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Lockheed F-104

• What use are the equations of motion?
• How is the angular orientation of the 

airplane described?
• What is a cross-product-equivalent matrix?
• What is angular momentum?
• How are the inertial properties of the 

airplane described?
• How is the rate of change of angular 

momentum calculated?

Learning Objectives

Reading:
Flight Dynamics

155-161
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Review Questions
§ What characteristic(s) provide maximum gliding 

range?
§ Do gliding heavy airplanes fall out of the sky faster 

than light airplanes?
§ Are the factors for maximum gliding range and 

minimum sink rate the same?
§ How does the maximum climb rate vary with altitude?
§ What are “energy height” and “specific excess 

power”?
§ What is an “energy climb”?
§ How is the “maneuvering envelope” defined?
§ What factors determine the maximum steady turning 

rate?
2

2

http://www.princeton.edu/~stengel/MAE331.html
http://www.princeton.edu/~stengel/FlightDynamics.html


2

Dynamic Systems

Dynamic Process: Current state depends on 
prior state
x = dynamic state 
u =  input 
w = exogenous disturbance
p = parameter
t or k = time or event index

Observation Process: Measurement may 
contain error or be incomplete
y = output (error-free)
z = measurement
n = measurement error

Sensors

Actuators

3

dx(t)
dt

= f x(t),u(t),w(t),p(t),t[ ]
y t( ) = h x(t),u(t)[ ]
z t( ) = y t( ) + n t( )

3

Ordinary Differential Equations 
Fall Into 4 Categories

dx(t)
dt

= f x(t),u(t),w(t)[ ]

dx(t)
dt

= f x(t),u(t),w(t),p(t),t[ ] dx(t)
dt

= F(t)x(t) +G(t)u(t) + L(t)w(t)

dx(t)
dt

= Fx(t) +Gu(t) + Lw(t)

4
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• Nonlinear equations of motion
– Compute “exact” flight paths and 

motions
• Simulate flight motions
• Optimize flight paths
• Predict performance

– Provide basis for approximate 
solutions

• Linear equations of motion
– Simplify computation of 

flight paths and solutions
– Define modes of motion
– Provide basis for control 

system design and flying 
qualities analysis

What Use are the Equations of Motion?

dx(t)
dt

= f x(t),u(t),w(t),p(t),t[ ]

dx(t)
dt

= Fx(t) +Gu(t) + Lw(t)
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Examples of Airplane Dynamic 
System Models

• Nonlinear, Time-Varying
– Large amplitude motions
– Significant change in mass

• Nonlinear, Time-Invariant
– Large amplitude motions
– Negligible change in mass

• Linear, Time-Varying
– Small amplitude motions
– Perturbations from a 

dynamic flight path

• Linear, Time-Invariant
– Small amplitude motions
– Perturbations from an 

equilibrium flight path

6
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Translational Position

7
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Position of a Particle
Projections of vector magnitude on three axes

r =
x
y
z
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⎥

=  Direction cosines
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Cartesian Frames of Reference
• Two reference frames of interest

– I: Inertial frame (fixed to inertial space)
– B: Body frame (fixed to body)

Common convention (z up) Aircraft convention (z down)

• Translation
– Relative linear positions of origins

• Rotation
– Orientation of the body frame with 

respect to the inertial frame

9
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Measurement of Position in 
Alternative Frames - 1

• Two reference frames of interest
– I: Inertial frame (fixed to 

inertial space)
– B: Body frame (fixed to body)

• Differences in frame orientations must 
be taken into account in adding vector 
components

r =
x
y
z

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

rparticle = rorigin + Δrw.r .t .origin

Inertial-axis view

Body-axis view
10
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Measurement of Position in 
Alternative Frames - 2

rparticleI = rorigin−BI +HB
I ΔrB

Inertial-axis view

Body-axis view

rparticleB = rorigin−IB +H I
BΔrI

11
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Rotational Orientation

12
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Direction Cosine 
Matrix

H I
B =

cosδ11 cosδ 21 cosδ 31
cosδ12 cosδ 22 cosδ 32
cosδ13 cosδ 23 cosδ 33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

• Projections of unit vector 
components of one reference 
frame on another

• Rotational orientation of one 
reference frame with respect 
to another

• Cosines of angles between 
each I axis and each B axis

rB = H I
BrI

13
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Properties of the Rotation Matrix

Orthonormal transformation
Angles between vectors are preserved

Lengths are preserved

rI = rB ; s I = sB
∠(rI ,s I ) = ∠(rB ,sB ) = xdeg

r s

14

H I
B =

cosδ11 cosδ 21 cosδ 31
cosδ12 cosδ 22 cosδ 32
cosδ13 cosδ 23 cosδ 33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
I

B

=
h11 h12 h13
h21 h22 h23
h31 h32 h33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
I

B

rB = H I
BrI sB = H I

Bs I
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Euler Angles

15

ψ :  Yaw angle
θ :   Pitch angle
φ :   Roll angle

• Body attitude measured with respect to inertial frame
• Three-angle orientation expressed by sequence of 

three orthogonal single-angle rotations

Inertial⇒ Intermediate1 ⇒ Intermediate2 ⇒ Body

• 24 (±12) possible 
sequences of single-axis 
rotations

• Aircraft convention: 3-2-
1, z positive down

15

Euler Angles Measure the Orientation of 
One Frame with Respect to the Other

• Conventional sequence of rotations from inertial to body frame
– Each rotation is about a single axis
– Right-hand rule 
– Yaw, then pitch, then roll
– These are called Euler Angles

Yaw rotation (ψ) about zI Pitch rotation (θ) about y1 Roll rotation (ϕ) about x2

Other sequences of 3 rotations can be chosen; however, once 
sequence is chosen, it must be retained 16

16
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Reference Frame Rotation from Inertial 
to Body: Aircraft Convention (3-2-1) 

Yaw rotation (ψ) about zI axis

Pitch rotation (θ) about y1 axis

Roll rotation (ϕ) about x2 axis

x
y
z

⎡
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⎢
⎢
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=
cosψ sinψ 0
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0 0 1
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0 1 0
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⎥
⎥
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r1 = H I
1rI

r2 = H1
2r1 = H1

2H I
1⎡⎣ ⎤⎦rI = H I

2rI

rB = H2
Br2 = H2

BH1
2H I

1⎡⎣ ⎤⎦rI = H I
BrI
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The Rotation Matrix

H I
B(φ,θ ,ψ)=H2

B(φ)H1
2 (θ )H I

1 (ψ)

The three-angle rotation matrix is the product of 3 
single-angle rotation matrices:

=
1 0 0
0 cosφ sinφ
0 −sinφ cosφ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

cosθ 0 −sinθ
0 1 0
sinθ 0 cosθ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

cosψ sinψ 0
−sinψ cosψ 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

an expression of the Direction Cosine Matrix
18

=
cosθ cosψ cosθ sinψ −sinθ

−cosφ sinψ + sinφ sinθ cosψ cosφ cosψ + sinφ sinθ sinψ sinφ cosθ
sinφ sinψ + cosφ sinθ cosψ −sinφ cosψ + cosφ sinθ sinψ cosφ cosθ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

18



10

Rotation Matrix Inverse
Inverse relationship: interchange sub- and superscripts

Because transformation is orthonormal
Inverse = transpose

Rotation matrix is always non-singular

HB
I = H I

B( )−1 = H I
B( )T = H1

IH2
1HB

2

HB
I H I

B = H I
BHB

I = I 19

H I
B(φ,θ ,ψ )⎡⎣ ⎤⎦

−1
= H I

B(φ,θ ,ψ )⎡⎣ ⎤⎦
T
= HB

I (ψ ,θ ,φ)

 

rB = H I
BrI

rI = H I
B( )−1 rB = HB

I rB

19

Checklist
q What are direction cosines?
q What are Euler angles?
q What rotation sequence is used to 

describe airplane attitude?
q What are properties of the rotation 

matrix?

20
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Angular Momentum

21

21

Angular Momentum 
of a Particle

• Moment of linear momentum of differential 
particles that make up the body
– (Differential masses) x components of the 

velocity that are perpendicular to the 
moment arms

• Cross Product:  Evaluation of a determinant with unit vectors (i, j, k)
along axes, (x, y, z) and (vx, vy, vz) projections on to axes

r × v =
i j k
x y z
vx vy vz

= yvz − zvy( ) i + zvx − xvz( ) j + xvy − yvx( )k

dh = r × dm v( ) = r × vm( )dm
= r × vo +ω × r( )⎡⎣ ⎤⎦dm

ω =

ω x

ω y

ω z

"

#

$
$
$
$

%

&

'
'
'
'

22
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Cross-Product-
Equivalent Matrix

 

r × v =
i j k
x y z
vx vy vz

= yvz − zvy( ) i + zvx − xvz( ) j + xvy − yvx( )k

=

yvz − zvy( )
zvx − xvz( )
xvy − yvx( )

#

$

%
%
%
%
%

&

'

(
(
(
(
(

= rv =
0 −z y
z 0 −x
−y x 0

#

$

%
%
%

&

'

(
(
(

vx
vy
vz

#

$

%
%
%
%

&

'

(
(
(
(

Cross-product-equivalent 
matrix

 

r =
0 −z y
z 0 −x
−y x 0

"

#

$
$
$

%

&

'
'
'

Cross product

23

23

Angular Momentum of the Aircraft
• Integrate moment of linear momentum of differential particles over the body

h = r × vo +ω × r( )⎡⎣ ⎤⎦dm
Body
∫ = r × v( )ρ(x, y, z)dxdydz

zmin

zmax

∫
ymin

ymax

∫
xmin

xmax

∫ =

hx
hy
hz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ρ(x, y, z) = Density of the body

 

h = r × vo( )dm
Body
∫ + r × ω × r( )⎡⎣ ⎤⎦dm

Body
∫

= 0 − r × r × ω( )⎡⎣ ⎤⎦dm
Body
∫

= − r × r( )dm × ω
Body
∫ ≡ − !r!r( )dmω

Body
∫

• Choose the center of mass as the rotational center
Supermarine Spitfire

24

24



13

Location of the Center of Mass

25

rcm =
1
m

r dm
Body
∫ =

1
m

rρ(x, y, z)dx dy dz
zmin

zmax

∫
ymin

ymax

∫
xmin

xmax

∫ =

xcm
ycm
zcm

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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The Inertia Matrix

26
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The Inertia Matrix

  
h = − !r !r ω dm

Body
∫ = − !r !r dm

Body
∫ ω = Iω

Inertia matrix derives from equal effect of 
angular rate on all particles of the aircraft

  

I = − !r !r dm
Body
∫ = −

0 −z y
z 0 −x
−y x 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 −z y
z 0 −x
−y x 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
dm

Body
∫

=
(y2 + z2 ) −xy −xz

−xy (x2 + z2 ) −yz

−xz −yz (x2 + y2 )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

dm
Body
∫

ω =

ω x

ω y

ω z

"

#

$
$
$
$

%

&

'
'
'
'

where

27

27

Moments and Products of Inertia

Inertia matrix
  

I =
(y2 + z2 ) −xy −xz

−xy (x2 + z2 ) −yz

−xz −yz (x2 + y2 )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

dm
Body
∫ =

I xx −I xy −I xz

−I xy I yy −I yz

−I xz −I yz I zz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

• Moments of inertia on the diagonal
• Products of inertia off the diagonal

 

I xx 0 0
0 I yy 0

0 0 I zz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

• If products of inertia are zero, (x, y, z) 
are principal axes --->

• All rigid bodies have a set of principal 
axes

Ellipsoid of Inertia

 I xxx
2 + I yyy

2 + I zzz
2 = 1

28
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Inertia Matrix of an Aircraft 
with Mirror Symmetry

  

I =
(y2 + z2 ) 0 −xz

0 (x2 + z2 ) 0
−xz 0 (x2 + y2 )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

dm
Body
∫ =

I xx 0 −I xz

0 I yy 0

−I xz 0 I zz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Nose high/low product 
of inertia, Ixz

North American XB-70

 

Nominal Configuration
Tips folded, 50% fuel, W = 38,524 lb

xcm@0.218 c
I xx = 1.8 ×106  slug-ft2

I yy = 19.9 ×106  slug-ft2

I xx = 22.1×106  slug-ft2

I xz = −0.88 ×106  slug-ft2 29

29

Checklist
q How is the location of the center of 

mass found?
q What is a cross-product-equivalent 

matrix?
q What is the inertia matrix?
q What is an ellipsoid of inertia?
q What does the “nose-high” product of 

inertia represent?

30
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Technology of World War II Aviation
• 1938-45: Analytical and 

experimental approach to design
– Many configurations designed and 

flight-tested 
– Increased specialization; radar, 

navigation, and communication
– Approaching the "sonic barrier”

• Aircraft Design
– Large, powerful, high-flying aircraft
– Turbocharged engines
– Oxygen and Pressurization

Spitfire

P-51D

B-17

Historical Factoids

31

31

Power Effects on Stability and Control

• Brewster Buffalo: over-armored 
and under-powered

• During W.W.II, the size of 
fighters remained about the 
same, but installed horsepower 
doubled (F4F vs. F8F)

• Use of flaps means high power 
at low speed, increasing 
relative significance of thrust 
effects Grumman Bearcat F8F

GrummanWildcat F4F

Brewster Buffalo F2A

32
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World War II Carrier-Based Airplanes

• Takeoff without catapult, relatively low 
landing speed 
http://www.youtube.com/watch?v=4dySbhK
1vNk

• Tailhook and arresting gear
• Carrier steams into wind
• Design for storage (short tail length, folding 

wings) affects stability and control

Chance-Vought F4U Corsair

Grumman TBF

Douglas TBD

F4U

33

33

Multi-Engine Aircraft of World War II

• Large W.W.II aircraft had 
unpowered controls:
– High foot-pedal force
– Rudder stability problems 

arising from balancing to 
reduce pedal force

• Severe engine-out problem 
for twin-engine aircraft

Boeing B-17 Boeing B-29Consolidated B-24

Douglas A-26

North American B-25

Martin B-26

34

34

http://www.youtube.com/watch?v=4dySbhK1vNk
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WW II Military Flying Boats
Seaplanes proved useful during World War II

Lockheed 
PBY 

Catalina

Martin PBM Mariner 

Martin PB2M Mars

Boeing XPBB Sea Ranger

Saunders-Roe SR.36 
Lerwick

Grumman JRF-1 Goose

35

35

Rate of Change of 
Angular Momentum

36

36
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Newton’s 2nd Law, Applied 
to Rotational Motion

In inertial frame, rate of change of angular 
momentum = applied moment (or  torque), M

 
dh
dt

=
d Iω( )
dt

= dI
dt

ω + I dω
dt

37

  

= !Iω + I !ω =M =

mx

my

mz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

37

Angular 
momentum and 
rate vectors are 
not necessarily 

aligned

 h = Iω

Angular Momentum and Rate

38
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How Do We Get Rid of dI/dt in the 
Angular Momentum Equation?

• Dynamic equation in a body-referenced frame
– Inertial properties of a constant-mass, rigid body are 

unchanging in a body frame of reference
– ... but a body-referenced frame is “non-Newtonian”

or “non-inertial”
– Therefore, dynamic equation must be modified for 

expression in a rotating frame

  
d Iω( )
dt

= !Iω + I !ω

Chain Rule ... and in an inertial frame

  !I ≠ 0

39
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Angular Momentum 
Expressed in Two 

Frames of Reference
• Angular momentum and rate

are vectors
– Expressed in either the inertial 

or body frame
– Two frames related algebraically 

by the rotation matrix

hB t( ) = H I
B t( )hI t( ); hI t( ) = HB

I t( )hB t( )

ω B t( ) = H I
B t( )ω I t( ); ω I t( ) = HB

I t( )ω B t( )
40

40
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Vector Derivative Expressed 
in a Rotating Frame

Chain Rule

Consequently, the 2nd term is

 
hI = HB

I hB + HB
I hB

Effect of 
body-frame rotation

Rate of change 
expressed in body frameAlternatively

 
hI = HB

I hB +ω I × hI = HB
I hB + ω IhI

 

ω =

0 −ω z ω y

ω z 0 −ω x

−ω y ω x 0

#

$

%
%
%
%

&

'

(
(
(
(

... where the cross-product 
equivalent matrix of angular rate is

 
HB
I hB = ω IhI = ω IHB

I hB

41
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External Moment Causes 
Change in Angular Rate

  

!hB = H I
B !hI + !H I

BhI = H I
B !hI − ω B × hB = H I

B !hI − "ω BhB
= H I

BM I − "ω BIBω B =MB − "ω BIBω B

Positive rotation of Frame B w.r.t. 
Frame A is a negative rotation of 

Frame A w.r.t. Frame B

M I =

mx

my

mz

!

"

#
#
#
#

$

%

&
&
&
&
I

; MB =H I
BM I =

mx

my

mz

!

"

#
#
#
#

$

%

&
&
&
&
B

=
L
M
N

!

"

#
#
#

$

%

&
&
&

Moment = torque = force x moment arm

In the body frame of reference, the angular momentum change is

42
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Rate of Change of Body-
Referenced Angular Rate due to 

External Moment

For constant body-axis inertia matrix
  

!hB = H I
B !hI + !H I

BhI = H I
B !hI − ω B × hB

= H I
B !hI − "ω BhB = H I

BM I − "ω BIBω B

=MB − "ω BIBω B

In the body frame of reference, the angular momentum change is

  !ω B = IB−1 MB − "ω BIBω B( )
Consequently, the differential equation for angular rate of change is

  !hB = IB !ω B =MB − "ω BIBω B

43

43

Checklist
q Why is it inconvenient to solve momentum rate 

equations in an inertial reference frame?
q Are angular rate and momentum vectors 

aligned?
q How are angular rate equations transformed 

from an inertial to a body frame?

44
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Next Time:
Aircraft Equations of Motion: 

Flight Path Computation
Reading:

Flight Dynamics
161-180

45

How is a rotating reference frame described in an inertial 
reference frame?

Is the transformation singular?
What adjustments must be made to expressions for forces and 

moments in a non-inertial frame?
How are the 6-DOF equations implemented in a computer?

Damping effects

Learning Objectives

45

Supplemental 
Material

46
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Moments and products of inertia tabulated for 
geometric shapes with uniform density

Construct aircraft moments and products  of inertia from 
components using parallel-axis theorem

Model in CREO, etc.

47

Moments and Products of Inertia
(Bedford & Fowler)

47


