High capacitance electrochemical capacitors (ultracapacitors or supercapacitors) are recognized as a key component for many energy storage systems because of their ability to deliver pulsed power and provide load leveling.1-3 In the last decade, ultracapacitors have gained widespread attention in large commercial applications, such as electric or hybrid powered vehicles and power backup systems. The need for high power pulsed energy is also critical for the operation of autonomous microelectronic systems such as microsensors or microelectromechanical systems.4 The size constraints of such microdevices require power sources with high energy and power per unit mass and/or volume in a package of commensurate size. These requirements are unable to be met by the current generation of microbatteries or micro-fuel cells alone.4,5 Thus microulcaracitors provide a solution for micro-power generation through integration with high specific power and specific energy with over 1100 mW/g at approximately 9 mWh/g for an 80 µg cell with a footprint of 2 mm2 and a thickness of 15 µm.

© 2003 The Electrochemical Society. [DOI: 10.1149/1.1563650] All rights reserved.

High capacitance electrochemical capacitors (ultracapacitors or supercapacitors) are recognized as a key component for many energy storage systems because of their ability to deliver pulsed power and provide load leveling.1-3 In the last decade, ultracapacitors have gained widespread attention in large commercial applications, such as electric or hybrid powered vehicles and power backup systems. The need for high power pulsed energy is also critical for the operation of autonomous microelectronic systems such as microsensors or microelectromechanical systems.4 The size constraints of such microdevices require power sources with high energy and power per unit mass and/or volume in a package of commensurate size. These requirements are unable to be met by the current generation of microbatteries or micro-fuel cells alone.4,5 Thus microulcaracitors provide a solution for micro-power generation through integration with high specific power and specific energy with over 1100 mW/g at approximately 9 mWh/g for an 80 µg cell with a footprint of 2 mm2 and a thickness of 15 µm.

© 2003 The Electrochemical Society. [DOI: 10.1149/1.1563650] All rights reserved.

We have successfully employed laser direct write and micromachining to fabricate high capacity hydrous ruthenium oxide (RuO2 · xH2O) ultracapacitors. A laser direct-write process is used to deposit uniform pads of RuO2 · 0.5H2O in sulfuric acid under ambient temperature and atmospheric conditions. Ultraviolet laser micromachining is used to tailor the shape and size of the deposited material into planar electrodes. The specific capacitance of the laser-deposited materials is comparable to reported values of ~720 F/g. The microultracapacitors demonstrate linear charge and discharge behavior at currents below 1 mA, as expected for an ideal capacitor. By studying the charge storage and power output as a function of discharge current, the power can be successfully modeled assuming only simple ohmic losses. Parallel and series combinations of these microultracapacitors cells provide the expected addition of capacitance. Maximum discharge currents of 50 mA are applied to two cells in parallel without damage to the microultracapacitor cells. The micoulcaracitors exhibit high specific power and specific energy with over 1100 mW/g at approximately 9 mWh/g for an 80 µg cell with a footprint of 2 mm2 and a thickness of 15 µm.

© 2003 The Electrochemical Society. [DOI: 10.1149/1.1563650] All rights reserved.

High capacitance electrochemical capacitors (ultracapacitors or supercapacitors) are recognized as a key component for many energy storage systems because of their ability to deliver pulsed power and provide load leveling.1-3 In the last decade, ultracapacitors have gained widespread attention in large commercial applications, such as electric or hybrid powered vehicles and power backup systems. The need for high power pulsed energy is also critical for the operation of autonomous microelectronic systems such as microsensors or microelectromechanical systems.4 The size constraints of such microdevices require power sources with high energy and power per unit mass and/or volume in a package of commensurate size. These requirements are unable to be met by the current generation of microbatteries or micro-fuel cells alone.4,5 Thus microulcaracitors provide a solution for micro-power generation through integration with high specific power and specific energy with over 1100 mW/g at approximately 9 mWh/g for an 80 µg cell with a footprint of 2 mm2 and a thickness of 15 µm.

© 2003 The Electrochemical Society. [DOI: 10.1149/1.1563650] All rights reserved.

We have successfully employed laser direct write and micromachining to fabricate high capacity hydrous ruthenium oxide (RuO2 · xH2O) ultracapacitors. A laser direct-write process is used to deposit uniform pads of RuO2 · 0.5H2O in sulfuric acid under ambient temperature and atmospheric conditions. Ultraviolet laser micromachining is used to tailor the shape and size of the deposited material into planar electrodes. The specific capacitance of the laser-deposited materials is comparable to reported values of ~720 F/g. The microultracapacitors demonstrate linear charge and discharge behavior at currents below 1 mA, as expected for an ideal capacitor. By studying the charge storage and power output as a function of discharge current, the power can be successfully modeled assuming only simple ohmic losses. Parallel and series combinations of these microultracapacitors cells provide the expected addition of capacitance. Maximum discharge currents of 50 mA are applied to two cells in parallel without damage to the microultracapacitor cells. The micoulcaracitors exhibit high specific power and specific energy with over 1100 mW/g at approximately 9 mWh/g for an 80 µg cell with a footprint of 2 mm2 and a thickness of 15 µm.

© 2003 The Electrochemical Society. [DOI: 10.1149/1.1563650] All rights reserved.
The substrate is a 1 × 1 cm gold-coated quartz wafer that has been laser machined with a "window pane" structure to electrically isolate four current collector pads (Fig. 1b). Hydrous ruthenium oxide films, approximately 1.3 mm thick, are deposited across the machined groove in the gold. A 20 μm wide line is then UV laser machined across the film to establish a symmetric planar ultracapacitor with two identical 0.5 × 2 mm × 15 μm electrodes. Two such ultracapacitors are deposited on each substrate, as shown in Fig. 1c. For the cyclic voltammetry (CV) experiments, a single 2.3 × 2.3 mm RuO₂ · 0.5H₂O pad is deposited on graphite foil and no micromachining is performed.

We use white light interferometry (Zygo New View 5022) to determine the actual surface morphology as well as the volume of the ultracapacitor cells, which is approximately 3 × 10⁻⁵ mL per ultracapacitor cell. The mass of the ultracapacitors is measured on a microbalance (Sartorius M2P) where the typical mass, following deposition and micromachining, is approximately 100 μg. For this measurement we include the mass of the active material as well as the transferred H₂SO₄, but do not include the mass of the substrate or gold current collectors. Due to differences in the thickness of the ink coating on the glass plate from run to run, the actual values for volume and mass may vary by as much as 20% for different cells.

To prevent delamination of the electrodes, a Nafion film is formed on top of the RuO₂ · 0.5H₂O by drop casting a 5% ionomer solution (Ion Power, Liquion 1100) on the deposited material and air drying. The RuO₂ · 0.5H₂O-Nafion ensemble is then covered by a droplet of 0.5 M H₂SO₄ solution and is allowed 5-10 min to equilibrate before acquiring data. Electrochemical evaluation of capacitance through CV and chronopotentiometry is carried out using a potentiostat (EG&G PAR model 263) connected to a probe station. Multiple chronopotentiometry steps are used to charge and discharge the ultracapacitors between 0 and 1 V in a two-electrode configuration. All cells tested for this work are charged at a constant current of 50 mA. CV is performed in 0.5 M H₂SO₄ over the potential range of 100-900 mV vs. a normal hydrogen electrode (NHE) at various scan rates in a three electrode configuration using a Pd/H reference electrode and a platinum counterelectrode. All potentials reported in this paper are relative to NHE.

Results and Discussion

Electrochemical characterization of deposited material.—The voltammetric behavior of a laser transferred electrode coated with Nafion on graphite foil is shown in Fig. 2 for a scan rate of 5 mV/s over the potential window of 100-900 mV in 0.5 M H₂SO₄ at ambient temperatures. The open circuit potentials (OCPs) for these samples range between 750 and 850 mV. Voltammetry curves show nearly constant current behavior over the potential window, indicative of ideal capacitative behavior as previously reported for the hydrous ruthenium oxide system.⁷ ²¹ The specific capacitance of the electrode material is calculated from $c = I/mv$, where v is the voltage scan rate, I is the measured current, and m is the mass of active material only. For this particular sample, the mass is 70 μg with an electrode area of 5 mm². The average value of 720 F/g, obtained by averaging the current over the entire voltage window, is consistent with the reported literature values for RuO₂ · 0.5H₂O deposited
charged at 50 mA and discharged at (a) 10 μA and (b) 5 mA. The dashed line in (b) represents an extrapolation of the linear discharge regime.

region to \(t = 0 \), as shown by a dashed line in Fig. 3b.\(^{22}\) We find a resistance, \(R = 75 \ \Omega \) at a 10 mA discharge current. The measured resistance is primarily due to the resistivity of the electrolyte which is 3-4 orders of magnitude higher than that of the metallically conductive \(\text{RuO}_2 \cdot 0.5\text{H}_2\text{O} \) (\(\rho \sim 1-10 \ \Omega \ \text{cm} \) vs. 3.23 mΩ cm). A simple calculation of the electrolyte resistance based on our electrode geometry (neglecting porosity) yields a resistance of 10-100 Ω which is consistent with our measured value. The resistance capacitance (RC) time constant of the microultracapacitor cell is approximately 0.5 s.

The relationship between power output and discharge current demonstrates the importance of internal cell resistance and is shown in Fig. 4. The power of the microultracapacitor cells is calculated from the area under the discharge curve between 0 and 1 V using the equation

\[
P = \frac{I^2 V dt}{\Delta t}
\]

where \(\Delta t \) is the total discharge time which depends on the discharge current, \(I \). The power increases linearly for currents below 1 mA as expected for a capacitor. At higher currents, the power is no longer proportional to the discharge current because of contributions of the polarization losses in the system. The full treatment of total polarization losses and how they affect the power in such a capacitor has been discussed extensively in the literature (for example, Ref. 23-25).

We assume that the polarization losses are due primarily to ohmic contributions in this current range and neglect the contribution of activation (Tafel) and concentration polarizations. We can then express the power as

\[
P = \frac{1}{2} (V_0 - IR)
\]

where \(V_0 \) is the reversible potential for the system. Figure 4 shows the parameter-free fit of the data using Eq. 2 with the values \(V_0 \) and \(R \) as measured in our experiment. There is excellent agreement between the calculated and experimental results, even at higher currents, which demonstrates that the ohmic term dominates the polarization losses in our microultracapacitors at the currents examined in this experiment. This result should enable us to make predictions for the power dependence as the cell resistance is changed by modifying the electrode geometry.

Electrochemical characterization of ultracapacitor cell.—The chronopotentiometry of a single microultracapacitor cell is shown by a solid line in Fig. 3a for a constant charging current of 50 μA and a discharge current of 10 μA. Linear behavior is observed during both charging and discharging cycles, thereby demonstrating the expected behavior of an ideal capacitor. Under these conditions, the average time for charging is \(\Delta t_c = 130 \pm 2 \ \text{s} \) corresponding to a calculated capacitance of \(C_c = 6.5 \pm 0.1 \ \text{mF} \), where the uncertainty is determined by statistical analysis of 50 charging/discharging cycles. The capacitance calculated from the discharge portion of the chronopotentiometry gives similar values of capacitance with \(\Delta t_d = 640 \pm 5 \ \text{s} \) and \(C_d = 6.4 \pm 0.05 \ \text{mF} \). The specific capacitance is determined by normalizing the actual capacitance by the experimentally measured mass of the deposited material (active material and electrolyte), 80 ± 2 μg, yielding \(c_c = 80 \pm 2.5 \ \text{F/g} \) and \(c_d = 78 \pm 2.3 \ \text{F/g} \). The values for specific capacitance may vary by as much as 5% from cell to cell.

At high discharge currents (above 1 mA), there is a transient, nonlinear behavior due to resistive losses in the system. Figure 3b shows the discharge of a microultracapacitor cell at 5 mA for a total discharge time of 260 ± 2 ms. A single cell can be discharged at currents up to 10 mA without irreversible damage. The total resistance of the cell is estimated by extrapolating the linear discharge
Figure 6 shows the charge and discharge curves at currents of 50 and 100 mA to determine their ability to supply higher currents and voltages. The deviation from linear behavior in power occurs at discharge currents ~2 mA and at 20 mA the ohmic losses cause a significant decrease in the available power.

The charge efficiency of the microultracapacitor as a function of discharge current is shown in Fig. 5. We define the charge efficiency, e, as the amount of charge extracted during discharge normalized by the amount of charge added to the system during charging, $e = Q_{\text{out}}/Q_{\text{in}}$. The data appears to decay as a simple exponential with 90% efficiency occurring for a current of approximately 300 μA. We use β as a free fitting parameter in the equation, $e = \exp(-\beta I)$ to generate the fit for $\beta = 0.33$ mA^{-1} shown with a solid line in the figure.

A decrease in charge efficiency with increasing current is expected due to polarization losses. However, the dashed line in Fig. 5 shows this behavior if we assume only ohmic losses in the system as in Eq. 2. Based on theoretical considerations, the addition of simple concentration or activation polarizations to the total overpotential would not significantly improve the fit as they provide terms of order $\ln(I)$ instead of the exponential dependence observed in our experiment. A similar behavior has been experimentally observed by others21,26 and was suggested to be related to the decrease in electrode capacitance as a function of increasing voltage scan rate.

Parallel and series combinations.—We examine the combination of our microultracapacitor cells in parallel and series configurations to determine their ability to supply higher currents and voltages. Figure 6 shows the charge and discharge curves at currents of 50 and 10 μA, respectively, for series and parallel configurations of two cells. The series configuration is charged to 2 V while the parallel configuration is charged to 1 V. In both cases, the discharge behavior remains nearly linear. The capacitance for the combinations are 3.5 ± 0.06 mF in series and 14.1 ± 0.25 mF in parallel, averaged over 50 cycles. In comparison, the capacitance of the individual capacitors are 6.5 and 8.3 mF with the calculated series and parallel combinations of 3.65 and 14.8 mF, respectively. Our measured capacitances for series and parallel combinations exhibit the proper addition of capacitance (within 5%) as compared to the theoretical combination of the individual cells.

Figure 7 shows the power as a function of the discharge current for the individual cell as well as that for the series and parallel combinations of two similar cells. In this plot, the power is calculated between 0 and 1 V for the single cell and the parallel combination and between 0 and 2 V for the series combination. As for the single cell, the power increases with current until the polarization losses cause the power to diverge from linear behavior and eventually decrease as a function of current. For the two cells in parallel, there is less of a deviation from linear behavior at high currents because the reduced resistance decreases the ohmic losses. The correspondingly smaller initial IR drop enables the parallel combination of cells to be discharged at currents as high as 50 mA without damage. In the case of two cells in series, the power is approximately twice that of a single cell, because of the doubled potential. The deviation from linear behavior in power occurs at discharge currents ~2 mA and at 20 mA the ohmic losses cause a significant decrease in the available power.

Specific power and specific energy.—The specific power is compared to the specific energy in Fig. 8 for our microultracapacitor cells. We have normalized the power and energy by the mass of the deposited material (RuO$_2$·0.5H$_2$O plus transferred electrolyte). The masses of the substrate, encapsulation, and additional electrolyte are not included in this calculation. Such an accounting of mass is justified for these microultracapacitors because, under typical applications, they would be directly integrated on the substrate of a completed device (such as a microsensor or transmitter).6

The specific power increases with decreasing specific energy as predicted by others.27,28 For a single cell of mass 80 μg and volume
of 3×10^{-5} mL at 95% efficiency, the specific power is 1100 mW/g (2900 mW/mL) with a specific energy of 9 mWhr/g (24 mWhr/mL). By using combinations of two cells, we are able to obtain higher specific power while the specific energy reaches the same maximum. At 95% efficiency for parallel and series combinations, the specific energy is the same, but the specific power is over 2000 mW/g. Given our accounting of mass, these results provide some of the highest specific power reported for hydrous ruthenium oxide.\(^1\)

Conclusion

We have demonstrated the use of a laser engineering process based on laser direct write and laser micromachining to manufacture planar hydrous ruthenium oxide microultracapacitors with excellent electrochemical properties. CV measurements show that the transferred materials maintain the high specific capacitance of RuO$_2$·0.5H$_2$O. The constant current charge and discharge behavior exhibits ideal capacitor behavior at discharge currents below 1 mA with deviations due to ohmic losses at higher currents. The power of the cells as a function of discharge current is successfully modeled as an ideal capacitor with ohmic polarizations and we are able to fit our data without the need for adjustable parameters. The microultracapacitors add in series and parallel which enables us to obtain higher voltages and discharge currents as high as 50 mA without damage to the cells. High specific power (>104 mW/g) as well as specific energy (10 mWhr/g) are obtained by the microultracapacitor cells with a specific power of ~1100 mW/g at a charge efficiency of 95%. These values compare favorably to those reported in the literature for hydrous ruthenium oxide ultracapacitors. The favorable properties of these planar microultracapacitors fabricated by laser engineering opens the door to new advances in micro power sources for next generation microdevices.

Acknowledgments

This research was supported in part by the Office of Naval Research. C.B.A. acknowledges the support of the National Research Council postdoctoral associate program and R.C.W. acknowledges the support of the American Society for Engineering Education postdoctoral associate program.

The Naval Research Laboratory assisted in meeting the publication costs of this article.

References