Spacecraft Environment

Space System Design, MAE 342, Princeton University Robert Stengel

- Atmospheric characteristics
- Loads on spacecraft
- Near-earth and space environment
- Spacecraft charging
- Orbits and orbital decay

Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html

1

Launch Phases and Loading Issues-1

- Liftoff
 - Reverberation from the ground
 - Random vibrations
 - Thrust transients
- Winds and Transonic Aerodynamics
 - High-altitude jet stream
 - Buffeting
- Staging
 - High sustained acceleration
 - Thrust transients

2

Launch Phases and Loading Issues-2

- Heat shield separation
 - Mechanical and pyrotechnic transients
- Spin stabilization
 - Tangential and centripetal acceleration
 - Steady-state rotation
- Separation
 - Pyrotechnic transients

3

Lower Atmosphere Rotates With The Earth

- Zero wind at Earth's surface = Inertially rotating air mass
- Wind measured with respect to Earth's rotating surface
- Jet stream magnitude typically peaks at 10-15km altitude

8

Jet Stream Produces High Loads on Launch Vehicle

- Launch vehicle must able to fly through strong wind profiles
- Design profiles assume 95th-99th-percentile worst winds and wind shear

q

Aerodynamic Forces

$$\begin{bmatrix} \text{Drag} \\ \text{Side Force} \\ \text{Lift} \end{bmatrix} = \begin{bmatrix} C_D \\ C_Y \\ C_L \end{bmatrix} \frac{1}{2} \rho V^2 S$$

- V = <u>air-relative</u> velocity = velocity w.r.t. air mass
- Drag measured opposite to the air-relative velocity vector
- Lift and side force are perpendicular to the velocity vector $_{
 m 10}$

Aerodynamic Force Parameters

$$\rho = \text{air density}$$
, function of height, h

$$= \rho_{\text{sealevel}} e^{-\beta h}$$

$$\rho_{\text{sealevel}} = 1.225 \, kg \, / \, m^3; \quad \beta = 1 \, / \, 9,042 \, m$$

$$V = \left[v_x^2 + v_y^2 + v_z^2\right]^{1/2} = \left[\mathbf{v}^T \mathbf{v}\right]^{1/2}, m/s$$

Dynamic pressure = $\overline{q} = \frac{1}{2}\rho V^2$, N/m^2

$$S =$$
reference area, m^2

$$C_D$$

 C_Y = non - dimensional aerodynamic coefficients

 C_L

11

11

Aerodynamic Drag

 $Drag = C_D \frac{1}{2} \rho V^2 S$

Oncoming Airstream

- Drag components sum to produce total drag
 - Skin friction
 - Base pressure differential
 - Forebody pressure differential (M > 1)

12

Aerodynamic Moment

Lengthwise lift variation causes bending moment

N'(x) = normal force variation with length \approx lift variation

$$M_{y}(x) = \int_{x_{\min}}^{x_{\max}} N_{y}(x) (x - x_{cm}) dx$$
$$= \int_{x_{\min}}^{x_{\max}} \sum_{x_{\min}}^{x_{\max}} N'_{y}(x) dx (x - x_{cm}) dx$$

13

13

Typical Velocity Loss due to Drag During Launch

- Aerodynamic effects on launch vehicle are most important below ~50-km altitude
- Maintain angle of attack and sideslip angle near zero to minimize side force and lift
- Typical velocity loss due to drag for vertical launch
 - Constant thrust-to-weight ratio
 - $C_D S/m = 0.0002 m^2/kg$
 - Final altitude above 80 km

Thrust-to-	Velocity Loss,
Weight Ratio	m/s
	336
2 3 4	474
4	581

14

Orbital Lifetime of a Satellite

Aerodynamic drag causes orbit to decay

$$\frac{dV}{dt} = -\frac{C_D \rho V^2 S / 2}{m} \equiv -B * \rho V^2 S / 2$$
$$B^* = C_D S / m$$

 Air density decreases exponentially with altitude

$$\rho = \rho_{SL} e^{-h/h_{scale}}$$

$$\rho_{SL} = \text{air density at sea level}$$

$$h_{scale} = \text{atmospheric scale height}$$

- Drag is highest at perigee
 - Air drag "circularizes" the orbit
 - · Large change in apogee
 - · Small change in perigee
 - · Until orbit is ~circular
 - · Final trajectory is a spiral

Orbital Lifetime of a Satellite

 Aerodynamic drag causes energy loss, reducing semi-major axis, a

$$\frac{da}{dt} = -\sqrt{\mu a} B * \rho_{SL} e^{-(a-R)/h_{scale}}$$

Variation of a over time

$$\int_{a_0}^{a} \frac{e^{-(a-R)/h_s}}{\sqrt{a}} da = -\sqrt{\mu} B * \rho_{SL} \int_{0}^{t} dt$$

Time, t_{decay}, to reach earth's surface (a = R) from starting altitude, h₀

$$t_{decay} = \frac{h_{scale}}{\sqrt{\mu R}B * \rho_{SL}} \left(e^{h_0/h_{scale}} - 1 \right)$$

21

21

NRL Starshine 1 Orbital Decay (2003)

http://www.azinet.com/starshine/descript.htm

22

Atmospheric Ionization Profiles

- Scale heights of electrons, ions, and neutrals vary greatly
- ·lonospheric electric field (set by heavy oxygen atoms) dominates gravity field for lighter ions, e.g., hydrogen and helium

25

25

Mean Free Path

Altitude (km)	λ_0 (m)	Altitude (km)	λ_0 (m)
100	0.142	300	2.6×10^{3}
120	3.31	400	16×10^{3}
140	18	500	77×10^{3}
160	53	600	280×10^{3}
180	120	700	730×10^{3}
200	240	800	1400×10^{3}

- At high altitude, the mean free path of molecules is greater than the dimensions of most spacecraft
 - Aerodynamic calculations should be based on free molecular flow
 - Heat exchange is solely due to radiation

Fortescue, et al, 2011

26

Solar System Environment

Low- and high-speed particles

Heliospheric Current Sheet

- Solar wind
 - Plasma consisting of electrons, protons, and alpha particles
 - Variable temperature, density, and speed
 - 1.5-10 keV
 - Slow (400 km/s) and fast (750 km/s) charged particles
 - Geomagnetic storms

28

Variability of Solar Radiation

Spectral region	Wavelength	Flux $(J/(m^2 s \mu m))$	Variability
Radio	$\lambda > 1$ mm	$10^{-11} - 10^{17}$	×100
Far infrared	$1 \text{ mm} \ge \lambda > 10 \mu\text{m}$	10^{-5}	Uncertain
Infrared	$10 \mu \text{m} \ge \lambda > 0.75 \mu \text{m}$	$10^{-3} - 10^2$	Uncertain
Visible	$0.75 \mu \text{m} \ge \lambda > 0.3 \mu \text{m}$	10^{3}	<1%
Ultraviolet	$0.3 \mu \text{m} \ge \lambda > 0.12 \mu \text{m}$	$10^{-1} - 10^2$	1-200%
Extreme ultraviolet	$0.12 \mu m \geq \lambda > 0.01 \mu m$	10^{-1}	×10
Soft X-ray	$0.01 \mu m \ge \lambda > 1 \text{Å}$	$10^{-1} - 10^{-7}$	×100
Hard X-ray	$1\text{Å} \geq \lambda$	$10^{-7} - 10^{-8}$	$\times 10- \times 10$

Fortescue, et al, 2011

32

Micrometeoroids and Space Debris

- · Nuts, bolts, and other fragments in orbit
- · July 2013 estimate
 - 170 million objects {< 1cm}
 - 670,000 objects {1 10 cm}
 - 29,000 objects (> 10 cm)
- January 2007: Chinese anti-satellite test destroyed old satellite and added >1,335 remnants larger than a golf ball
- · U.S. shot down a failed spy satellite in 2008 -- more debris

45

45

Atmospheric Com	position
of the Planet	ts

Planet/ Moon	Composition %	Surface pressure (Bar)	Surface temperature (K)	Temperature @ 200 km (K)	Ionosphere (Electrons/ cm ³)
Mercury	None	_	_	_	
Venus	CO ₂ (96); N ₂ (3.5)	92	750	100-280	$\sim 10^6$
Earth	N ₂ (77); O ₂ (21); H ₂ (1)	1	285	800-1100	$\sim 10^6$
Mars	CO ₂ (95); Ar (1.6); N ₂ (2.7)	0.006	220	310	$\sim 10^5$
Jupiter	H ₂ (89); CH ₄ (0.2); He (11)	Gaseous planet	165^{1}		$\sim 10^{5}$
Saturn	H ₂ (93); CH ₄ (0.2); He (7)	Gaseous planet	130^{1}		
Titan	N ₂ (90–99); CH ₂ (1–5); Ar (0–6)	1.5	95	150	$\sim 10^{3}$
Uranus	H_2 (85); CH_4 (< 1); He (15)	Gaseous planet	80^{1}		
Neptune	$e H_2$ (90); CH_4 (< 1); He (10)	Gaseous planet	70^{1}		
Pluto	N ₂ CH ₄ /CO (traces only)		40		_

 $^{^{\}rm I} Temperature$ quoted where pressure is the same as Earth sea level (P = 1 Bar). See also Tables 2.5, 2.7 and 4.1.

Fortescue, et al, 2011

53

53

The Atmosphere of Mars 150 **Martian Clouds** 100 Altitude (km) Stratosphere Carbon dioxide-ice clouds 10⁻⁵ (B) Water-ice clouds 10-4 Troposphere 10-3 Dust 0100 0.006 200 250 Temperature (K) 54

Next Time: Chemical/Nuclear Propulsion Systems

58