Anisotropic crystallization in solution processed chalcogenide thin film by linearly polarized laser
Tingyi Gu, Hyuncheol Jeong, Kengran Yang, Fan Wu, Nan Yao, Rodney D. Priestley, Claire E. White, and Craig B. Arnold

Citation: Appl. Phys. Lett. 110, 041904 (2017); doi: 10.1063/1.4975067
View online: http://dx.doi.org/10.1063/1.4975067
View Table of Contents: http://aip.scitation.org/toc/apl/110/4
Published by the American Institute of Physics

Articles you may be interested in
Decoupling interface effect on the phase stability of CdS thin films by van der Waals heteroepitaxy
Appl. Phys. Lett. 110, 041602 (2017); 10.1063/1.4974855

Micro-buried spiral zone plate in a lithium niobate crystal
Appl. Phys. Lett. 110, 041102 (2017); 10.1063/1.4974351

Bulk water freezing dynamics on superhydrophobic surfaces
Appl. Phys. Lett. 110, 041604 (2017); 10.1063/1.4974296

Fabrication and applications of multi-layer graphene stack on transparent polymer
Appl. Phys. Lett. 110, 041901 (2017); 10.1063/1.4974457

Polarization multiplexing in large-mode-area waveguides and its application to signal enhancement in multiphoton microscopy
Appl. Phys. Lett. 110, 041101 (2017); 10.1063/1.4974856

Higher-order diffraction suppression of free-standing quasiperiodic nanohole arrays in the x-ray region
Appl. Phys. Lett. 110, 041104 (2017); 10.1063/1.4974940
Anisotropic crystallization in solution processed chalcogenide thin film by linearly polarized laser

Tingyi Gu,1 Hyuncheol Jeong,2 Kengran Yang,3,4 Fan Wu,5 Nan Yao,5 Rodney D. Priestley,2,5 Claire E. White,3,4 and Craig B. Arnold5,a)

1Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716, USA
2Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
3Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, USA
4Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, USA
5Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA

(Received 12 December 2016; accepted 17 January 2017; published online 24 January 2017)

The low activation energy associated with amorphous chalcogenide structures offers broad tunability of material properties with laser-based or thermal processing. In this paper, we study near-bandgap laser induced anisotropic crystallization in solution processed arsenic sulfide. The modified electronic bandtail states associated with laser irradiation lead to a distinctive photoluminescence spectrum, compared to thermally annealed amorphous glass. Laser crystallized materials exhibit a periodic subwavelength ripple structure in transmission electron microscopy experiments and show polarization dependent photoluminescence. Analysis of the local atomic structure of these materials using laboratory-based X-ray pair distribution function analysis indicates that laser irradiation causes a slight rearrangement at the atomic length scale, with a small percentage of S-S homopolar bonds converting to As-S heteropolar bonds. These results highlight fundamental differences between laser and thermal processing in this important class of materials. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4975067]

Chalcogenide materials have the ability to transform among various states, ranging from random amorphous networks to atomically ordered crystalline states when exposed to modest energy such as that associated with optical or thermal processes.1-5 These different structures typically exhibit significant optical refractive index contrast, as well as differences in electronic conductivities and other material properties. Among various tuning schemes, laser processing is especially interesting as it enables precise control of the amount of energy delivered into a specific targeted region. Such methods have been explored for tuning integrated photonic devices6-13 as well as for controlling dichroism or polarization dependent photodarkening phenomena in these materials.14-18 It has been shown that the precise atomic structure depends on the wavelength, duration, and intensity of laser irradiation.18

In the case of solution processed chalcogenide materials,5,12 laser heating from above band-gap illumination has been shown to remove excess solvent related components to densify films and modify the surface chemistry and surface morphology.3 It has been shown in arsenic sulfide (As2S3) that laser heating can induce thermal effects capable of breaking the chalcogenide-solvent bond. Furthermore, laser exposure can affect the structural properties of chalcogenide materials through polarization dependent athermal phenomena.11 Such a process can cause redistribution of atomic clusters or chemical reactions leading to anisotropic properties.14-18

In this paper, we show that near-band gap laser irradiation can lead to structural changes unlike those associated with thermal processing. Beginning with a solution processed glass As2S3 film, laser processing results in crystallization and corresponding anisotropies in optical properties. Photoluminescence (PL) measurements show well-defined shifts in emission peaks relative to thermally annealed materials while pair distribution function (PDF) analysis highlights the changes in bonding structure within the films. As2S3 solution is prepared as in prior work by dissolving amorphous As2S3 powder in propylene.12 This solution is then spin-cast or drop coated on a substrate (TEM grid or silica microscope slide) and thermally processed at different temperatures as specified in the results. Fig. 1(a) shows the

![FIG. 1. Laser Gaussian beam induced pattern on the chalcogenide thin film. (a) Optical image of the solution processed As2S3 film drop-cast on the TEM grid, observed under a 100× microscope after a laser exposure of 10 s, with an average power of 160 μW/μm². Scale bar: 5 μm. (b) Electron diffraction pattern for the region before laser crystallization and (c) crystallized region near the center of the beam (40 μW/μm²). The red line shows the preferred nanocrystal orientation. (d) The crystallized region after laser exposure with 160 μW/μm². (e) A corresponding dark-field image showing the real-space structure as in (c), through the aperture in the blue circle.](Image)
optical image of As$_2$S$_3$ drop cast on a TEM grid (carbon coated, copper grid). The TEM grid size is 10 $\mu m \times 10 \mu m$. A 532 nm laser beam and Gaussian beam profile are concentrated in the middle of the film, and the bright circles in Fig. 1(a) indicate the extent of the laser beam. The dark spot in the center of the laser exposed region shows the laser crystalized area. TEM (Phillips CM200) is performed at 200 keV in bright-field, dark-field, and diffraction conditions. The diffraction pattern of the unexposed material shows blurry rings indicating the amorphous nature of the solution processed As$_2$S$_3$ (Fig. 1(b)). In comparison, the diffraction pattern from the center of the laser-exposed area shows a clear crystalline structure formed under both low (40 $\mu W/\mu m^2$) and high (160 $\mu W/\mu m^2$) laser intensities.

The measured lattice spacings for the low intensity exposure (2.636 Å and 1.512 Å) correspond to polycrystalline As$_4$S$_4$ (2.636 Å and 1.513 Å). Also, the polycrystalline structure shows a preferred orientation indicated with an intensity enhancement in the diffraction as shown in Fig. 1(c) (marked with a circle). The TEM diffraction pattern of high laser intensity exposure shows distinct periodic spots indicating a single crystal type structure (Fig. 1(d)). As a small aperture is placed covering only the diffracted beams in the circled region in Fig. 1(c), a dark-field image (Fig. 1(e)) is formed, which shows a Moire pattern of ~10 nm spacing due to the overlap of As$_3$S$_4$ nanostructure crystal layers with preferred orientations.

A Bruker D8 Advance X-ray diffractometer was used to obtain PDFs of the As$_2$S$_3$ system in order to probe its atom-atom correlations. The As$_2$S$_3$ solution is dried in a ceramic pestle and the resulting powder is loaded into a 2.5-in. long capillary and sealed using quick-setting transparent epoxy. The material is then uniformly exposed to a polyimide capillary and sealed using quick-setting transparent epoxy. The As$_2$S$_3$ solution is dried in a ceramic pestle and the resulting powder is loaded into a 2.5-in. long capillary and sealed using quick-setting transparent epoxy. The As$_2$S$_3$ solution is dried in a ceramic pestle and the resulting powder is loaded into a 2.5-in. long capillary and sealed using quick-setting transparent epoxy. The As$_2$S$_3$ solution is dried in a ceramic pestle and the resulting powder is loaded into a 2.5-in. long capillary and sealed using quick-setting transparent epoxy.

![Fig. 2. Laboratory X-ray PDF data for solution processed sample before laser exposure (as prepared), after low laser exposure (532 nm, 30 $\mu W/\mu m^2$) and high intensity laser exposure (532 nm, 120 $\mu W/\mu m^2$). Inset: The peak intensity ratio of the first nearest neighbor correlation intensity (i) to the second (ii).](image-url)
by DSC are consistent with the FTIR measurement results, where the FTIR peaks representing the solvent bonds disappear after annealing beyond 135°C of the endothermic peak.

The PL spectra were collected by coupling the light scattered from the sample to a Horiba Raman spectrometer through a 100× objective, focusing the probe laser (532 nm) spot to 1.5 μm2. The excitation laser intensity is controlled below 0.4 μW/μm2 to minimize nonlinear response and minimize any subsequent modifications to the material. The presence of the solvent in As2S3 prevents photoluminescence, and only samples annealed above DSC measured endothermic peak around 135°C exhibit a strong photoluminescence signal. As the glass restructures with thermal annealing at 160°C and 185°C, the defect levels in solution processed As2S3 give rise to a broadband emission spectrum in the visible band, centered at 680 nm. In the band diagram inset of Figs. 3(b) and 3(c), the black arrow conceptualizes the As2S3 absorption with near bandgap energy, and the grey arrows show photoluminescence from the defects levels. Laser crystallized As2S4 has particular energy levels for radiative recombination compared to thermally processed samples and the PL spectrum shows significant differences (Fig. 3(c) vs 3(b)). In particular, the laser irradiated samples show a red shift in the center of the PL spectrum from 680 nm for the thermally processed samples to 750 nm for the laser processed samples.

Thermal annealing removes solvent species to form isotropic amorphous films, while the polarized laser crystallizes the chalcogenide material (Fig. 1(e)). The anisotropy of the crystal would be expected to exhibit an excitation polarization dependence in the PL spectrum. After crystallization of the material by high intensity laser (532 nm), we probe the modified PL of the crystallized region on the same set-up configuration but reduce the laser power to monitor the PL spectrum. Figure 4(a) shows the PL spectrum from laser crystallized materials under different excitation polarizations of 0°, 45°, 90°, 135°, and 180°. The polarization degree is relative to the one of crystallization laser. We see that the maximum emission intensity occurs for 90° showing a 50%
enhancement of photoluminescence relative to the parallel polarization (0°) further confirming the preferred anisotropy in the polycrystalline structure shown in Fig. 1(c).

We studied the localized atomic structure change in solution processed arsenic sulfide by near bandgap laser exposure. Fundamental differences between thermal and laser-based processing are observed by thermal, optical, X-ray, and electron microscopy characterization corresponding to differences in the structural properties of the material. These locally crystallized anisotropic chalcogenide materials could be incorporated for designing new components in integrated photonic devices.

The authors thank Professor Yueh-Lin Loo of Princeton University and facility at Imaging and Analysis Center at Princeton University for their intriguing discussions. This work was supported by NSF through the MIRTHE Center (Grant No. EEC-0540832) and MRSEC Center (Grant No. DMR-1420541). T.G. acknowledges partial support from the School of Engineering and Department of Electrical and Computer Engineering at University of Delaware.

The authors declare no competing financial interest.