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Learning Objectives

• Aerodynamic balance and moment
• Aerodynamic center, center of 

pressure, neutral point, and static 
margin

• Configuration and angle-of-attack 
effects on pitching moment and 
stability

• Configuration and sideslip-angle 
effects on lateral-directional (i.e., 
rolling and yawing) aerodynamic 
moments

• Tail design effects on airplane 
aerodynamics

Reading:
Flight Dynamics

Aerodynamic Coefficients, 96-118
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Review Questions
§ Why is induced drag proportional to angle of attack 

squared?
§ What spanwise lift distribution gives minimum induced 

drag?
§ Why can lift and drag coefficients be approximated by 

the Newtonian-flow assumption at very high angle of 
attack?

§ How does profile drag vary with Mach number?
§ What are some functions of secondary wing 

structures?
§ What is the primary function of leading edge 

extensions?
§ What is the “Area Rule”?
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Handbook Approach to 
Aerodynamic Estimation

• Build estimates from component effects
– Technical reports, textbooks, ...
– USAF Stability and Control DATCOM (download at 

http://www.pdas.com/datcomb.html)
– USAF Digital DATCOM (see Wikipedia page)
– ESDU Data Sheets (see Wikipedia page)

Interference
Effects

Interference
Effects

Wing 
Aerodynamics

Fuselage 
Aerodynamics

Tail
Aerodynamics

Interference
Effects
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Moments of the 
Airplane 
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Airplane Balance
• Conventional aft-tail configuration

– c.m. near wing's aerodynamic center [point at which wing's 
pitching moment coefficient is invariant with angle of attack 
~25% mean aerodynamic chord (mac)]

• Tailless airplane: c.m. ahead of the neutral point

Douglas DC-3

Northrop N-9M
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Airplane Balance
• Canard configuration: 

– Neutral point moved forward by canard surfaces
– Center of mass may be behind the neutral point, requiring 

closed-loop stabilization
• Fly-by-wire feedback control can expand envelope 

of allowable center-of-mass locations

Grumman X-29

McDonnell-Douglas X-36

6
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r × f =
i j k
x y z
fx fy fz

= yfz − zfy( )i + zfx − xfz( ) j + xfy − yfx( )k

Moment Produced By 
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 !r :  Cross-product-equivalent matrix

Cross Product of Vectors
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Forces and Moments Acting 
on Entire Airplane
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Aerodynamic Force 
and Moment Vectors 

of the Airplane
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Force Vector

Moment Vector

Pitching Moment 
of the Airplane 
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Body-Axis Reference Frames
• Reference frame origin

is arbitrary; it is a 
fiducial point
– x axis along centerline
– Tip of nose: All values of 
x on airframe are 
negative, but nose shape 
could change

– Forward-most bulkhead:
Fixed for all 
manufacturing 
measurements

– Center of mass:
Rotational center, but 
changes with fuel use, 
payload, etc.

11

F-86 Nose Variations

12

F-86A F-86D

F-86DF-86E
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Pitching Moment
(moment about the y axis)
Pressure and shear stress differentials 

x moment arms 
Integrate over the airplane surface to 

produce a net pitching moment
Body - Axis Pitching Moment = MB

= − Δpz x, y( ) + Δsz x, y( )⎡⎣ ⎤⎦ x − xcm( )dxdy
surface
∫∫

+ Δpx y, z( ) + Δsx y, z( )⎡⎣ ⎤⎦Δpx z − zcm( )dydz
surface
∫∫

13

Pitching Moment
(moment about the y axis)

MB ≈ − Zi xi − x cm( )
i=1

I

∑ + Xi zi − zcm( )
i=1

I

∑
+Interference Effects + Pure Couples

Distributed effects can be aggregated to 
local centers of pressure indexed by i

Net effect expressed as

MB = Cmq Sc 14
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Pure Couple
• Net force = 0

Rockets Cambered Lifting Surface

Fuselage
• Cross-sectional area, S(x)
• x positive to the right
• At small α

– Positive lift slope with dS(x)/dx > 0
– Negative lift slope with dS(x)/dx < 0

• Fuselage typically produces a 
destabilizing (positive) pitching 
moment [ “Apparent mass” effect]

• Net moment ≠ 0
Rockets

15

Lift Coefficient of a Cone

Munk’s airship theory (potential flow)

16
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Munk, NACA-TR-184, 1924

Sbase: cross-sectional area where flow separates
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Net Center of Pressure 
Local centers of pressure can be aggregated at a net center 

of pressure (or neutral point) along the body x axis

xcpnet =
xcpCN( )wing + xcpCN( ) fuselage + xcpCN( )tail + ...⎡

⎣
⎤
⎦

CNtotal

Body Axes

Wind Axes
(w.r.t, velocity vector)

CN = −CZ

CA = −CX

S = reference area
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Static Margin

 

Static Margin ! SM =
100 xcm − xcpnet( )

B

c
, %

≡ 100 hcm − hcpnet( )%

• Static margin (SM) reflects the distance between the 
center of mass (cm) and the net center of pressure (cp)
• Body axes
• Normalized by mean aerodynamic chord
• Does not reflect z position of center of pressure

• Positive SM if cp is behind cm

18
 
hcm !

xcm
c
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Static Margin

Static Margin = SM

=
100 xcm − xcpnet( )

c
, %

≡ 100 hcm − hcpnet( )%

19

Effect of Static Margin on Pitching 
Coefficient 

• Zero crossing determines trim angle of attack, 
i.e., sum of moments = 0

• Negative slope required for static stability
• Slope, ∂Cm/∂α, varies with static margin

αTrim = −
Cmo

Cmα

MB = Cmo
+Cmα

α( )q Sc
20
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Pitch-Moment Coefficient 
Sensitivity to Angle of Attack
For small angle of attack and no control deflection

referenced to wing area, S

21

 

Cmα
≈ −CNαnet

hcm − hcpnet( ) ≈ −CLαnet
hcm − hcpnet( )

≈ −CLαwing

xcm − xcpwing
c
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Horizontal Tail Lift Sensitivity 
to Angle of Attack

CLαht( )horizontal
tail
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ref = Sht
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2

• Downwash effect on 
aft horizontal tail

• Upwash effect on a 
canard (i.e., forward) 
surface

Vht :        Airspeed at horizontal tail
ε :           Downwash angle due to wing at tail
∂ε ∂α :  Sensitivity of downwash to angle of attack
ηelas :       Aeroelastic effect

22
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Aerodynamic Center and Center 
of Pressure of a Wing

NACA 0012

NACA 2412

NACA 4412
Airfoil Tools

http://airfoiltools.com

23

 

xac = x for which ∂Cm

∂α
≡ 0

= xcp  for a symmetric airfoil
≠ xcp  for an asymmetric airfoil

For small angle of attack and no control deflection

Effect of Static Margin on 
Pitching Moment

24

 

MB = Cmq Sc ≈ Cmo
−CNα

hcm − hcpnet( )α⎡⎣ ⎤⎦q Sc

≈ Cmo
−CLα

hcm − hcpnet( )α⎡⎣ ⎤⎦q Sc
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Typically, static margin is positive and ∂Cm/∂α is 
negative for static pitch stability

Effect of Static Margin on 
Pitching Moment

Sum of moments is zero in trimmed condition

25

 

MB = Cmo
+Cmα

α( )q Sc
= 0 in trimmed (equilibrium) flight

Effect of Elevator Deflection on 
Pitching Coefficient 

Control deflection shifts curve up and 
down, affecting trim angle of attack

αTrim = − 1
Cmα

Cmo
+CmδE

δE( )
Elevator deflection effectively changes Cmo

MB = Cmo
+ Cmα

α + CmδE
δE( )q Sc

26
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Aviation in The Great War
• 1914-18: World War I changes the 

complexion of flying
– Reconnaissance
– Air superiority (dog fights) 
– Bombing
– Personal transport

• Wrights� US monopoly broken by 
licensing for war effort

• Aircraft Design
– Biplanes, a few mono- and 

triplanes
– Design for practical functions
– Multiple engines, larger aircraft
– Aft tails
– Increased maneuverability, 

speed, g-loads, altitude
– Improved piston engines
– Tractor propellers

SPAD S.VII

Historical Factoids

27

Maneuvering World War I Aircraft
• Maneuverable aircraft with 

idiosyncrasies
– Rotary engine
– Small tail surfaces
– Reliability issues

• Maneuvering to stalls and spins
• Snap roll: rudder and elevator
• Barrel roll : aileron 
• Cross-control (e.g., right rudder, left 

stick)
– glide path control during landing 
– good view of landing point

• Unintended snap rolls led to spins and 
accidents during takeoff or landing

http://www.youtube.com/watch?v=OBH_Mb0Kj2s

http://www..com/watch?v=6ETc1mNNQg8youtube
28

DeHavilland DH-2

Sopwith Triplane

Fokker E.III
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Stability OR Control?

• Need for better understanding of Flying 
(or Handling) Qualities 
– Stability and controllability characteristics as 

perceived by the pilot
• Desired attributes: Stability of the S.E.-5 

and controllability of the D.VII 29

Stability AND Control

Lateral-Directional Effects 
of Sideslip Angle

30
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Rolling and Yawing Moments 
of the Airplane

Distributed effects can be aggregated to 
local centers of pressure indexed by i

Rolling Moment

Yawing Moment

31

 

LB ≈ Zi yi − y cm( )
i=1

I

∑ − Yi zi − zcm( )
i=1

I

∑
+Interference Effects + Pure Couples

 

NB ≈ Yi xi − x cm( )
i=1

I

∑ − Xi yi − ycm( )
i=1

I

∑
+Interference Effects + Pure Couples

Sideslip Angle Produces Side Force, 
Yawing Moment, and Rolling Moment

§ Sideslip usually a 
small angle ( �5 deg)

§ Side force generally 
not a significant effect

§ Yawing and rolling 
moments are principal 
effects

32
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Side Force due to Sideslip Angle

Y ≈
∂CY

∂β
qS•β =CYβ

qS•β

• Fuselage, vertical tail, nacelles, and wing are main 
contributors

S = reference area

33

 
CYβ ≈ CYβ( )

Fuselage
+ CYβ( )

Vertical Tail
+ CYβ( )

Nacelles
+ CYβ( )

Wing

Side Force due to Sideslip Angle

ηvt =  Vertical tail efficiency (p. 96, Flight  Dynamics)

k = πAR
1+ 1+ AR2

Γ =  Wing dihedral angle, rad 34

 

CYβ( )
Vertical Tail

≈ ∂CY

∂β
⎛
⎝⎜

⎞
⎠⎟ ref = Svt

ηvt
Svt
S

⎛
⎝⎜

⎞
⎠⎟

CYβ( )
Fuselage

≈ −2 SBase
S
; SB =

πdBase
2

4

CYβ( )
Wing

≈ −CDParasite,Wing
− kΓ2
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Yawing Moment due to Sideslip Angle

N ≈ ∂Cn

∂β
ρV 2

2
⎛
⎝⎜

⎞
⎠⎟
Sb•β = Cnβ

qSb•β

§ Side force contributions times 
respective moment arms
– Non-dimensional stability 

derivative

Cnβ
≈ Cnβ( )

Vertical Tail
+ Cnβ( )

Fuselage
+ Cnβ( )

Wing
+ Cnβ( )

Propeller

S = reference area 35

  
Cnβ( )

Vertical Tail
≈ −CYβvt

ηvt
Svtlvt
Sb
 −CYβvt

ηvtVVT

Vertical tail contribution

 
VVT =

Svtlvt
Sb

=Vertical Tail Volume Ratio

ηvt =ηelas 1+∂σ ∂β( ) Vvt
2

VN
2

%

&
'

(

)
*

Yawing Moment due to Sideslip Angle

 

lvt   Vertical tail length (+)
=  distance from center of mass to tail center of pressure
= xcm − xcpvt  [x is positive forward; both are negative numbers]

36
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Cnβ( )
Wing

= 0.075CLN
Γ + fcn Λ,AR,λ( )CLN

2

! k0CLN
Γ + k1CLN

2   (eq. 2.4-66, Flight  Dynamics)

Cnβ( )Fuselage =
−2K VolumeFuselage

Sb

K = 1−dmax Lengthfuselage
"

#
$

%

&
'
1.3

Fuselage contribution

Wing (differential lift and induced drag) contribution

Yawing Moment due to Sideslip Angle

Seckel, from NACA TR-1098, 1950 37

k1

AR

L ≈ Clβ
qSb•β

Clβ
≈ Clβ( )

Wing
+ Clβ( )

Wing−Fuselage
+ Clβ( )

Vertical Tail

Rolling Moment due to Sideslip Angle
Dihedral effect

Unequal lift on left and 
right wings induces 

rolling motion

38
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• Vertical tail effect

Rolling Moment due to Sideslip Angle

• Wing vertical location effect: 
Crossflow produces up- and 
down-wash 
• Rolling effect depends on 

vertical location of the wing

39

Tail Design Effects

40
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• Aerodynamics 
analogous to those of 
the wing

• Longitudinal stability
– Horizontal stabilizer
– Short period natural 

frequency and damping
• Directional stability

– Vertical stabilizer (fin)
• Ventral fins
• Strakes
• Leading-edge 

extensions
• Multiple surfaces
• Butterfly (V) tail

– Dutch roll natural 
frequency and damping

• Stall or spin prevention/ 
recovery

• Avoid rudder lock (TBD)

Tail Design 
Effects

41

Horizontal Tail Size and Location

§ 15-30% of wing area
§ ~ wing semi-span behind the c.m.
§ Must trim neutrally stable airplane at maximum 

lift in ground effect
§ Effect on short period mode
§ Horizontal Tail Volume: Typical value = 0.48

 
VHT = Sht

S
lht
c

North American F-86Grumman XF5F 

42
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Tail Moment Sensitivity to 
Angle of Attack

 
VHT = Shtlht

Sc
=  Horizontal Tail Volume Ratio

43

 

Cmαht
= − CLαht( )
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Pitching Moment due to Elevator 
Deflection

Normal force coefficient variation due to elevator deflection

Pitching moment coefficient variation due to elevator deflection

44

 

CLδE
!
∂CL

∂δE
= τ htηht CLα( )

ht

Sht
S

≈CNδE

ΔCN = CNδE
δE

τ ht =  Carryover effect
ηht =  Tail efficiency factor

CLα( )
ht
=  Horizontal tail lift-coefficient slope

Sht =  Horizontal tail reference area

 

CmδE
= CNδE

lht
c
≈ −τ htηht CLα( )

ht

Sht
S
lht
c

⎛
⎝⎜

⎞
⎠⎟

= −τ htηht CLα( )
ht
VHT
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Downwash and Elasticity Also 
Effect Elevator Sensitivity

∂CL

∂δE
⎛
⎝⎜

⎞
⎠⎟ ht

⎡

⎣
⎢

⎤

⎦
⎥
ref = S

= CLδE( )
ref = S

= CLδE( )
ref = Sht

Vtail
VN

⎛
⎝⎜

⎞
⎠⎟

2

1− ∂ε
∂α

⎛
⎝⎜

⎞
⎠⎟ ηelas

Sht
S

⎛
⎝⎜

⎞
⎠⎟
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• Analogous to horizontal tail volume
• Effect on Dutch roll mode
• Powerful rudder for spin recovery

– Full-length rudder located behind the elevator
– High horizontal tail so as not to block the flow over the rudder

• Vertical Tail Volume: Typical value = 0.18

 
VVT = Svt

S
lvt
b

Vertical Tail Location and Size

Curtiss SB2C

North American P-51B

Otto Koppen: “If they build more than one of these, they’re crazy!”
http://en.wikipedia.org/wiki/Otto_C._Koppen

46



24

Lateral-Directional Control Surfaces

Elevons

Rudder

47

Yawing Moment due to Rudder 
Deflection

Side force coefficient variation due to rudder deflection

Yawing moment coefficient variation due to rudder deflection

48

 

CYδR( )
ref =S
!

∂CY

∂δR
⎛
⎝⎜

⎞
⎠⎟ ref =S

= CLα( )
vt

⎡
⎣

⎤
⎦ref =Svt

τ vtηvt
Svt
S

ΔCY = CYδR
δR

 

CnδR( )
ref =S

= − CYδR( )
ref =S

lvt
b
≈ − CLα( )

vt
⎡
⎣

⎤
⎦ref =Svt

τ vtηvt
Svt
S
lvt
b

⎛
⎝⎜

⎞
⎠⎟

= −τ vtηvt CLα( )
vt

⎡
⎣

⎤
⎦ref =Svt

VVT
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Rolling Moment due to Aileron 
Deflection

For a trapezoidal planform, subsonic flow

 

ClδA( )
3D
!

CLδ

CLa

⎛

⎝⎜
⎞

⎠⎟ 2D

CLa( )
3D

1+ λ
1− k2

3
− 1− k 3

3
1− λ( )⎡

⎣
⎢

⎤

⎦
⎥

k " y
b 2

, y =  Inner edge of aileron, λ =  Taper ratio

L ≈ClLδA
qSb•δA

Ayres Thrush 
Crop Duster
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Next Time:
Aircraft Performance

Reading:
Flight Dynamics

Aerodynamic Coefficients, 118-130

50

Definitions of airspeed
Performance parameters

Steady cruising flight conditions
Breguet range equations

Optimize cruising flight for minimum thrust and power
Flight envelope 

Learning Objectives
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Supplemental Material

51

Sopwith Camel

• Rotary engine induced gyroscopic coupling
• Highly maneuverable
• Aft fuel tank; when full, center of mass was 

too far aft for stability
• Vertical tail too small, spin recovery not 

automatic with centering of controls

http://www.youtube.com/watch?v=3ApowyEXSXM
52

http://www.youtube.com/watch?v=3ApowyEXSXM
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S.E.-5 vs. Fokker D.VII
• RAF S.E.-5: theoretical approach to design

– �Best WWI design from the Royal Aircraft 
Factory�

– Stationary engine
– High dihedral
– Stable spiral mode
– High control forces
– Poor maneuverability
– Relatively safe and effective

• Fokker D.VII: empirical approach to 
design
– Horn balances to reduce control forces
– Stationary engine
– Neutral-to-negative stability
– Good maneuverability
– Relatively dangerous

53

• Straight Wing
– Subsonic center of 

pressure (c.p.) at ~1/4 
mean aerodynamic 
chord (m.a.c.)

– Transonic-supersonic 
c.p. at ~1/2 m.a.c.

• Delta Wing
– Subsonic-supersonic 

c.p. at ~2/3 m.a.c.

Planform Effect on Center of Pressure 
Variation with Mach Number

54
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Subsonic Pitching Coefficient 
vs. Angle of Attack (0� < α < 

90�)

55

�Pitch Up� and Deep Stall
• Possibility of 2 stable equilibrium 

(trim) points with same control setting
– Low α
– High α

• High-angle trim is called deep stall
– Low lift
– High drag

• Large control moment required to 
regain low-angle trim

TU-154 Pitch Up Accident
http://www.youtube.com/watch?v=IpZ8YukAwwI&feature=related 

BAC 1-11 Deep Stall Flight Testing Accident
http://en.wikipedia.org/wiki/BAC_One-Eleven

56



29

Pitch Up and Deep Stall, Cm vs. a

• Possibility of 2 
stable equilibrium 
(trim) points with 
same control 
setting
– Low α
– High α

• High-angle trim is 
called deep stall
– Low lift
– High drag

• Large control 
moment required to 
regain low-angle 
trim

57

SM variation

dE variation

Sweep Effect on Pitch Moment 
Coefficient, CL vs. Cm

• Λc/4 = 0
– Low α center of pressure 

(c.p.) in front of the quarter 
chord

– Stable break at stall (c.p. 
moves aft)

• Λc/4 = 15�
– Low α c.p. aft of the quarter-

chord
– Stable break at stall (c.p. 

moves aft)
• Λc/4 = 30�

– Low α c.p. aft of the quarter-
chord

– Unstable break at stall (c.p. 
moves forward)
• Outboard wing stalls before 

inboard wing (�tip stall�)
Cm(α)

CL(α)

Stall

NACA TR-1339

Stable
Break

Stall Unstable
Break

58
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Pitch Up: Explanation of CL vs. Cm
Cross-plot

• Crossplot CL vs. Cm to obtain plots such as those shown on previous slide
• Positive break in Cm is due to forward movement of net center of pressure, 

decreasing static margin

North American F-100

59https://www.youtube.com/watch?v=Q2qqKwndFW0

Shortal-Maggin 
Longitudinal 
Stability Boundary 
for Swept Wings

• Stable or unstable pitch 
break at the stall

• Stability boundary is 
expressed as a function of
– Aspect ratio
– Sweep angle of the 

quarter chord
– Taper ratio

AR

Λc/4 NACA TR-1339

60
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Horizontal Tail Location
• Horizontal tail and elevator in wing 

wake at selected angles of attack

• Effectiveness of low tail is unaffected by 
wing wake at high angle of attack

• Effectiveness of high-mounted elevator 
is unaffected by wing wake at low to 
moderate angle of attack

61

• Increased tail area with no increase in vertical height
• End-plate effect for horizontal tail improves effectiveness
• Proximity to propeller slipstream

Twin and Triple Vertical Tails

North American B-25

Lockheed C-69

Consolidated B-24

Fairchild-Republic A-10

62
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Increase directional stability
Counter roll due to sideslip of the dorsal fin

LTV F8U-3

Ventral Fin Effects

North American X-15

Learjet 60
Beechcraft 1900D

63

V (Butterfly) Tails
• Analogous to conventional tail at 

low angles of attack and sideslip
• Control surface deflection

– Sum: Pitch control
– Difference: Yaw control 

• Nonlinear effects at high angle of 
attack are quite different from 
conventional tail

Beechcraft Bonanza

Fouga MagisterScaled Composites V-Jet II
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Effects of Wing Aspect Ratio and 
Sweep Angle

• Lift slope
• Pitching moment slope
• Lift-to-drag ratio
• All contribute to

– Phugoid damping
– Short period natural frequency and 

damping
– Roll damping

65

Effects of Wing Aspect Ratio
• Neglecting air compressibility
• Angles of attack below stall

Clp̂( )
wing

=
∂ ΔCl( )wing

∂ p̂
= −

CLαwing

12
1+ 3λ
1+ λ

⎛
⎝⎜

⎞
⎠⎟

Clp̂( )
Wing

= −
πAR
32

L
D =

CLtotal

CDo
+ εCL

2( )
total

=
CLo

+ CLα
α( )

total

CDo
+ εCL

2⎡⎣ ⎤⎦total

CLαwing
=

πAR

1+ 1+ AR
2

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Cmα
≈ −CLαtotal

Static Margin (%)
100

⎛
⎝⎜

⎞
⎠⎟

Roll damping
Thin triangular wingWing with taper

Lift slope Pitching moment slope

Lift-to-drag ratio
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Propeller Effects

• Slipstream over wing, tail, and fuselage
– Increased dynamic pressure
– Swirl of flow
– Downwash and sidewash at the tail

• DH-2 unstable with engine out
• Single- and multi-engine effects
• Design factors: fin offset (correct at one 

airspeed only), c.m. offset
• Propeller fin effect: Visualize 

lateral/horizontal projections of the 
propeller as forward surfaces

• Contra-rotating propellers minimize 
torque and swirl

Westland Wyvern

DeHavilland DH-2

DeHavilland DHC-6
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Jet Effects on Rigid-Body Motion

• Normal force at intake (analogous to propeller fin effect) (F-86)
• Deflection of airflow past tail due to entrainment in exhaust (F/A-18)
• Pitch and yaw damping due to internal exhaust flow
• Angular momentum of rotating machinery

North American F-86 McDonnell Douglas F/A-18

68



35

Loss of Engine
• Loss of engine produces large yawing 

(and sometimes rolling) moment(s), 
requiring major application of controls  

• Engine-out training can be as 
hazardous, especially during takeoff, for 
both propeller and jet aircraft

• Acute problem for general-aviation 
pilots graduating from single-engine 
aircraft

Beechcraft Baron
Learjet 60
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Configurational 
Solutions to the 

Engine-Out Problem
• Engines on the centerline (Cessna 

337 Skymaster)
• More engines (B-36)
• Cross-shafting of engines (V-22)
• Large vertical tail (Boeing 737)

NASA TCV (Boeing 737)

Cessna 337

Convair B-36

Boeing/Bell V-22
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Some Videos

http://www.youtube.com/watch?v=saeejPWQTHw

http://www.youtube.com/watch?v=WmseXJ7DV4c&feature=related

First flight of B-58 Hustler, 1956

Century series fighters, bombers, 1959

http://www.youtube.com/watch?v=BMcuVhzCrX8&feature=related

Bird of Prey, 1990s, and X-45, 2000s 

http://www.youtube.com/watch?v=hVjaiMXvCTQ

XF-92A, 1948

YF-12A supersonic flight past the sun

Supersonic flight, sonic booms
http://www.youtube.com/watch?v=atItRcfFwgw&feature=related

http://www.youtube.com/watch?v=gWGLAAYdbbc&list=LP93BKTqpxb
QU&index=1&feature=plcp 71

Pitch-Moment Coefficient 
Sensitivity to Angle of Attack

MB = Cmq Sc ≈ Cmo
+Cmα

α( )q Sc
For small angle of attack and no control deflection
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