modulated-
carrier gate’s performance for a finite size Wigner crystal
(N = 147 shown in Fig. 2) to allow direct comparison to
the equivalent adiabatic gate and the proposed vertical
gate of Ref. [24]. Our simulations minimized the clas-
sical energy of the ions in a Penning trap to determine
the equilibrium configuration. Then, expanding to sec-
ond order in displacements from equilibrium, the normal
mode coordinates were found. The displacement βK and
phase φK were computed for each phonon mode, and the
fidelity calculated by considering the overlap of the fi-
nal state with the desired state, traced over the phonon
degrees of freedom. We find that for the same physical
parameters, the ratio of forces required for achieving a
π phase for the vertical gate and the fast carrier gate go
as (ωz/ν)2, consistent with the ratio between adiabatic
and fast carrier gates derived above. Thus, the fast car-
rier gate requires substantially less laser power for the
same conditions with negligible reduction in fidelity. Al-
ternatively, the gate time could be reduced, enhancing
the overall performance of quantum information proto-
cols. For specificity, setting ωxy = 200 kHz, ωz = 10
MHz, and a gate time τ = 5 µs, we find ν = 2.2 MHz
provides 1 − F < 10−5 with negligible heating.

Asymmetric entanglement generation— We now con-
sider limits and improvements to the standard entangle-
ment generation procedures. As it may be difficult to
bring a high numerical aperture lens near the Wigner
crystal (and similarly with a high-finesse cavity), we will
assume that our collection efficiency η # 1, where η is
the probability that a photon emitted from an ion will
be detected on a photodetector. One approach for en-
tanglement generation with low collection efficiency is to
use state-dependent fluorescence (the 1 − E transition
with rate Γ) in a so-called one-click scheme. The scheme
takes a time (Γηp)−1, where p is the excitation probabil-
ity. The infidelity of this scheme is O(p), i.e., the higher
fidelity a pair one wishes to generate, the longer it takes.

We now describe improvements to the entanglement
generation rates by using a quantum processor unit (such
as a linear Paul trap) which is separate from the quantum
memory unit (our Wigner-crystal-based quantum hard
drive). Without loss of generality, we will assume that
the quantum processor unit may have a different, possi-
bly higher collection efficiency η′, such as in linear Paul
traps with high finesse cavities [5, 21]. Thus, an asym-
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FIG. 2: (top) Phonon spectrum for vertical and lateral
phonons for a trap with N = 147 ions and ωz/ωxy = 50,
and (right) the associated Wigner crystal in position space.
(bottom) Results of numerical simulations of fidelity versus
temperature for the vertical (vertical phonon mode) gate of
Ref. [24] (red-dashed line) and for the fast carrier gate with
ν = 11ωxy between the center-most pair of ions. The inset
shows the fast carrier gate’s and the vertical gate’s forces on
one of the two ions over the gate time; both gates operate in
a time τ ∼ 1/ωxy . Anharmonic corrections to the fidelity are
not included here. We remark for this choice of parameters,
the vertical gate requires 20 times the force (and laser power)
of the fast carrier gate to achieve the same final π two-body
phase.

metric entanglement generation procedure may be bene-
ficial. We consider a two-click scheme, starting with an
equally weighted superposition, |+〉 = |0〉+|1〉. Again, an
optical π pulse produces photons from the 1 − E transi-
tion, which interfere on a beam splitter. Without assum-
ing photon number resolving detectors, the state after
one “click” becomes

η′
(

√

η

η′ |01〉± |10〉
) (

√

η

η′ 〈01| ± 〈10|
)

+O(
√

η′)|11〉〈11|

(8)
To symmetrize the entangled state and simultaneously
remove the |11〉 component, a π pulse between the
metastable states (|1〉 ↔ |0〉) followed by repetition of
the above protocol results in a pure state |Φ+〉 = (|01〉±
|10〉)/

√
2. The overall procedure succeeds with proba-

bility ηη′, indicating that the time required is (Γηη′)−1.
However, unlike the single click scheme, above, the fi-
delity of the state can be high without a further increase
in generation time.

Thus, for large-scale computation, a central proces-
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Atomic systems in regular lattices are intriguing systems for implementing ideas in quantum
simulation and information processing. Focusing on ionic systems, which can be laser cooled to form
2- and 3-D Wigner crystals in Penning traps, we find a robust and simple approach to engineering
non-trivial 2-body phase terms sufficient for universal quantum computation. We then consider a
non-local architecture using an asymmetric entanglement generation procedure between a Penning
trap system and well-established linear Paul trap designs, and extensions of our approach to the
fast generation of large cluster-states.

PACS numbers:

Quantum information processing using trapped ions
has been the focus of tremendous theoretical [1–3] and
experimental [4–8] advances over the past decade. The
coherence times of ions can sometimes exceed seconds,
while manipulation times and entanglement time scales
can be as fast as tens of microseconds. However, so far
approaches to scaling these systems to many ions have
met with tremendous difficulties, both in linear Paul
trap systems, where increasing numbers of ions leads to
tremendous control difficulties, and in proposed trap ar-
rays, where “shuttling” of quantum information using
gate electrodes would allow for a scalable architecture [9].
A possible solution is to separate the processing elements
(processor qubits) from the memory elements [10].

For ion-based schemes, a natural system to consider as
a quantum memory is a Wigner crystal of ions in a Pen-
ning trap [11]. Such crystals can be robustly formed [12],
and are dynamically stable, with tens of thousands of
ions in a given trap. In addition, the strength of the
Coulomb interaction leads to large separations between
individual ions, making individual addressing of ions in
such lattices a distinct possibility, in contrast to present
quantum control in neutral atom and polar molecule lat-
tices [13, 14].

In this letter we develop an approach to building a
quantum memory and large entangled states that takes
full advantage of the advances in ion trap technology for
building large Wigner crystals of ions in Penning traps.
Using a modulated-carrier “push” gate adapted from lin-
ear ion trap quantum computing schemes [15–19], we find
a fast but adiabatic method for building small clusters
of entanglement which is insensitive to thermal phonons
in 2D and 3D Wigner crystals. Non-deterministic en-
tanglement generation between distant ions suggests a
processor (linear Paul trap) and memory (2D Wigner
crystal) architecture based upon a quantum register ap-
proach [20], where the low photon collection efficiency
from ions in the memory is offset by an asymmetric en-
tanglement generation scheme using a weak cavity cou-
pled to ions in the processor [5, 21]. Finally, we take ad-

Processor 
(Paul trap)

Memory 
(Penning 

trap)

Interconnect
(beam splitter 
+ detectors)

a) b)

0

1

E

FIG. 1: a) Schematic of a quantum processor (such as a linear
Paul trap) coupled via a high finesse cavity to a photodetector
system to allow interference with photons from an ion Wigner
crystal in a Penning trap nearby. b) Level structure of an
ion, with Raman transitions allowed between two metastable
qubit states (0 and 1) and a cycling transition at a different
frequency for 1 only to allow state-dependent flouresence.

vantage of some of the unique features of penning traps,
such as rotation of the crystal, to provide simplifications
in the necessary hardware to implement these ideas in 2D
Wigner crystals. We further show that such a quantum
memory device can also be used directly for cluster state
quantum computation, though fault-tolerance requires
extensions of the approach to quasi-3D crystals [22, 23].
Our approach follows recent work (Ref. 24) on perform-
ing quantum gates in 2D Wigner crystals.

We start by considering a 2D or 3D Wigner crystal of
ions, rotating in a Penning trap [11] with harmonic con-
finement with frequencies ωxy (in the lateral directions)
and ωz (in the vertical direction). With characteristic
ion spacings ∼ 10 µm, tightly focused lasers allow for
individual addressing of ions (Fig. 1). Laser cooling can
reduce the temperature ≈ 1 mK, yielding on the order of
102 − 103 phonons in lateral modes. We will assume the
coherence time of the memory states to be much longer
than any other time scale in the problem, and thus mem-
ory errors can be neglected. Non-deterministic entangle-
ment generation between two ions can be accomplished
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transition, which interfere on a beam splitter. Without
assuming photon number resolving detectors, the state
after one “click” becomes

η′
(

√

η

η′ |01〉± |10〉
) (

√

η

η′ 〈01| ± 〈10|
)

+O(
√

η′)|11〉〈11|

(11)
To symmetrize the entangled state and simultaneously
remove the |11〉 component, a π pulse between the
metastable states (|1〉 ↔ |0〉) followed by repetition of
the above protocol results in a pure state |Φ+〉 = (|01〉±
|10〉)/

√
2. The overall procedure succeeds with proba-

bility ηη′, indicating that the time required is (Γηη′)−1.
However, unlike the single click scheme, above, the fi-
delity of the state can be high without a further increase
in generation time.

Thus, for large-scale computation, a central proces-
sor unit with high collection efficiency allows for high-
fidelity gates between elements of the “hard drive” mem-
ory on a timescale 2/Γηη′ (see Ref. 20 for further im-
provements). For concreteness, we take a radiative decay
rate of Γ = (2π)10 MHz, η = 10−3 (confocal approach
with low numerical aperture lens), and desired infidelity
1 − F < 10−4. Entanglement generation between two
such ions would take a time ∼ 10 ms or longer; in con-
trast, for η′ ∼ 0.1, using the intermediate quantum pro-
cessor leads to entanglement generation between proces-
sor and both ions in a time of order 100 µs. This is
comparable to the phase gate operation times described
above.

Quantum cluster state generation— We now consider
a simpler approach that takes of the Coulomb interac-
tions in the lattice to generate elements of a cluster state
for measurement-based computation. While extending
this to fault-tolerant computation requires quasi-3D crys-
tals [22, 23], it nonetheless is a useful starting point for
eliminating the quantum processor element.

More specifically, the goal is to obtain a weighted-
graph phase

U ≡ exp
(

i
∑

ij

|1〉i 〈1|⊗ |1〉j 〈1|ϑij

)

, (12)

where ϑij = π between nearest neighbors on a square
lattice, and it is zero otherwise. On a triangular lattice
like the one available in many-ion Penning traps, this can
be achieved if ϑij is made to vanish along one side of each
lattice cell, and to equal π on the other two. The basic
idea here is to obtain this via a push gate acting on all
three cell vertices at the same time, possibly with a laser
swept at constant velocity through the cell itself, to take
advantage of the uniform circular motion of the lattice.

We start by considering a focused laser beam of waist
σ (in units of the lattice length ρ) adiabatically swept at
constant velocity v through the Wigner crystal, along a
direction parallel to one of the lattice vectors (Fig. 3),
at half the height of a triangular cell. The effect of this

FIG. 3: A laser is swept adiabatically from left to right, lead-
ing to a weighted graph state with different phases for solid
and dashed lines. A laser is then swept adiabatically from
lower left to upper right, leading to additional phase on two
of three links in each triangle (solid black) versus the remain-
ing link (large dashed). With proper settings, the solid black
phase is (2n + 1)π while the large dashed phase is (2n)π.

sweep is, apart from a global single-qubit rotation, to
generate a weighted-graph phase as in Eq. (12), where
ϑij takes value εθ(ω) on the cell side that is parallel to
the sweep direction, and θ(ω) on the other two sides, with

ε = e−3/(8σ2)(11 − 8σ2)/(σ2 + 8), while
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where α =
√

!/(mω), Ω0 is the peak Rabi frequency
corresponding to the center of the laser beam, ∆ is its
detuning from the ion’s internal transition, and q is the
electron charge. This procedure would be immune from
phononic decoherence only if the sweep is adiabatic with
respect to the lowest phonon frequency. However, it can
be made much faster by applying the fast carrier mod-
ulation described above. In this case the semiclassical
calculation of Eq. (13) is no longer valid, but the discus-
sion of Eq. (10) shows that the resulting phase is simply
−θ(ν)/2. A cluster state is then obtained by making ε
vanish via an appropriate choice of the laser waist (nu-
merically, σ ≈ 1.1726), while tuning θ(ν)/2 to π by ad-
justing the other experimental parameters. Care needs
to be taken to ensure a sweep having a given distance ξ
from the trap center and velocity v in the rotating crys-
tal’s frame. To this end we apply to the laser, initially
focused at a distance d from the center, a displacement
δdξ(t) = {δxξ(t), δyξ(t)} of the form

δxξ(t) = [d − ξ/ cos(Ωt)]Θ(χ − |Ωt|) , (14)

δyξ(t) = ξ[Ωt tan(χ)/χ − tan(Ωt)]Θ(χ − |Ωt|) ,(15)

where χ ≡ arccos(ξ/d) and Ω is the crystal angular fre-
quency.

The resulting cluster state is universal for computa-
tion. In addition, we can exploit the rotation of the
Wigner crystal in the Penning trap to make dynamic gen-
eration of a cluster state, necessary for arbitrary length
and fault tolerant computation [22, 23]. Measurements
and initialization of new qubits for addition to the clus-
ter occur immediately after and before the entanglement
generation stage, respectively.

This approach should be constrasted with the quantum
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Expanding in inverse powers of the large carrier fre-
quency, ν, we remark that the first term (O(ν−2)) is
proportional to

∑

k Mik,λMjk,λ = 0 (due to the orthog-
onality of the matrix M). [26] The first non-zero term
is O(ν−4). Thus, compared to adiabatic gates, this
modulated-carrier push gate is inverted in sign and re-
duced in phase induced by a factor (ω/ν)4/2, where for

lateral gates, ω ∼ e2

!d is a characteristic confinement en-
ergy for a single ion in the crystal with lattice spacing d,
and for vertical gates, ω ∼ ωz.

We performed numerical simulations of our modulated-
carrier gate’s performance for a finite size Wigner crystal
(N = 147 shown in Fig. 2) to allow direct comparison to
the equivalent adiabatic gate and the proposed vertical
gate of Ref. [24]. Our simulations minimized the clas-
sical energy of the ions in a Penning trap to determine
the equilibrium configuration. Then, expanding to sec-
ond order in displacements from equilibrium, the normal
mode coordinates were found. The displacement βK and
phase φK were computed for each phonon mode, and the
fidelity calculated by considering the overlap of the fi-
nal state with the desired state, traced over the phonon
degrees of freedom. We find that for the same physical
parameters, the ratio of forces required for achieving a
π phase for the vertical gate and the fast carrier gate go
as (ωz/ν)2, consistent with the ratio between adiabatic
and fast carrier gates derived above. Thus, the fast car-
rier gate requires substantially less laser power for the
same conditions with negligible reduction in fidelity. Al-
ternatively, the gate time could be reduced, enhancing
the overall performance of quantum information proto-
cols. For specificity, setting ωxy = 200 kHz, ωz = 10
MHz, and a gate time τ = 5 µs, we find ν = 2.2 MHz
provides 1 − F < 10−5 with negligible heating.

Asymmetric entanglement generation— We now con-
sider limits and improvements to the standard entangle-
ment generation procedures. As it may be difficult to
bring a high numerical aperture lens near the Wigner
crystal (and similarly with a high-finesse cavity), we will
assume that our collection efficiency η # 1, where η is
the probability that a photon emitted from an ion will
be detected on a photodetector. One approach for en-
tanglement generation with low collection efficiency is to
use state-dependent fluorescence (the 1 − E transition
with rate Γ) in a so-called one-click scheme. The scheme
takes a time (Γηp)−1, where p is the excitation probabil-
ity. The infidelity of this scheme is O(p), i.e., the higher
fidelity a pair one wishes to generate, the longer it takes.

We now describe improvements to the entanglement
generation rates by using a quantum processor unit (such
as a linear Paul trap) which is separate from the quantum
memory unit (our Wigner-crystal-based quantum hard
drive). Without loss of generality, we will assume that
the quantum processor unit may have a different, possi-
bly higher collection efficiency η′, such as in linear Paul
traps with high finesse cavities [5, 21]. Thus, an asym-
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FIG. 2: (top) Phonon spectrum for vertical and lateral
phonons for a trap with N = 147 ions and ωz/ωxy = 50,
and (right) the associated Wigner crystal in position space.
(bottom) Results of numerical simulations of fidelity versus
temperature for the vertical (vertical phonon mode) gate of
Ref. [24] (red-dashed line) and for the fast carrier gate with
ν = 11ωxy between the center-most pair of ions. The inset
shows the fast carrier gate’s and the vertical gate’s forces on
one of the two ions over the gate time; both gates operate in
a time τ ∼ 1/ωxy . Anharmonic corrections to the fidelity are
not included here. We remark for this choice of parameters,
the vertical gate requires 20 times the force (and laser power)
of the fast carrier gate to achieve the same final π two-body
phase.

metric entanglement generation procedure may be bene-
ficial. We consider a two-click scheme, starting with an
equally weighted superposition, |+〉 = |0〉+|1〉. Again, an
optical π pulse produces photons from the 1 − E transi-
tion, which interfere on a beam splitter. Without assum-
ing photon number resolving detectors, the state after
one “click” becomes

η′
(

√

η

η′ |01〉± |10〉
) (

√

η

η′ 〈01| ± 〈10|
)

+O(
√

η′)|11〉〈11|

(8)
To symmetrize the entangled state and simultaneously
remove the |11〉 component, a π pulse between the
metastable states (|1〉 ↔ |0〉) followed by repetition of
the above protocol results in a pure state |Φ+〉 = (|01〉±
|10〉)/

√
2. The overall procedure succeeds with proba-

bility ηη′, indicating that the time required is (Γηη′)−1.
However, unlike the single click scheme, above, the fi-
delity of the state can be high without a further increase
in generation time.

Thus, for large-scale computation, a central proces-
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temperature for the vertical (vertical phonon mode) gate of
Ref. [24] (red-dashed line) and for the fast carrier gate with
ν = 11ωxy between the center-most pair of ions. The inset
shows the fast carrier gate’s and the vertical gate’s forces on
one of the two ions over the gate time; both gates operate in
a time τ ∼ 1/ωxy . Anharmonic corrections to the fidelity are
not included here. We remark for this choice of parameters,
the vertical gate requires 20 times the force (and laser power)
of the fast carrier gate to achieve the same final π two-body
phase.

metric entanglement generation procedure may be bene-
ficial. We consider a two-click scheme, starting with an
equally weighted superposition, |+〉 = |0〉+|1〉. Again, an
optical π pulse produces photons from the 1 − E transi-
tion, which interfere on a beam splitter. Without assum-
ing photon number resolving detectors, the state after
one “click” becomes
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To symmetrize the entangled state and simultaneously
remove the |11〉 component, a π pulse between the
metastable states (|1〉 ↔ |0〉) followed by repetition of
the above protocol results in a pure state |Φ+〉 = (|01〉±
|10〉)/

√
2. The overall procedure succeeds with proba-

bility ηη′, indicating that the time required is (Γηη′)−1.
However, unlike the single click scheme, above, the fi-
delity of the state can be high without a further increase
in generation time.

Thus, for large-scale computation, a central proces-
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Atomic systems in regular lattices are intriguing systems for implementing ideas in quantum
simulation and information processing. Focusing on ionic systems, which can be laser cooled to form
2- and 3-D Wigner crystals in Penning traps, we find a robust and simple approach to engineering
non-trivial 2-body phase terms sufficient for universal quantum computation. We then consider a
non-local architecture using an asymmetric entanglement generation procedure between a Penning
trap system and well-established linear Paul trap designs, and extensions of our approach to the
fast generation of large cluster-states.

PACS numbers:

Quantum information processing using trapped ions
has been the focus of tremendous theoretical [1–3] and
experimental [4–8] advances over the past decade. The
coherence times of ions can sometimes exceed seconds,
while manipulation times and entanglement time scales
can be as fast as tens of microseconds. However, so far
approaches to scaling these systems to many ions have
met with tremendous difficulties, both in linear Paul
trap systems, where increasing numbers of ions leads to
tremendous control difficulties, and in proposed trap ar-
rays, where “shuttling” of quantum information using
gate electrodes would allow for a scalable architecture [9].
A possible solution is to separate the processing elements
(processor qubits) from the memory elements [10].

For ion-based schemes, a natural system to consider as
a quantum memory is a Wigner crystal of ions in a Pen-
ning trap [11]. Such crystals can be robustly formed [12],
and are dynamically stable, with tens of thousands of
ions in a given trap. In addition, the strength of the
Coulomb interaction leads to large separations between
individual ions, making individual addressing of ions in
such lattices a distinct possibility, in contrast to present
quantum control in neutral atom and polar molecule lat-
tices [13, 14].

In this letter we develop an approach to building a
quantum memory and large entangled states that takes
full advantage of the advances in ion trap technology for
building large Wigner crystals of ions in Penning traps.
Using a modulated-carrier “push” gate adapted from lin-
ear ion trap quantum computing schemes [15–19], we find
a fast but adiabatic method for building small clusters
of entanglement which is insensitive to thermal phonons
in 2D and 3D Wigner crystals. Non-deterministic en-
tanglement generation between distant ions suggests a
processor (linear Paul trap) and memory (2D Wigner
crystal) architecture based upon a quantum register ap-
proach [20], where the low photon collection efficiency
from ions in the memory is offset by an asymmetric en-
tanglement generation scheme using a weak cavity cou-
pled to ions in the processor [5, 21]. Finally, we take ad-
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FIG. 1: a) Schematic of a quantum processor (such as a linear
Paul trap) coupled via a high finesse cavity to a photodetector
system to allow interference with photons from an ion Wigner
crystal in a Penning trap nearby. b) Level structure of an
ion, with Raman transitions allowed between two metastable
qubit states (0 and 1) and a cycling transition at a different
frequency for 1 only to allow state-dependent flouresence.

vantage of some of the unique features of penning traps,
such as rotation of the crystal, to provide simplifications
in the necessary hardware to implement these ideas in 2D
Wigner crystals. We further show that such a quantum
memory device can also be used directly for cluster state
quantum computation, though fault-tolerance requires
extensions of the approach to quasi-3D crystals [22, 23].
Our approach follows recent work (Ref. 24) on perform-
ing quantum gates in 2D Wigner crystals.

We start by considering a 2D or 3D Wigner crystal of
ions, rotating in a Penning trap [11] with harmonic con-
finement with frequencies ωxy (in the lateral directions)
and ωz (in the vertical direction). With characteristic
ion spacings ∼ 10 µm, tightly focused lasers allow for
individual addressing of ions (Fig. 1). Laser cooling can
reduce the temperature ≈ 1 mK, yielding on the order of
102 − 103 phonons in lateral modes. We will assume the
coherence time of the memory states to be much longer
than any other time scale in the problem, and thus mem-
ory errors can be neglected. Non-deterministic entangle-
ment generation between two ions can be accomplished
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sor unit with high collection efficiency allows for high-
fidelity gates between elements of the “hard drive” mem-
ory on a timescale 2/Γηη′ (see Ref. 20 for further im-
provements). For concreteness, we take a radiative decay
rate of Γ = (2π)10 MHz, η = 10−3 (confocal approach
with low numerical aperture lens), and desired infidelity
1 − F < 10−4. Entanglement generation between two
such ions would take a time ∼ 10 ms or longer; in con-
trast, for η′ ∼ 0.1, using the intermediate quantum pro-
cessor leads to entanglement generation between proces-
sor and both ions in a time of order 100 µs. This is
comparable to the phase gate operation times described
above.

Quantum cluster state generation— We now consider
a simpler approach that takes of the Coulomb interac-
tions in the lattice to generate elements of a cluster state
for measurement-based computation. While extending
this to fault-tolerant computation requires quasi-3D crys-
tals [22, 23], it nonetheless is a useful starting point for
eliminating the quantum processor unit.

More specifically, the goal is to obtain a weighted-
graph phase exp(i

∑

ij σz
i σz

j ϑij/2) |+, . . . , +〉 , where in
the ideal case ϑij = π between nearest neighbors on a
square lattice, and it is zero otherwise. On a triangular
lattice like the one available in many-ion Penning traps,
this can be achieved if ϑij is made to vanish along one
side of each lattice cell, and to equal π on the other two.
The idea is to obtain this via a push gate acting on all
three cell vertices at the same time, possibly with a laser
swept at constant velocity through the cell itself, to take
advantage of the uniform circular motion of the lattice.

We start by considering a focused laser beam of waist
σ (in units of the lattice length ρ) adiabatically swept at
constant velocity v through the Wigner crystal, along a
direction parallel to one of the lattice vectors (Fig. 3),
at half the height of a triangular cell. The effect of
this sweep is, apart from a global single-qubit rota-
tion, to generate a weighted-graph phase, where ϑij

takes value εθ(ω) on the cell side that is parallel to the
sweep direction, and θ(ω) on the other two sides, with

ε = e−3/(8σ2)(11 − 8σ2)/(σ2 + 8), while

θ(ω) =
Ω4

0

ω2∆2
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q2

!ε0v

e−1/(2σ2)

√
8πσ

(

1

σ2
+

1

8

)

, (9)

where α =
√

!/(mω), Ω0 is the peak Rabi frequency
corresponding to the center of the laser beam, ∆ is its
detuning from the ion’s internal transition, and q is the
electron charge. This procedure would be immune from
phononic decoherence only if the sweep is adiabatic with
respect to the lowest phonon frequency. However, it can
be made much faster by applying the fast carrier mod-
ulation described above. In this case the semiclassical
calculation of Eq. (9) is no longer valid, but the discus-
sion of Eq. (7) shows that the resulting phase is simply
−θ(ν)/2. A cluster state is then obtained by making ε
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FIG. 3: a) A laser is swept adiabatically from left to right,
leading to a weighted graph state with different phases for
solid and dashed lines. b) Laser displacements in the crystal
plane needed to obtain a constant sweep velocity at given
distances ξ/d = 0.2, 0.4, 0.6, 0.8 (from blue to red) from the
center, in the rotating crystal’s frame.

vanish via an appropriate choice of the laser waist (nu-
merically, σ ≈ 1.1726), while tuning θ(ν)/2 to π by ad-
justing the other experimental parameters. Care needs
to be taken to ensure a sweep having a given distance ξ
from the trap center and velocity v in the rotating crys-
tal’s frame. To this end we apply to the laser, initially
focused at a distance d from the center, a displacement
δdξ(t) = {δxξ(t), δyξ(t)} of the form

δxξ(t) = [d − ξ/ cos(Ωt)]Θ(χ − |Ωt|) , (10)

δyξ(t) = ξ[Ωt tan(χ)/χ − tan(Ωt)]Θ(χ − |Ωt|) ,(11)

where χ ≡ arccos(ξ/d) and Ω is the crystal angular fre-
quency.

The resulting cluster state is universal for computa-
tion. In addition, we can exploit the rotation of the
Wigner crystal in the Penning trap to make dynamic gen-
eration of a cluster state, necessary for arbitrary length
and fault tolerant computation [22, 23]. Measurements
and initialization of new qubits for addition to the clus-
ter occur immediately after and before the entanglement
generation stage, respectively.

This approach should be constrasted with the quantum
hard drive with auxiliary quantum processor approach
described above.

We thank J. Bollinger and D. Porras for helpful discus-
sions. JMT is supported by the Pappalardo Fellowship.
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eration of a cluster state, necessary for arbitrary length
and fault tolerant computation [22, 23]. Measurements
and initialization of new qubits for addition to the clus-
ter occur immediately after and before the entanglement
generation stage, respectively.

This approach should be constrasted with the quantum
hard drive with auxiliary quantum processor approach
described above.
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ory on a timescale 2/Γηη′ (see Ref. 20 for further im-
provements). For concreteness, we take a radiative decay
rate of Γ = (2π)10 MHz, η = 10−3 (confocal approach
with low numerical aperture lens), and desired infidelity
1 − F < 10−4. Entanglement generation between two
such ions would take a time ∼ 10 ms or longer; in con-
trast, for η′ ∼ 0.1, using the intermediate quantum pro-
cessor leads to entanglement generation between proces-
sor and both ions in a time of order 100 µs. This is
comparable to the phase gate operation times described
above.

Quantum cluster state generation— We now consider
a simpler approach that takes of the Coulomb interac-
tions in the lattice to generate elements of a cluster state
for measurement-based computation. While extending
this to fault-tolerant computation requires quasi-3D crys-
tals [22, 23], it nonetheless is a useful starting point for
eliminating the quantum processor unit.
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this can be achieved if ϑij is made to vanish along one
side of each lattice cell, and to equal π on the other two.
The idea is to obtain this via a push gate acting on all
three cell vertices at the same time, possibly with a laser
swept at constant velocity through the cell itself, to take
advantage of the uniform circular motion of the lattice.

We start by considering a focused laser beam of waist
σ (in units of the lattice length ρ) adiabatically swept at
constant velocity v through the Wigner crystal, along a
direction parallel to one of the lattice vectors (Fig. 3),
at half the height of a triangular cell. The effect of
this sweep is, apart from a global single-qubit rota-
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!/(mω), Ω0 is the peak Rabi frequency
corresponding to the center of the laser beam, ∆ is its
detuning from the ion’s internal transition, and q is the
electron charge. This procedure would be immune from
phononic decoherence only if the sweep is adiabatic with
respect to the lowest phonon frequency. However, it can
be made much faster by applying the fast carrier mod-
ulation described above. In this case the semiclassical
calculation of Eq. (9) is no longer valid, but the discus-
sion of Eq. (7) shows that the resulting phase is simply
−θ(ν)/2. A cluster state is then obtained by making ε
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FIG. 3: a) A laser is swept adiabatically from left to right,
leading to a weighted graph state with different phases for
solid and dashed lines. b) Laser displacements in the crystal
plane needed to obtain a constant sweep velocity at given
distances ξ/d = 0.2, 0.4, 0.6, 0.8 (from blue to red) from the
center, in the rotating crystal’s frame.

vanish via an appropriate choice of the laser waist (nu-
merically, σ ≈ 1.1726), while tuning θ(ν)/2 to π by ad-
justing the other experimental parameters. Care needs
to be taken to ensure a sweep having a given distance ξ
from the trap center and velocity v in the rotating crys-
tal’s frame. To this end we apply to the laser, initially
focused at a distance d from the center, a displacement
δdξ(t) = {δxξ(t), δyξ(t)} of the form

δxξ(t) = [d − ξ/ cos(Ωt)]Θ(χ − |Ωt|) , (10)

δyξ(t) = ξ[Ωt tan(χ)/χ − tan(Ωt)]Θ(χ − |Ωt|) ,(11)

where χ ≡ arccos(ξ/d) and Ω is the crystal angular fre-
quency.

The resulting cluster state is universal for computa-
tion. In addition, we can exploit the rotation of the
Wigner crystal in the Penning trap to make dynamic gen-
eration of a cluster state, necessary for arbitrary length
and fault tolerant computation [22, 23]. Measurements
and initialization of new qubits for addition to the clus-
ter occur immediately after and before the entanglement
generation stage, respectively.

This approach should be constrasted with the quantum
hard drive with auxiliary quantum processor approach
described above.
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trast, for η′ ∼ 0.1, using the intermediate quantum pro-
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sor and both ions in a time of order 100 µs. This is
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Quantum cluster state generation— We now consider
a simpler approach that takes of the Coulomb interac-
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for measurement-based computation. While extending
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lattice like the one available in many-ion Penning traps,
this can be achieved if ϑij is made to vanish along one
side of each lattice cell, and to equal π on the other two.
The idea is to obtain this via a push gate acting on all
three cell vertices at the same time, possibly with a laser
swept at constant velocity through the cell itself, to take
advantage of the uniform circular motion of the lattice.

We start by considering a focused laser beam of waist
σ (in units of the lattice length ρ) adiabatically swept at
constant velocity v through the Wigner crystal, along a
direction parallel to one of the lattice vectors (Fig. 3),
at half the height of a triangular cell. The effect of
this sweep is, apart from a global single-qubit rota-
tion, to generate a weighted-graph phase, where ϑij

takes value εθ(ω) on the cell side that is parallel to the
sweep direction, and θ(ω) on the other two sides, with
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where α =
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!/(mω), Ω0 is the peak Rabi frequency
corresponding to the center of the laser beam, ∆ is its
detuning from the ion’s internal transition, and q is the
electron charge. This procedure would be immune from
phononic decoherence only if the sweep is adiabatic with
respect to the lowest phonon frequency. However, it can
be made much faster by applying the fast carrier mod-
ulation described above. In this case the semiclassical
calculation of Eq. (9) is no longer valid, but the discus-
sion of Eq. (7) shows that the resulting phase is simply
−θ(ν)/2. A cluster state is then obtained by making ε
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FIG. 3: a) A laser is swept adiabatically from left to right,
leading to a weighted graph state with different phases for
solid and dashed lines. b) Laser displacements in the crystal
plane needed to obtain a constant sweep velocity at given
distances ξ/d = 0.2, 0.4, 0.6, 0.8 (from blue to red) from the
center, in the rotating crystal’s frame.

vanish via an appropriate choice of the laser waist (nu-
merically, σ ≈ 1.1726), while tuning θ(ν)/2 to π by ad-
justing the other experimental parameters. Care needs
to be taken to ensure a sweep having a given distance ξ
from the trap center and velocity v in the rotating crys-
tal’s frame. To this end we apply to the laser, initially
focused at a distance d from the center, a displacement
δdξ(t) = {δxξ(t), δyξ(t)} of the form

δxξ(t) = [d − ξ/ cos(Ωt)]Θ(χ − |Ωt|) , (10)

δyξ(t) = ξ[Ωt tan(χ)/χ − tan(Ωt)]Θ(χ − |Ωt|) ,(11)

where χ ≡ arccos(ξ/d) and Ω is the crystal angular fre-
quency.

The resulting cluster state is universal for computa-
tion. In addition, we can exploit the rotation of the
Wigner crystal in the Penning trap to make dynamic gen-
eration of a cluster state, necessary for arbitrary length
and fault tolerant computation [22, 23]. Measurements
and initialization of new qubits for addition to the clus-
ter occur immediately after and before the entanglement
generation stage, respectively.

This approach should be constrasted with the quantum
hard drive with auxiliary quantum processor approach
described above.
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[4] F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde,

G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos,
J. Eschner, and R. Blatt, Nature 422, 408 (2003).

[5] B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Mon-
roe, Nature 428, 153 (2004).

[6] J. Chiaverini, J. Britton, D. Leibfried, E. Knill, M. D.
Barrett, R. B. Blakestad, W. Itano, J. Jost, C. Langer,
R. Ozeri, et al., Science 308, 997 (2005).

[7] C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. De-
Marco, A. Ben-Kish, R. B. Blakestad, J. Britton, D. B.

4

sor unit with high collection efficiency allows for high-
fidelity gates between elements of the “hard drive” mem-
ory on a timescale 2/Γηη′ (see Ref. 20 for further im-
provements). For concreteness, we take a radiative decay
rate of Γ = (2π)10 MHz, η = 10−3 (confocal approach
with low numerical aperture lens), and desired infidelity
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for measurement-based computation. While extending
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this can be achieved if ϑij is made to vanish along one
side of each lattice cell, and to equal π on the other two.
The idea is to obtain this via a push gate acting on all
three cell vertices at the same time, possibly with a laser
swept at constant velocity through the cell itself, to take
advantage of the uniform circular motion of the lattice.

We start by considering a focused laser beam of waist
σ (in units of the lattice length ρ) adiabatically swept at
constant velocity v through the Wigner crystal, along a
direction parallel to one of the lattice vectors (Fig. 3),
at half the height of a triangular cell. The effect of
this sweep is, apart from a global single-qubit rota-
tion, to generate a weighted-graph phase, where ϑij
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corresponding to the center of the laser beam, ∆ is its
detuning from the ion’s internal transition, and q is the
electron charge. This procedure would be immune from
phononic decoherence only if the sweep is adiabatic with
respect to the lowest phonon frequency. However, it can
be made much faster by applying the fast carrier mod-
ulation described above. In this case the semiclassical
calculation of Eq. (9) is no longer valid, but the discus-
sion of Eq. (7) shows that the resulting phase is simply
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vanish via an appropriate choice of the laser waist (nu-
merically, σ ≈ 1.1726), while tuning θ(ν)/2 to π by ad-
justing the other experimental parameters. Care needs
to be taken to ensure a sweep having a given distance ξ
from the trap center and velocity v in the rotating crys-
tal’s frame. To this end we apply to the laser, initially
focused at a distance d from the center, a displacement
δdξ(t) = {δxξ(t), δyξ(t)} of the form

δxξ(t) = [d − ξ/ cos(Ωt)]Θ(χ − |Ωt|) , (10)

δyξ(t) = ξ[Ωt tan(χ)/χ − tan(Ωt)]Θ(χ − |Ωt|) ,(11)

where χ ≡ arccos(ξ/d) and Ω is the crystal angular fre-
quency.

The resulting cluster state is universal for computa-
tion. In addition, we can exploit the rotation of the
Wigner crystal in the Penning trap to make dynamic gen-
eration of a cluster state, necessary for arbitrary length
and fault tolerant computation [22, 23]. Measurements
and initialization of new qubits for addition to the clus-
ter occur immediately after and before the entanglement
generation stage, respectively.

This approach should be constrasted with the quantum
hard drive with auxiliary quantum processor approach
described above.
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swept at constant velocity through the cell itself, to take
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at half the height of a triangular cell. The effect of
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from the trap center and velocity v in the rotating crys-
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quency.

The resulting cluster state is universal for computa-
tion. In addition, we can exploit the rotation of the
Wigner crystal in the Penning trap to make dynamic gen-
eration of a cluster state, necessary for arbitrary length
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The idea is to obtain this via a push gate acting on all
three cell vertices at the same time, possibly with a laser
swept at constant velocity through the cell itself, to take
advantage of the uniform circular motion of the lattice.
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where α =
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!/(mω), Ω0 is the peak Rabi frequency
corresponding to the center of the laser beam, ∆ is its
detuning from the ion’s internal transition, and q is the
electron charge. This procedure would be immune from
phononic decoherence only if the sweep is adiabatic with
respect to the lowest phonon frequency. However, it can
be made much faster by applying the fast carrier mod-
ulation described above. In this case the semiclassical
calculation of Eq. (9) is no longer valid, but the discus-
sion of Eq. (7) shows that the resulting phase is simply
−θ(ν)/2. A cluster state is then obtained by making ε
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FIG. 3: a) A laser is swept adiabatically from left to right,
leading to a weighted graph state with different phases for
solid and dashed lines. b) Laser displacements in the crystal
plane needed to obtain a constant sweep velocity at given
distances ξ/d = 0.2, 0.4, 0.6, 0.8 (from blue to red) from the
center, in the rotating crystal’s frame.

vanish via an appropriate choice of the laser waist (nu-
merically, σ ≈ 1.1726), while tuning θ(ν)/2 to π by ad-
justing the other experimental parameters. Care needs
to be taken to ensure a sweep having a given distance ξ
from the trap center and velocity v in the rotating crys-
tal’s frame. To this end we apply to the laser, initially
focused at a distance d from the center, a displacement
δdξ(t) = {δxξ(t), δyξ(t)} of the form

δxξ(t) = [d − ξ/ cos(Ωt)]Θ(χ − |Ωt|) , (10)

δyξ(t) = ξ[Ωt tan(χ)/χ − tan(Ωt)]Θ(χ − |Ωt|) ,(11)

where χ ≡ arccos(ξ/d) and Ω is the crystal angular fre-
quency.

The resulting cluster state is universal for computa-
tion. In addition, we can exploit the rotation of the
Wigner crystal in the Penning trap to make dynamic gen-
eration of a cluster state, necessary for arbitrary length
and fault tolerant computation [22, 23]. Measurements
and initialization of new qubits for addition to the clus-
ter occur immediately after and before the entanglement
generation stage, respectively.

This approach should be constrasted with the quantum
hard drive with auxiliary quantum processor approach
described above.
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trast, for η′ ∼ 0.1, using the intermediate quantum pro-
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sor and both ions in a time of order 100 µs. This is
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above.

Quantum cluster state generation— We now consider
a simpler approach that takes of the Coulomb interac-
tions in the lattice to generate elements of a cluster state
for measurement-based computation. While extending
this to fault-tolerant computation requires quasi-3D crys-
tals [22, 23], it nonetheless is a useful starting point for
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We start by considering a focused laser beam of waist
σ (in units of the lattice length ρ) adiabatically swept at
constant velocity v through the Wigner crystal, along a
direction parallel to one of the lattice vectors (Fig. 3),
at half the height of a triangular cell. The effect of
this sweep is, apart from a global single-qubit rota-
tion, to generate a weighted-graph phase, where ϑij

takes value εθ(ω) on the cell side that is parallel to the
sweep direction, and θ(ω) on the other two sides, with

ε = e−3/(8σ2)(11 − 8σ2)/(σ2 + 8), while

θ(ω) =
Ω4

0

ω2∆2

α4

ρ4

q2

!ε0v

e−1/(2σ2)

√
8πσ

(

1

σ2
+

1

8

)

, (9)

where α =
√

!/(mω), Ω0 is the peak Rabi frequency
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detuning from the ion’s internal transition, and q is the
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merically, σ ≈ 1.1726), while tuning θ(ν)/2 to π by ad-
justing the other experimental parameters. Care needs
to be taken to ensure a sweep having a given distance ξ
from the trap center and velocity v in the rotating crys-
tal’s frame. To this end we apply to the laser, initially
focused at a distance d from the center, a displacement
δdξ(t) = {δxξ(t), δyξ(t)} of the form
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δyξ(t) = ξ[Ωt tan(χ)/χ − tan(Ωt)]Θ(χ − |Ωt|) ,(11)

where χ ≡ arccos(ξ/d) and Ω is the crystal angular fre-
quency.

The resulting cluster state is universal for computa-
tion. In addition, we can exploit the rotation of the
Wigner crystal in the Penning trap to make dynamic gen-
eration of a cluster state, necessary for arbitrary length
and fault tolerant computation [22, 23]. Measurements
and initialization of new qubits for addition to the clus-
ter occur immediately after and before the entanglement
generation stage, respectively.

This approach should be constrasted with the quantum
hard drive with auxiliary quantum processor approach
described above.
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this can be achieved if ϑij is made to vanish along one
side of each lattice cell, and to equal π on the other two.
The idea is to obtain this via a push gate acting on all
three cell vertices at the same time, possibly with a laser
swept at constant velocity through the cell itself, to take
advantage of the uniform circular motion of the lattice.

We start by considering a focused laser beam of waist
σ (in units of the lattice length ρ) adiabatically swept at
constant velocity v through the Wigner crystal, along a
direction parallel to one of the lattice vectors (Fig. 3),
at half the height of a triangular cell. The effect of
this sweep is, apart from a global single-qubit rota-
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!/(mω), Ω0 is the peak Rabi frequency
corresponding to the center of the laser beam, ∆ is its
detuning from the ion’s internal transition, and q is the
electron charge. This procedure would be immune from
phononic decoherence only if the sweep is adiabatic with
respect to the lowest phonon frequency. However, it can
be made much faster by applying the fast carrier mod-
ulation described above. In this case the semiclassical
calculation of Eq. (9) is no longer valid, but the discus-
sion of Eq. (7) shows that the resulting phase is simply
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vanish via an appropriate choice of the laser waist (nu-
merically, σ ≈ 1.1726), while tuning θ(ν)/2 to π by ad-
justing the other experimental parameters. Care needs
to be taken to ensure a sweep having a given distance ξ
from the trap center and velocity v in the rotating crys-
tal’s frame. To this end we apply to the laser, initially
focused at a distance d from the center, a displacement
δdξ(t) = {δxξ(t), δyξ(t)} of the form

δxξ(t) = [d − ξ/ cos(Ωt)]Θ(χ − |Ωt|) , (10)

δyξ(t) = ξ[Ωt tan(χ)/χ − tan(Ωt)]Θ(χ − |Ωt|) ,(11)

where χ ≡ arccos(ξ/d) and Ω is the crystal angular fre-
quency.

The resulting cluster state is universal for computa-
tion. In addition, we can exploit the rotation of the
Wigner crystal in the Penning trap to make dynamic gen-
eration of a cluster state, necessary for arbitrary length
and fault tolerant computation [22, 23]. Measurements
and initialization of new qubits for addition to the clus-
ter occur immediately after and before the entanglement
generation stage, respectively.

This approach should be constrasted with the quantum
hard drive with auxiliary quantum processor approach
described above.
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The idea is to obtain this via a push gate acting on all
three cell vertices at the same time, possibly with a laser
swept at constant velocity through the cell itself, to take
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We start by considering a focused laser beam of waist
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constant velocity v through the Wigner crystal, along a
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!/(mω), Ω0 is the peak Rabi frequency
corresponding to the center of the laser beam, ∆ is its
detuning from the ion’s internal transition, and q is the
electron charge. This procedure would be immune from
phononic decoherence only if the sweep is adiabatic with
respect to the lowest phonon frequency. However, it can
be made much faster by applying the fast carrier mod-
ulation described above. In this case the semiclassical
calculation of Eq. (9) is no longer valid, but the discus-
sion of Eq. (7) shows that the resulting phase is simply
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vanish via an appropriate choice of the laser waist (nu-
merically, σ ≈ 1.1726), while tuning θ(ν)/2 to π by ad-
justing the other experimental parameters. Care needs
to be taken to ensure a sweep having a given distance ξ
from the trap center and velocity v in the rotating crys-
tal’s frame. To this end we apply to the laser, initially
focused at a distance d from the center, a displacement
δdξ(t) = {δxξ(t), δyξ(t)} of the form

δxξ(t) = [d − ξ/ cos(Ωt)]Θ(χ − |Ωt|) , (10)

δyξ(t) = ξ[Ωt tan(χ)/χ − tan(Ωt)]Θ(χ − |Ωt|) ,(11)

where χ ≡ arccos(ξ/d) and Ω is the crystal angular fre-
quency.

The resulting cluster state is universal for computa-
tion. In addition, we can exploit the rotation of the
Wigner crystal in the Penning trap to make dynamic gen-
eration of a cluster state, necessary for arbitrary length
and fault tolerant computation [22, 23]. Measurements
and initialization of new qubits for addition to the clus-
ter occur immediately after and before the entanglement
generation stage, respectively.

This approach should be constrasted with the quantum
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described above.
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trast, for η′ ∼ 0.1, using the intermediate quantum pro-
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this can be achieved if ϑij is made to vanish along one
side of each lattice cell, and to equal π on the other two.
The idea is to obtain this via a push gate acting on all
three cell vertices at the same time, possibly with a laser
swept at constant velocity through the cell itself, to take
advantage of the uniform circular motion of the lattice.

We start by considering a focused laser beam of waist
σ (in units of the lattice length ρ) adiabatically swept at
constant velocity v through the Wigner crystal, along a
direction parallel to one of the lattice vectors (Fig. 3),
at half the height of a triangular cell. The effect of
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where α =
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!/(mω), Ω0 is the peak Rabi frequency
corresponding to the center of the laser beam, ∆ is its
detuning from the ion’s internal transition, and q is the
electron charge. This procedure would be immune from
phononic decoherence only if the sweep is adiabatic with
respect to the lowest phonon frequency. However, it can
be made much faster by applying the fast carrier mod-
ulation described above. In this case the semiclassical
calculation of Eq. (9) is no longer valid, but the discus-
sion of Eq. (7) shows that the resulting phase is simply
−θ(ν)/2. A cluster state is then obtained by making ε
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center, in the rotating crystal’s frame.

vanish via an appropriate choice of the laser waist (nu-
merically, σ ≈ 1.1726), while tuning θ(ν)/2 to π by ad-
justing the other experimental parameters. Care needs
to be taken to ensure a sweep having a given distance ξ
from the trap center and velocity v in the rotating crys-
tal’s frame. To this end we apply to the laser, initially
focused at a distance d from the center, a displacement
δdξ(t) = {δxξ(t), δyξ(t)} of the form

δxξ(t) = [d − ξ/ cos(Ωt)]Θ(χ − |Ωt|) , (10)

δyξ(t) = ξ[Ωt tan(χ)/χ − tan(Ωt)]Θ(χ − |Ωt|) ,(11)

where χ ≡ arccos(ξ/d) and Ω is the crystal angular fre-
quency.

The resulting cluster state is universal for computa-
tion. In addition, we can exploit the rotation of the
Wigner crystal in the Penning trap to make dynamic gen-
eration of a cluster state, necessary for arbitrary length
and fault tolerant computation [22, 23]. Measurements
and initialization of new qubits for addition to the clus-
ter occur immediately after and before the entanglement
generation stage, respectively.

This approach should be constrasted with the quantum
hard drive with auxiliary quantum processor approach
described above.
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The resulting cluster state is universal for computa-
tion. In addition, we can exploit the rotation of the
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eration of a cluster state, necessary for arbitrary length
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ter occur immediately after and before the entanglement
generation stage, respectively.
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to be taken to ensure a sweep having a given distance ξ
from the trap center and velocity v in the rotating crys-
tal’s frame. To this end we apply to the laser, initially
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δdξ(t) = {δxξ(t), δyξ(t)} of the form
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tion. In addition, we can exploit the rotation of the
Wigner crystal in the Penning trap to make dynamic gen-
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and fault tolerant computation [22, 23]. Measurements
and initialization of new qubits for addition to the clus-
ter occur immediately after and before the entanglement
generation stage, respectively.

This approach should be constrasted with the quantum
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described above.

We thank J. Bollinger and D. Porras for helpful discus-
sions. JMT is supported by the Pappalardo Fellowship.
TC is ...

[1] J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).
[2] J. I. Cirac and P. Zoller, Nature 406, 579 (2000).
[3] J. Cirac and P. Zoller, Physics Today (2004).
[4] F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde,
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where α =
√

!/(mω), Ω0 is the peak Rabi frequency
corresponding to the center of the laser beam, ∆ is its
detuning from the ion’s internal transition, and q is the
electron charge. This procedure would be immune from
phononic decoherence only if the sweep is adiabatic with
respect to the lowest phonon frequency. However, it can
be made much faster by applying the fast carrier mod-
ulation described above. In this case the semiclassical
calculation of Eq. (9) is no longer valid, but the discus-
sion of Eq. (7) shows that the resulting phase is simply
−θ(ν)/2. A cluster state is then obtained by making ε
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FIG. 3: a) A laser is swept adiabatically from left to right,
leading to a weighted graph state with different phases for
solid and dashed lines. b) Laser displacements in the crystal
plane needed to obtain a constant sweep velocity at given
distances ξ/d = 0.2, 0.4, 0.6, 0.8 (from blue to red) from the
center, in the rotating crystal’s frame.

vanish via an appropriate choice of the laser waist (nu-
merically, σ ≈ 1.1726), while tuning θ(ν)/2 to π by ad-
justing the other experimental parameters. Care needs
to be taken to ensure a sweep having a given distance ξ
from the trap center and velocity v in the rotating crys-
tal’s frame. To this end we apply to the laser, initially
focused at a distance d from the center, a displacement
δdξ(t) = {δxξ(t), δyξ(t)} of the form

δxξ(t) = [d − ξ/ cos(Ωt)]Θ(χ − |Ωt|) , (10)

δyξ(t) = ξ[Ωt tan(χ)/χ − tan(Ωt)]Θ(χ − |Ωt|) ,(11)

where χ ≡ arccos(ξ/d) and Ω is the crystal angular fre-
quency.

The resulting cluster state is universal for computa-
tion. In addition, we can exploit the rotation of the
Wigner crystal in the Penning trap to make dynamic gen-
eration of a cluster state, necessary for arbitrary length
and fault tolerant computation [22, 23]. Measurements
and initialization of new qubits for addition to the clus-
ter occur immediately after and before the entanglement
generation stage, respectively.

This approach should be constrasted with the quantum
hard drive with auxiliary quantum processor approach
described above.
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sions. JMT is supported by the Pappalardo Fellowship.
TC is ...

[1] J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).
[2] J. I. Cirac and P. Zoller, Nature 406, 579 (2000).
[3] J. Cirac and P. Zoller, Physics Today (2004).
[4] F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde,
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δdξ(t) = {δxξ(t), δyξ(t)} of the form
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quency.

The resulting cluster state is universal for computa-
tion. In addition, we can exploit the rotation of the
Wigner crystal in the Penning trap to make dynamic gen-
eration of a cluster state, necessary for arbitrary length
and fault tolerant computation [22, 23]. Measurements
and initialization of new qubits for addition to the clus-
ter occur immediately after and before the entanglement
generation stage, respectively.
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hard drive with auxiliary quantum processor approach
described above.
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Outlook

• Commodity good: cheap, interchangeable, ubiquitous

• Finite size control problem per register.  

• GRAPE pulses [ Khaneja et al. ], feedback & filtering, composite pulses, etc.

• Optical or other “distributed qubit” interconnect system can be faulty 
(<50% errors after post-selection sufficient; for <10%, only 5 qubits needed) 

• Implementations:

• NEED: few coupled, controllable qubits with very good quantum memory; optical 
(or phononic, or qubit-bus) interconnection possible

• Other aspects:

• Wigner crystals of ions as a quantum “hard drive”?  (Many qubits per device)
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