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* Honest (pessimistic) review of the state of
the field of superconducting qubits.

* Theoretical models of protected qubits and
their implementations in Josephson
junctions.

* Experimental results
« Conclusions



State of the Art in Superconducting
Qubits
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State of the Art in Superconducting
Qubits

Charge/Phase

Junction size —— E,=E; —— # of Cooper pairs
In real life H = 4E_[fi —n, + Sn(t)]’ +[E, + SE, (t)]cos(p + (1)) — 1 ¢
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State of the Art in Superconducting
Qubits

Charge/Phase Flux | Phase
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Junction size —— E,=E; —— # of Cooper pairs
Charging versus Josephson energy

History
* 1st qubit demonstrated in 1998 (NEC Labs, Japan)
 “Long” coherence shown 2002 (Saclay/Yale)
» Several experiments with two degrees of freedom
« C-NOT gate (2003 NEC, 2006 Delft and UCSB )
* Bell inequality tests being attempted (2006, UCSB) [failure due to low readout visibility!]
* 1st time domain tunable coupling of two flux qubits (2007, NEC Labs, Japan)
* Coupling superconducting qubits via a cavity bus (2007 Yale and NIST)



Relaxation and dephasing times
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®y /27 =5+10 GHz

: L Operation Logical quality
Design Group T, T Visibility time factor
Phase qubit UCSB ~ 85 nsec 110 nsec > 90%
Flux qubit NEC ~ 0.8 usec 1 psec ~ 20/30% ~0.02 psec 10
Transmon
= = 0 =
(CPB in a cavity) Yale 2 usec 1.5 psec > 95 % 0.05 pusec 10

3 A Projected values
QPhysicaI = Vng ~10°-10

Q Logical <0.1 QPhysical =102-10°

What do we need?
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Advantage of protection
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Protected Qubit (General)

Protected Doublet:
P, Special Spin Hamiltonians H with a large
number of (non-local) integrals of motion P, Q:

[H,P]=0, [H,Q,.]=0, [P,,.Q,]#¥0

9 Any physical (local) noise term dH(t) commutes with
all P, and Q,,, except a O(1) number of each.
Effect of noise appears in N order of the perturbation
Q,, theory:
OE~(SH(t) /A)N-1T SH(t)

Simplest Spin Hamiltonian
H=2, J* 0% 0X+ 2y J%, 0% 0%
Rows Columns
P=l1, 0% Q:=[1, 0%

Crucial issues:
1. Which spin model has a large gap A?

2. Whic ol | N— .,




Numerics for short range model

(nearest neighbor interactions)
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Low energy states for 4*4 and 55 spin provide very good protection,

array. Low energy band contains 2* and 2° states especially in one channel!



Realization of individual spins and their
iInteraction by Josephson Junction Arrays

\Fixed phase
L ©=0orT

Fixed phase ;;:?
d=0 |

Only simultaneous flips are possible: H=t 0%, 0,

Longer chains: H=t 2, o*,0*, + constraint [], 0% =const

- i‘: C C i’: Large capacitor preventing phase

changes of the end point.




Where is the catch?

« Josephson elements are not discrete.
Noise suppression contains

WE )T (o)
(DO r (7/ r J g .
(r ~ t — transition amplitude)
— we need large quantum fluctuations.
But large quantum fluctuations — low phase rigidity across

the chain
= s =R

¢ =

|

— no distinction between ¢=0and ¢=~ states



Resolution(s)
A. Many (K>>1) Parallel Chains for k=4
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B. Hierarchical construction

Start with single rhombus Combine 4 rhombi into super-rhombus

A2

H"=-E] cos2¢—E/ cos¢+4Ega2 mm) H" =-E;"cos2¢—E " cosg+4E"q

Need E,/E! toincrease (or stay constant) but E//EZ to decrease
k2
E;/EX = f(E]/EZL) for small x f (x) = Ex2 Yo Ul 617 @rET s e
2 parallel (k=2 above)
EM/EX =g(E/EL) for small x g(x) = IXZ

If one rhombus is good enough to produce  E/E, <1/4 the unwanted term
will decrease for the optimal E{" /E{) ~1-2



Protected qubit (3™ level)




Minimalistic protected system
|_ Electrostatic gate

Josephson energy E,cos¢

dependence on junction parameters
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Minimalistic protected system
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Relaxation and decay rates of
realistic hierarchical structures

Theory (+simulations):
Optimal regime E;= 6-8 E;
K=3 hierarchy (k=4)

k-1 k-1 Contributions from
rg‘” =T, 7/@5] ~ 2(10@j - flux (area) variations between the
DO, 1 0 loops
SE SE )
e =T,| y' Jj ~ 2[ J] - Josephson junction variations in the
' E, same loop



First Device
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Improved design
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Critical current of the second level
hierarchy device (12 rhombi)
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1o+ Fourier filtered first harmonics B {arb unitsy)

Compare with 2 rhombi
(first hierarchy level)
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Value of critical currents:
Theory versus Experiment

Theory: direct numerical diagonalization of
Hamiltonian in charge basis is impossible: 91

1 A+ A— .
H :_EZ‘]ijqi g, +4ECZ(C l)ijqi oF
charge degree of freedom! 1) ]

Approximate alternatives:
1.Replace actual system by 4 rhombi chain with additional capacitance in the middle
and scale the result by a factor of 32=9. Should work well for small E /E

2. Use effective coupling produced by two rhombi chain and replace the two rhombi
structure by effective Josephson element. Should work well in K—< limit.

Results for 12 rhombi samples:

L E. E, E, E,
(contact) (Geom) (Am-B) (Exp) (Theor)
0.17 0.62 2.9 0.15 0.05
0.20 0.46 5.9 0.3 0.4




Value of critical currents:
Theory vs. Experiment

Theory: direct numerical diagonalization

of Hamiltonian in charge basis 1 At A= i
d H:_Ezjijqiqj+4ECZ(C 1)ijqiqj
i;] i;]

Accuracy of numerics can

SE vEr R e D Tl Charge increase/decrease ~ Capacitance
systems for E /E-.<10. operators Matrix
Results for 2 rhombi samples:
(contact) (Geom) (Am-B) (Exp) (Theor)
0.17 0.6 2.2 0.12-0.15 0.10
0.21 0.42 3.3 0.3 0.4
0.27 0.26 5.3 0.67 1.27




Improved design
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Prob.,%

Effect of the gate potential

N - Fourier transforms of
Switehing Probabiity | g switching probability

sampled8(lmag=15.95mA)
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Conclusions

Parallel chains of approximately Ttr-periodic
discrete Josephson elements should provide
topological’ protection from the noise:
decoupling in higher orders or suppressed linear
order.

Problem of soft phase fluctuations in long chains
can be solved by hierarchical construction

Experimental realization shows appearance of
mm-periodicity which magnitude is in (rough)
agreement with theoretical predictions and
suppression of 21r-periodicity.

Observed gate periodicity is in agreement with
theoretical expectations.



Next steps

We need to confirm the quantum nature of the
fluctuations. For this we shall try to

To measure the gap in the spectrum directly by
microwave spectroscopy

We need to optimize the parameters to find the values
that produce largest ratio of the second harmonics to
the first

Measurements of the qubit coherence



