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Sometimes… noise is NOT the signal!
[… sorry, Mr. Landauer]

• Noise can lead to energy relaxation (     )
dephasing (     )

• Persistent problem with superconducting qubits: short 

bad for qubit!

Reduce noise itself Reduce sensitivity to noise�
design improved quantum circuits�
find smart ways to beat the noise!

Paradigmatic example: 
sweet spot for the Cooper Pair Box

Quantronics Group (Saclay)
D. Vion et al., Science 296, 886 (2002).

�

materials science approach�
eliminate two-level fluctuators

J. Martinis et al.,
PRL 95, 210503 (2005)



CPB as a charge qubit, sweet spot

Charge limit:

big
small perturbation

only sensitive 
to 2nd order 
fluctuations in 
gate charge!

en
er

gy

sweet spot

Vion et al., 
Science 296, 886 (2002)(gate charge)



Make the sweet spot sweeter:
increase EJ/EC

Steve can see it
with his naked eye!

Island volume ~1000 times bigger
than conventional CPB island

Anharmonicity
decreases…

Flatter charge dispersion,
become insensitive to

charge noise !

…only 
algebraically …exponentially!

charge 
dispersion anharmonicity



Quantum rotor picture for the CPB

quantum rotor
(charged, in constant

magnetic field             )

Schrödinger eq. for the CPB circuit (phase basis)�

has exact solution 
(Mathieu functions, Mathieu characteristic values)
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Exponential suppression of charge noise:
it works!

Data: Schoelkopf Lab 2007 (unpublished)



�

coherent control,      

�
quantum information processing�

conditional quantum evolution,      
�

quantum feedback�

decoherence

Cavity & circuit quantum 
electrodynamics

2g = vacuum Rabi freq.

κκκκ = cavity decay rate
γγγγ = “transverse” decay rate

strong coupling:  g > κ , γ 

• coupling atom / discrete mode of EM field

• central paradigm for study of open quantum systems



qubit

resonator mode

Coupling transmon - resonator

coupling to resonator:

Generalized Jaynes-Cummings Hamiltonian

Dispersive limit: dynamical Stark shift Hamiltonian�
QND readout, coherent control

coupling becomes even bigger!



Strong coupling to cavity
CPB

2g = 12MHz

Transmon: 2g ~ 350 MHz

(coupling even stronger!)

• Transition dipole matrix element 
gets larger

• Measure vacuum Rabi avoided 
crossings to see large coupling

Data: Schoelkopf Lab 2007 (unpublished)



T1 = 2.8 µs

Coherence in 2nd generation transmon
T1 Measurement

Schoelkopf Lab 2007

still not limited by 1/f noise!

At flux sweet spot:

dephasing time

T2 = 1.75 µs

Ramsey experiment

no echo, 
not at flux sweet spot



Consistent T1 times for seven qubits

Silicon
Q = 100

sapphire
Q ~ 100

sapphire
Q ~10,000 loss tangent

= 10-5 (?)

�
multimode Purcell decay

Data: Schoelkopf Lab 2007 (unpublished)



Cavity as a Quantum Bus:
circuit QED with two qubits

�
two (several) qubits in resonator�
coupling via virtual photons

Schoelkopf Lab –
J. Majer, …, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf,  Nature 449, 443 (2007)

�
multiplexed control and readout�
resonator as “quantum bus”

similar work: M.A. Sillanpää, J.I. Park, R.W. Simmonds, Nature 449, 438 (2007)



1 and 2-qubit gates with the quantum bus

Control and measurement of 
individual qubits Coherent 2-qubit oscillations



Design for six qubits
coupled on a single bus, with individual flux control

Sample box with
8 x 20 GHz connections

6 flux lines: qubit addressing,
2 flux lines: input/output

for measurement and control

In Out

Q1 Q2 Q3

Q4 Q5 Q6

Schoelkopf lab



Summary

• Need to improve coherence in superconducting qubits�

reduce overall noise (materials science)�

reduce sensitivity to noise (sweet spots, new quantum circuits)

• Transmon:  optimized CPB by increasing�

become exponentially insensitive to charge noise!�

retain sufficient anharmonicity (loss only algebraic)�

confirmed in recent experiments (T1~3µs, T2~2µs)

• circuit QED with transmons�
one and two-qubit gates�
multiplexed control and readout via the cavity�
quantum optics with circuits

transmon


