Topologicaly protected abelian Josephson qubits: theory and experiment.

B. Doucot (Jussieu) M.V. Feigelman (Landau) L. loffe (Rutgers)

M. Gershenson (Rutgers)

Plan

- Honest (pessimistic) review of the state of the field of superconducting qubits.
- Theoretical models of protected qubits and their implementations in Josephson junctions.
- Experimental results
- Conclusions

State of the Art in Superconducting Qubits

State of the Art in Superconducting Qubits

State of the Art in Superconducting Qubits

History

- 1st qubit demonstrated in 1998 (NEC Labs, Japan)
- "Long" coherence shown 2002 (Saclay/Yale)
- Several experiments with two degrees of freedom
- C-NOT gate (2003 NEC, 2006 Delft and UCSB)
- Bell inequality tests being attempted (2006, UCSB) [failure due to low readout visibility!]
- 1st time domain tunable coupling of two flux qubits (2007, NEC Labs, Japan)
- Coupling superconducting qubits via a cavity bus (2007 Yale and NIST)

Relaxation and dephasing times

 $T_2 \equiv$ Dephasing time

 $\omega_0/2\pi = 5 \div 10 \,\text{GHz}$

Design	Group	T_2	T ₁	Visibility	Operation time	Logical quality factor
Phase qubit	UCSB	~ 85 nsec	110 nsec	> 90%		
Flux qubit	NEC	~ 0.8 µsec	1 µsec	~ 20/30%	~ 0.02 µsec	$10 - 100^{*}$
Transmon (CPB in a cavity)	Yale	~ 2 µsec	~ 1.5 µsec	> 95 %	~ 0.05 µsec	10 - 200*

*Projected values

$$Q_{\mathrm{Physical}} \cong \nu_0 T_2 \approx 10^3 - 10^4$$

 $Q_{Logical} < 0.1 Q_{Physical} = 10^2 - 10^3$

What do we need?

Error rates that we need for quantum computation.

$$Q_{Logical} < 10^2 - 10^3$$

Need $Q_{Logical} >> 10^4$ for many qubit system

Advantage of protection

Protected Qubit (General)

Protected Doublet:

Special Spin Hamiltonians H with a large number of (non-local) integrals of motion P, Q: $[H,P_k]=0$, $[H,Q_m]=0$, $[P_k,Q_m]\neq 0$

Any physical (local) noise term $\delta H(t)$ commutes with all P_k and Q_m except a O(1) number of each. Effect of noise appears in N order of the perturbation theory:

 $\delta E \sim (\delta H(t) / \Delta)^{N-1} \delta H(t)$

Simplest Spin Hamiltonian $H=\Sigma_{kl} J^{x}_{kl} \sigma^{x}_{k} \sigma^{x}_{l} + \Sigma_{kl} J^{z}_{kl} \sigma^{z}_{k} \sigma^{z}_{l}$ $H=\Sigma_{kl} J^{x}_{kl} \sigma^{x}_{k} \sigma^{x}_{l} + \Sigma_{kl} J^{z}_{kl} \sigma^{z}_{k} \sigma^{z}_{l}$ RowsColumns $P_{k}=\prod_{l} \sigma^{z}_{l}$ $Q_{k}=\prod_{l} \sigma^{x}_{l}$

Crucial issues:

- 1. Which spin model has a large gap Δ ?
- 2. Which spin model is easiest to realize in Josephson junction arrays?

array. Low energy band contains 2^4 and 2^5 states

especially in one channel!

Realization of individual spins and their interaction by Josephson Junction Arrays

Only simultaneous flips are possible: H=t $\sigma_k^x \sigma_l^x$

Longer chains: H=t $\Sigma_{k,m} \sigma_k^x \sigma_m^x$ + constraint $\prod_k \sigma_k^z$ = const

Large capacitor preventing phase changes of the end point.

Where is the catch?

• Josephson elements are not discrete.

Noise suppression contains

$$\left(\frac{\partial \Phi}{\Phi_0} \frac{E_J}{r}\right)^{k-1} \quad \left(\gamma \frac{\delta E_J}{r}\right)^{k-1}$$

$$(r \sim t - transition amplitude)$$

 \rightarrow we need large quantum fluctuations.

But large quantum fluctuations \rightarrow low phase rigidity across the chain

 \rightarrow no distinction between $\phi = 0$ and $\phi = \pi$ states

Resolution(s) A. Many (K>>1) Parallel Chains for k=4

B. Hierarchical construction

Need E_2^n / E_C^n to increase (or stay constant) but E_1^n / E_C^n to decrease

$$E_2^{n+1} / E_C^{n+1} = f(E_2^n / E_C^n) \text{ for small } x f(x) = \frac{k^2}{16} x^2$$
$$E_1^{n+1} / E_C^{n+1} = g(E_1^n / E_C^n) \text{ for small } x g(x) = \frac{k^2}{4} x^2$$

k - number of chains in parallel (k=2 above)

If one rhombus is good enough to produce will decrease for the optimal $E_2^{(1)} / E_C^{(1)} \approx 1 - 2$

 $E_1^1/E_2^1 < 1/4$ the unwanted term

Protected qubit (3rd level)

Decoupled phase degree of freedom

Minimalistic protected system

Electrostatic gate

Minimalistic protected system

Relaxation and decay rates of realistic hierarchical structures

Theory (+simulations): Optimal regime E_J ≈ 6-8 E_C K=3 hierarchy (k=4)

Contributions from

 flux (area) variations between the loops

- Josephson junction variations in the same loop

First Device

Improved design

Critical current of the second level hierarchy device (12 rhombi)

Compare with 2 rhombi (first hierarchy level)

Value of critical currents: Theory versus Experiment

Theory: direct numerical diagonalization of Hamiltonian in charge basis is impossible: 91 charge degree of freedom!

$$H = -\frac{1}{2} \sum_{i;j} J_{ij} \hat{q}_i^{+} \hat{q}_j^{-} + 4E_C \sum_{i;j} (C^{-1})_{ij} q_i q_j^{-}$$

Approximate alternatives:

1.Replace actual system by 4 rhombi chain with additional capacitance in the middle and scale the result by a factor of 3^2 =9. Should work well for small E_J/E_C 2. Use effective coupling produced by two rhombi chain and replace the two rhombi structure by effective Josephson element. Should work well in K→∞ limit.

Results for 12 rhombi samples:							
L (contact)	E _C (Geom)	E _J (Am-B)	E ₂ (Exp)	E ₂ (Theor)			
0.17	0.62	2.9	0.15	0.05			
0.20	0.46	5.9	0.3	0.4			

Value of critical currents: Theory vs. Experiment

Theory: direct numerical diagonalization of Hamiltonian in charge basis

Accuracy of numerics can be verified for 2 rhombi systems for $E_J/E_C < 10$.

 $H = -\frac{1}{2} \sum_{i;j} J_{ij} \hat{q}_i^{+} \hat{q}_j^{-} + 4E_C \sum_{i;j} (C^{-1})_{ij} q_i q_j$ Charge increase/decrease operators Capacitance Matrix

Results for 2 rhombi samples:								
L (contact)	E _C (Geom)	E _J (Am-B)	E ₂ (Exp)	E ₂ (Theor)				
0.17	0.6	2.2	0.12-0.15	0.10				
0.21	0.42	3.3	0.3	0.4				
0.27	0.26	5.3	0.6?	1.2?				

Improved design

Effect of the gate potential

Oscillations of critical current ~1-2 nA which correspond to $\Delta E_2 \sim 0.02$ -0.04 E_C in agreement with numerical simulations

Conclusions

- Parallel chains of approximately π-periodic discrete Josephson elements should provide 'topological' protection from the noise: decoupling in higher orders or suppressed linear order.
- Problem of soft phase fluctuations in long chains can be solved by hierarchical construction
- Experimental realization shows appearance of π-periodicity which magnitude is in (rough) agreement with theoretical predictions and suppression of 2π-periodicity.
- Observed gate periodicity is in agreement with theoretical expectations.

Next steps

- We need to confirm the quantum nature of the fluctuations. For this we shall try to
- A. To measure the gap in the spectrum directly by microwave spectroscopy
- B. We need to optimize the parameters to find the values that produce largest ratio of the second harmonics to the first
- Measurements of the qubit coherence