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Using slender-body hydrodynamics in the inertialess limit, we examine the motion
of Purcell’s swimmer, a planar, fore—aft-symmetric three-link flagellum or propulsive
mechanism that translates by alternately moving its front and rear segments. Purcell
(1976) concluded via symmetry arguments that the net displacement of such a
swimmer must follow a straight line, but the direction and other details of the
motion have never been investigated. Numerical results indicate that the direction of
net translation and the speed of Purcell’s swimmer depend on the angular amplitude
of the swimming strokes as well as on the relative length of the links. Analytical
results are presented for small rotations about the straightened configuration, and
physical arguments are given to qualitatively explain the propulsive dynamics. The
optimal swimmer configurations under the conditions of constant forcing and of
minimum mechanical work are determined. We use a definition of efficiency based on
the straightened configuration as a reference state to compare Purcell’s swimmer with
the previously treated swimming motions of an undulating rod and a rotating helix.
Finally, we demonstrate the importance of the anisotropy in the local hydrodynamic
slender-body drag to swimming motions at low Reynolds number by showing that,
in general, any inextensible swimmer in an otherwise quiescent fluid cannot alter its
average position under conditions of locally isotropic drag.

1. Introduction

The vast majority of organisms on Earth are microscopic in size, and they propel
themselves through liquid in a manner that is fundamentally different from that
of larger creatures such as mammals or fish, which gain forward momentum after
having pushed back on the surrounding fluid. For very small bodies, however, as
elegantly described by G. 1. Taylor in the movie Low Reynolds Number Flows, inertial
forces are typically negligible in comparison to viscous drag, so that the Reynolds
number characterizing the flow is much less than one. In the inertialess limit, the
Navier—-Stokes equations may be linearized, and hence reciprocal motions such as
the opening and closing of the ‘scallop’, the singly hinged rigid swimmer shown
in figure 1(a), do not result in any net translation or rotation (Happel & Brenner
1965; Childress 1981). In the well-known discussion by Purcell (1976) on “Life at
Low Reynolds Number”, he presents a description of the ‘simplest animal’ that can
swim under these conditions: the two-hinged swimmer depicted in figure 1(b). Purcell
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FiGURE 1. Simple configuration sequences for two hypothetical swimmers restricted to the
(x,y)-plane: (a) the “scallop”, which has a single joint that is depicted opening with stroke
angle y to the straightened position, and (b)“Purcell’s swimmer”, which alternately rotates its
two arms until the angle between them and the middle link equals + y.

indicated that a fore—aft-symmetric linkage with two hinges (three links) would move
in a straight line over one cycle of alternately moving its front and rear links, but
the details of this motion were not investigated. Indeed the direction of motion was
left as an exercise to the reader, but after more than two decades there still does not
appear to be a satisfactory answer to that question (Castaing 1998). In this paper,
we provide a detailed study of this simplest of hypothetical low-Reynolds-number
swimmers that are inextensible with rotating joints.

There exists considerable interest in studying the propulsive mechanics of common
micro-organisms such as spermatozoa (e.g. Keller & Rubinow 1976a) and algae
(e.g. Pedley & Kessler 1987) as well as their macroscopic collective dynamics (e.g. Hill,
Pedley & Kessler 1989). Although the swimming strategies observed in nature are
typically more complicated than that of Purcell’s swimmer treated herein, a recent
conjecture by Berg (2002) proposes that small helical bacteria called Spiroplasmas
might propel themselves in a manner similar to Purcell’s swimmer but with non-
parallel axes of bending for the two idealized joints. Furthermore, recent advances in
micro-machines raise the possibility of deploying self-propelled micro-robots inside
the human body for minimally invasive therapeutic treatments (Iddan et al. 2000;
Ishiyama et al. 2001a,b). The simplicity of Purcell’s swimmer may therefore prove
practical in the design of micro-robots in addition to representing a useful model to
explore fundamental aspects of self-propulsion at low Reynolds numbers.

Early research on the planar motion of organisms at low Reynolds number
considered the propagation of plane waves along sheets and rods (e.g. Taylor 1951;
Hancock 1953; Lighthill 1975), while more recent investigations have focused on the
propulsion produced by wave-like disturbances travelling along elastic filaments (e.g.
Wiggins & Goldstein 1998; Camalet, Jiilicher & Prost 1999) and along surfaces of non-
slender bodies (e.g. Blake 1971; Shapere & Wilczek 19894, b; Stone & Samuel 1996;
Ajdari & Stone 1999). Studies of non-planar motions of organisms have been confined
mainly to the propulsion of a helix rotating about its axis (e.g. Phan-Thien, Tran-
Cong & Ramia 1987; Lighthill 1996; Purcell 1997), with some recent theoretical work
on over-twisted elastica and their relation to experimentally observed super-coiled
filaments (plectonemes) produced by the bacterium B. subtilis (Goldstein, Powers &
Wiggins 1998 ; Koehler & Powers 2000). Many of these existing models of swimming
micro-organisms assume that the filament is infinitely long, that the amplitude of the
shape perturbations is small, or that the idealized propulsive element is acted upon
by some external force/torque. Conversely, given the inherent geometric simplicity of
Purcell’s swimmer, it is possible to model the large-amplitude motion of a physically
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FIGURE 2. A general, singly jointed swimmer, where surfaces/links S; and S, move as rigid
bodies. The swimmer and its motion are confined to the (x, y)-plane.

realizable force-free linkage of slender bodies driven by internal motors acting at the
joints, as well as to determine the optimal swimmer for a given set of conditions.

In §2, we use the linearity of the equations for the inertialess limit to derive
the equations governing the motion of a rigid linkage with only one mobile joint.
These equations plus symmetry arguments are applied in §3 to investigate the
detailed motion of Purcell’s swimmer. In §4, we determine the optimal swimming
configurations for Purcell’s swimmer under the conditions of constant forcing and
minimum mechanical work. We also propose a new efficiency criterion to compare
Purcell’s swimmer to the undulating rod and the rotating helix. Finally, to demonstrate
the importance of the anisotropy of the local fluid drag to swimming motions, we
give a simple proof that any inextensible swimmer in an otherwise quiescent fluid
cannot swim under isotropic drag, a condition where the local hydrodynamic force
per unit length acting on the linkage is taken as directly proportional to the local
fluid velocity. Our conclusions are summarized in §5.

2. Single-joint dynamics

We begin our study of micro-mechanical self-propulsion by examining the planar
one-joint slender linkage shown in figure 2. Without loss of generality, we only
consider motion in the (x, y)-plane. The velocity Up of any point P on the single-joint
linkage, relative to the fixed, inertial, Cartesian frame depicted in figure 2, may be
decomposed into three components: the velocity due to a translation of the joint J,
the velocity due to a rigid-body rotation about J, and the velocity due to a symmetric
‘stretching motion’:

U» — U+ ANr+woAr on S (1)
PZlU, +2 ANr—wAr on S,

where r is the position vector from the joint J to point P, U; is the velocity of the
joint, and the angular velocities £2 and @ are related to the time derivatives of the
angles @ and B defined in figure 2 by

Q=<d—glg)ez, w=(d;'g>e2, (2)

where e, is a unit vector in the z-direction. We wish to solve the continuity and Stokes
equations,

V-u=0, (3a)
Vo =—Vp+uVu=0, (3b)
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for the slender linkage in an otherwise quiescent fluid, where (u, p, o) are the velocity,
pressure, and stress fields, respectively. In the absence of externally applied force
fields, the swimmer overall is force- and torque-free. Motion is effected via equal but
opposing moments between the two links, which are considered to move as rigid
bodies. From elementary force and torque balances, with elimination of the force of
constraint at the common joint J, a natural choice of generalized forces corresponding
to the generalized velocities U;, 2 and w is the total force F (= 0), the total moment
L (= 0) about J, and the torque difference between the links acting at J and driving
the motion of the swimmer. More specifically, the linearity of the governing equations
implies the following relation valid for arbitrarily shaped single-jointed objects (and
generalizable in a straightforward fashion to an arbitrary number of joints):

RruRreRro\ [U, F= fspn-adS 0
RiyRioRLy | | 2| = L= [, rA(n-0)dS = 0 [,
RsyRsoRs. ® S=[grA(n-0)dS— [ rA(n-0)dS -8
“ “4)
where the unit normal vector n of the (finite-thickness) links is directed into the fluid.
Here S = —S = 5%e, is the torque difference or ‘strain forcing’ that the mecha-

nism in the (x, y)-plane applies to the surrounding fluid, and represents the external
torque applied to link S; minus that on link S,. This strain forcing of the motion
may be thought of as resulting from a rubber band stretched across the active joint,
or alternatively as twice the torque exerted by one side on the other via a motor, for
example.

The grand resistance matrix on the left-hand side of equation (4) may be shown to
be overall symmetric via the reciprocal theorem (Hinch 1972), so that, for example,
Rry =RY, and Rro =R] . The individual resistance matrices of equation (4) depend
on the viscosity, size, and instantaneous configuration of the object, and thus uniquely
determine the quantities Uj, 2, and w; here they will be computed according to (4)
using the leading-order slender-body approximation (Batchelor 1970), which gives for
example that

2np -2
n-odl"=— 21— 44) - U(s In""(2/¢ 5
I | @r-an v +om e, 5
where s denotes arclength along the centreline, I'(s) the circumference of the cross-
section, u the viscosity, € the slenderness ratio of link diameter to its length, 4 the
unit tangent vector to the body, [2mu/In(2/€)] = ¢ represents an effective resistance
coefficient, and U(s) is the local velocity of the linkage. For example, with respect to
a Cartesian reference frame, the first column of the sub-matrix Rry in the planar case
contains the {x, y} components of the total hydrodynamic force exerted on the linkage
as a result of a pure rigid-body translation with unit velocity in the x-direction. All
components of the grand resistance matrix are determined similarly by individually
assigning unit velocities to the non-trivial components of U,, £2, and w, a process
which, for motion in the (x,y)-plane, reduces the governing matrix equation (4) to a
4 x 4 system of equations, linear in the four unknown scalar velocities (U,),, (U)),,
=2, and v = w,. »
As indicated in equation (5), the error involved in applying the leading-order
slender-body approximation to obtain an effective force density (per unit length)
along the centreline is O[In"2(2/€)], which is only logarithmically smaller than the
leading term. In fact, the initial corrections to the leading-order result have been
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FiGure 3. Definition diagram for Purcell’s three-link swimmer. The left and right arms are of
length a, and the middle link is of length b. The active joint is labelled J, and the centre of
the middle link is labelled C.

shown by a number of researchers to involve a series in powers of In"'(2/¢), and this
series may be represented in the form of an integral equation for the local force density
(e.g. Hancock 1953; Keller & Rubinow 1976b). For the ‘scallop’ or hinge shown in
figure 1(a), where the arms are separated by an inner angle of § = (m —2y), it may be
readily shown that when § — 0 and the hinge is nearly closed, the correction to the
leading-order approximation for the force density is O[In(8)In"2(2/€)]; this estimate
arises from the local viscous drag on one arm caused by the leading-order background
flow generated by the other. The leading-order theory presented here is thus valid for
all non-zero separation angles in the limit of small slenderness ratios (¢ — 0).

We assume in all of our numerical applications that the slenderness ratio € is
sufficiently small to justify our use of the leading-order slender-body approximation.
Based on the functional dependence of the leading error term given in equation (5),
€ should then ideally satisfy the condition |lne|> 1. However, computations using
the leading-order approximation have shown reasonable agreement with experimental
applications involving thin fibres and filaments at larger slenderness ratios € of the
order of 1072 and larger (e.g. Koehler & Powers 2000; Becker & Shelley 2001; and
references therein). Thus, from a mathematical point of view, our numerical results
are exact in the limit € - 0, and we further expect them to apply approximately to
most practical realizations of Purcell’s swimmer.

The methodology developed above is sufficiently general to model a variety of
simple objects, where surfaces S; and S, could, for example, have a continuously
varying resistance {(s) corresponding to a non-constant cross-sectional diameter or
perhaps a textured surface; in this study, however, we will assume for simplicity
that ¢ is the same constant for all members of a given linkage. An extension of
our approach to multiple joints rotating simultaneously is straightforward, as the
corresponding governing equations, in the inertialess limit, may again be derived
simply from the assumed slender-body constitutive model plus elementary static force
and moment balances that are common in, for example, the field of robotics.

3. Purcell’s swimmer

In Purcell’s paper on swimming motions at low Reynolds number, the hypothetical
three-link swimmer shown in figure 3 was introduced as the simplest “animal” that
could swim in the inertialess limit. The linkage consists of a middle link of length
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b connected to two arms of equal length a; the arms alternately rotate by an angle
of +2y relative to, and in a manner that is symmetric about, the middle link, as
indicated in figure 1(b) by the four configurations labelled I to IV. Purcell concluded
from symmetry arguments that this two-joint mechanism does not undergo any net
rotation over each complete cycle of the four arm strokes, and that each cycle results
in a net translation along a straight line, but the direction of this translation and the
numerical details of this basic swimming motion have, to the best of our knowledge,
never been determined.

Throughout the swimming cycle of Purcell’s swimmer, only one joint is active
at any one time, and hence the motion may be analysed using the methodology
developed in §2. The grand resistance matrix of equation (4) for Purcell’s swimmer
was obtained and inverted using the symbolic manipulation software Maple, where
we non-dimensionalized using a characteristic length scale a, velocity scale S /(za?),
and time scale ¢a?/S®'; from hereon, all quantities are to be taken as dimensionless,
unless specified otherwise. The detailed motion may then be determined by simply
integrating forward in time the resulting explicit relations for the generalized
velocities.

The general analytical expressions for Purcell’s swimmer are too complex to present
here; in the limit of zero length of the middle link (b =0), however, Purcell’s swimmer
reduces to the “scallop”, and for motion centred about the x-axis as shown in
figure 1(a), the non-dimensionalized velocity of the joint is given by

dx; sin o do
2

(UJ)x:?_ a (6)

—cos?
This expression may be integrated from a¢=mn/2 — y to a=mn/2 to obtain the
displacement, A/, of the joint for the opening motion of the scallop depicted in
figure 1(a):

Al = arctanh[(sin y)/+/21/+/2, (7
and the displacement of the centre of each arm of the scallop, AS, is equal to
[A] — (siny)/2]. The variations of A’ and AS with the stroke angle y € [0, /2] are
shown in figure 4, highlighting the positive, rightward displacement of both the joint
and the arm centres (in fact, the far ends of the arms are displaced in the negative,
leftward direction). The reverse path of the motion depicted in figure 1(a) would,
of course, be retraced during the closing of the scallop, with no net translation or
rotation for reciprocal motions in the inertialess limit.

Returning to the three-link mechanism, the simplest swimmer considered by Purcell,
we consider in §3.1 the detailed motion for a stroke angle of y =n/3 and a non-
dimensionalized middle-link length of n = b/a =2. This configuration corresponds
approximately to that of the swimmer sketched by Purcell (1976). In §3.2, we treat
the small-amplitude arm motion in the limit of small ¢, and compare the propulsive
dynamics to that of sheets and rods along which plane waves of lateral displacement
are propagated. In §3.3, the large-amplitude arm motion in the limit of y =7 is
discussed.

3.1. Configuration y =n/3 and n =b/a=2
The numerically simulated displacement of Purcell’s swimmer with y =n/3 and n =2
is depicted in figure 5. The swimmer is centred in the (x, y)-plane, and the four arm
motions, labelled 1 to 4, propel it through one complete cycle of configurations,
denoted I to IV (as in figure 1b). For Motion 1, which extends over the first quarter of
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FIGURE 4. The x-displacements A/ and A¢ of the joint and the arm centre, respectively,
versus stroke angle y for the motion of the scallop depicted in figure 1(a).

FiGure 5. The displacement of Purcell’s swimmer with y =n/3 and n=2. The motion is
centred in the (x,y)-plane, and the four arm strokes labelled 1 to 4 propel the swimmer
through one complete cycle of configurations denoted I to IV. In each graph, the starting
position is indicated by a solid line, the ending position by a dashed line, and the centre of
the middle link by a solid circle. The centre graph indicates the symmetry relation between
Motions 1 and 2.

the swimming cycle, the IMSL routine DIVPAG was used to integrate the analytical
expressions for the velocities forward in time under constant forcing S*e, until the
smallest angle between the forcing (left) arm and the middle link equalled its starting
value of |y|=m/3. Motions 2 to 4 are related to the first via symmetry arguments,
and do not need to be computed separately. Motion 2, for example, is simply a time-
reversal of the first motion rotated by m about the centre C of the middle link, as
indicated in the centre graph of figure 5. Denoting the (x, y) displacement of the centre
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FIGURE 6. The (x, y) displacements (A,, A,) of the centre C and of the left joint J for one
swimming cycle (Motions 1 to 4) with parameters y =n/3 and n =2.

of the middle link, C, resulting from the ith arm motion by (AS,, Aicy), such symmetry
considerations imply that Af, = A§ =A§ = A§, and A{, =Af =—A§ =—Af, so
that any rotation of the middle link over one arm stroke is reversed on the subsequent
stroke. Hence, over one complete cycle of four arm strokes, Purcell’s swimmer will
translate purely along a direction given by the middle link of configurations I and III,
in this case the x-direction, without rotating. This conclusion was reached previously
by Purcell (1976), but the direction and distance of travel was left as an exercise for
the reader; as may be seen from the numerically computed configurations in figure 5,
the displacement in this case is along the negative x-direction, i.e. to the left. We show
below that the swimming direction depends on y also.

For a more detailed look at the dynamics of Purcell’s swimmer with stroke
angle y =m/3 and relative middle-link length n =2, we show in figure 6 the (x, y)
displacements of the centre C and of the left joint J over the complete cycle considered
above. Each of the Motions 1 to 4 is completed in a time of about 1.25¢a*/5%, and
is associated with a net translation of the centre C of —0.0368a as well as a net
rotation of the middle link of 8 =40.352; over one complete cycle, the net speed of
translation along the x-direction, denoted V,, is equal to —0.0295 §¢!/(¢a?). During
Motion 1, it is interesting to note that the x-displacement during the first stroke is
initially positive for both the joint J and the centre C, and only becomes negative for
C near the end of the stroke. Without the insight of numerical simulations, one might
intuitively predict that the displacement of the swimmer should be in the positive
x-direction, as in the informal discussion of Purcell’s swimmer by Castaing (1998).

Based on our simulations, the propulsion of Purcell’s swimmer with y =mn/3 and
n =2, as presented in figures 5 and 6, may be qualitatively explained by the anisotropic
nature of the viscous drag on a slender body. The leading-order approximation for the
local hydrodynamic force per unit length, given in equation (5), implies that the local
resistance of a slender body to fluid motion perpendicular to its centreline is twice
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that to motion along its centreline. Keeping this result in mind, we consider Motion 1,
as the remaining steps of the swimming cycle follow from the first motion via the
symmetry considerations described above. During approximately the first half of the
left downward arm stroke, the active joint J and the centre C are displaced up and to
the right, similar to the motion of a scallop opening. The displacement to the right,
however, is lessened by the far rigid arm, which is least aligned with the horizontal
direction at the start of Motion 1, but which progressively becomes more aligned due
to the clockwise rotation of the middle link. This clockwise rotation of the middle
link proceeds nearly linearly over the entire Motion 1, and thus over the second
half of the left arm stroke, where one would intuitively expect displacements that
are upward and to the left, the leftward motion is less restrained by the increasingly
aligned right rigid arm. By favouring motions that are tangential to it, the far arm
acts essentially like a rudder, enhancing the leftward movement of the middle link for
small to moderate values of y less than about /2. This argument makes clear that
the entire shape of the linkage is important for describing the motion.

Of course the two halves of the left downward arm stroke differ not only by the
alignment of the far arm with the horizontal, but also by the cumulative rotation of
the middle link itself. For stroke angles v less than about m/2, the latter effect turns
out to be secondary, and the improved alignment of the far arm over each stroke
is responsible for a net translation in the negative x-direction, i.e. to the left. For
large-amplitude arm strokes with y — m, however, alignment of the far arm with the
horizontal in fact worsens over each arm stroke, the rotation of the middle link is the
defining feature of the motion, and Purcell’s swimmer undergoes a net translation in
the opposite direction, i.e. to the right, as shown and discussed later. In the next two
subsections, we consider first the small- and then the large-amplitude limits for the
stroke angle y.

3.2. Small-amplitude motion

Introducing 6 = m — « and expanding (using Maple software) the non-dimensionalized
solution system represented by equation (4) about the fully extended configuration
with 6 = 8=y =0, we obtain the following expressions for the velocity of the joint
J and the angular rotation rates @ and g corresponding to Motion 1 (i.e. the initial
downward stroke of the left arm):

SR
(U= 5775+ 007 (3)

=3 () oo (80

p=—3 [%} +00r). (8d)

Note that as the link ratio n = b/a — o, U; — 0, @ — 3/4, and  — 0. The case n — 0,
on the other hand, reduces to the scallop considered at the beginning of this section.

Next we determine the time interval ¢, in units of ¢a’/S*, required for one stroke.
Starting from the initial angles «; and g;, with y =n — (a; — B;), the linearized
expressions for a(¢) and f(r) are integrated with respect to time. From the condition
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that the first quarter-cycle ceases when o« — 8 =21 — (o; — fB;), it follows that

_ § y(n+1)>° 5 ca’
ts_|:3(77+4)(77+1)2+3r]+4+0(y ):| <Sext>' )

Substituting for « and B8 with 8; =0 into (U,), and integrating from =0 to t =¢,,
we can obtain the x-displacement over one quarter-cycle, and thus by symmetry
the average translational speed V,, in units of $%!/(¢a?), of the swimmer over the
complete swimming cycle:

__[3 n@n+3)y N
Vo= [8(n+1)3(n+2)+0(y )K;az)‘ (10

The translation of a swimmer, starting with 8; =0 as depicted in figure 5, is hence to
the left for linearized small-amplitude motions about the straightened configuration,
regardless of the relative length of the middle link n (with V, —» 0 as n — 0 or o). To
leading order, the translation velocity is linear in the angular amplitude y for a given
forcing of constant magnitude S®' acting alternately at the two joints.

Taylor (1951) and Hancock (1953) studied the propulsion of sheets and rods,
respectively, along which plane waves of lateral displacement are propagated. In
these studies, the small-amplitude translation velocity is equal to —% xk?A? plus
terms of higher order in kA, where A is the amplitude of the displacement, k is the
wavenumber, and x is the velocity of wave propagation. We can relate our small-
amplitude results for Purcell’s swimmer to those obtained by Taylor and Hancock by
combining equations (9) and (10) to eliminate the forcing S¢:

— n(2n +3) a\ 1\
N (R PR Vv +0<V>} (,—) <—> (vay. (1)

This expression for Purcell’s swimmer is analogous to the results by Taylor and
Hancock for small-amplitude plane-wave propulsion, if we take A* =ya to be the
amplitude of an equivalent wave, k* = 1/a as an effective wavenumber, and x* =a/t
as an approximate wave speed that dictates how fast Purcell’s swimmer executes
each of the four motions of the swimming cycle. Equation (11) for the velocity of
Purcell’s swimmer can then be written as V, = —% f(m)x*k*A*?, but the magnitude of
the factor f(n) is much smaller than the value of 1 corresponding to the plane-wave
result; given an aspect ratio of n =1, for example, f(n)=10/81.

One can construct a reasonably good visual analogy for the case n =1 at any stroke
amplitude y < m/2 by superimposing the end points of the links of Purcell’s swimmer
in configurations I to IV onto a rightward-travelling sinusoidal wave, as shown in
figure 7. The rotation of Purcell’s swimmer in the figure is qualitatively similar to
what one would expect for its actual motion, suggesting that Purcell’s swimmer, at
values of y < /2 where such an analogy is possible, corresponds approximately to one
wavelength of a travelling wave. The rightward-travelling wave of lateral displacement
causes a net translation of the undulating rod to the left, and we will show in §4.1
that Purcell’s swimmer, swimming as indicated in figure 1(b), will also generally
swim to the left for stroke angles of y <2, supporting the validity of this analogy.
As we emphasized in our description of Purcell’s swimmer in §3.1, Hancock (1953)
similarly noted the importance of the anisotropy of the fluid drag for a qualitative
explanation of the translation of the undulating rod in a direction opposite to that of
wave propagation: “...motions of small portions of cylinder normal to themselves
tend to be in the backward direction while motions tangential to themselves tend
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FIGURE 7. Analogy between Purcell’s swimmer and plane-wave propagation for an aspect
ratio of n=1. The end-points of the links in configurations I to IV are superimposed onto a
rightward-travelling sinusoidal wave.

to be in the forward direction, resulting in forward motion” (in this case, to the
left). This description of the propulsion of the undulating rod cannot be applied
directly to Purcell’s swimmer, however, due to the latter’s relatively large up-and-
down displacement perpendicular to the direction of travel (as given in figure 6 for
y =7/3 and n =2). The dissimilarity is probably responsible for the poor quantitative
agreement between the translation velocity predicted for Purcell’s swimmer from this
analogy and the true velocity of equation (11) (f(n) < 1). One might further expect
Purcell’s swimmer to be less efficient than plane-wave propulsion, an argument which
we quantify in §4.1 via the introduction of a new efficiency criterion.

3.3. Large-amplitude limit

In the previous two subsections, the arm motions of Purcell’s swimmer over
configurations I to IV have resulted in a net translation in the negative x-direction,
i.e. to the left. It turns out that for large-amplitude arm motions y — m, where each
arm stroke consists of nearly a full rotation of the arm, our numerical results indicate
that the swimmer swims in the opposite direction, i.e. to the right. In the following
section, we present a more complete overview of the variation of the net translation
velocity with stroke angle y, while in this subsection we focus on some details of
the motion when y =7 and the arms essentially start and finish on top of the centre
link. This limit of course violates slender-body theory, as lubrication forces eventually
dominate on close approach of any two surfaces. While our numerical computations
are only exact in the limit of small slenderness ratios, our calculated displacements
in the full-rotation limit y =mx will also apply in practical applications where the
hydrodynamic interactions are important over only a small part of the configuration
space and yield corrections that are negligible relative to the overall motion; the time
required to reach this limit, however, would be infinite based on the solution of the
Stokes equation for the approach of two locally flat surfaces, and hence we do not
discuss propulsive velocities near y =.

Additional symmetry arguments, independent of the hydrodynamic approximations,
provide intuitive insight into the motion of Purcell’s swimmer in the large-amplitude
limit. As discussed in §3.1, the motion of Purcell’s swimmer over any one complete
arm stroke may be related to that of any of the three other arm strokes via the
symmetry features depicted in figure 5. In the full-arm rotation limit y =m, the
motion of each stroke may in turn be broken down into two related motions, and
detailed knowledge of any one half-stroke (or one-eighth of the swimming cycle) is
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FIGURE 8. Symmetry argument for Purcell’s swimmer with y == and n =2, showing the de-
composition of Motion 1 into the two related Motions 1.1 and 1.2. In each graph, the starting
position is indicated by a solid line, the ending position by a dashed line, and the centre of
the middle link by a solid circle. Inset shows displacement of centre C. Graphs are based on
the slender-body analysis, neglecting lubrication forces and link overlap. Overlap is evident
since, for example, in Graph I the starting configuration (solid) appears to be shorter than the
opened one (dashed).

sufficient to determine the remaining dynamics. As shown in figure 8 for the case
n=2, Motion 1 can be decomposed into Motion 1.1, which ends when the arm is
in line with the centre link, and Motion 1.2, which is identical to a time-reversal of
Motion 1.1 reflected about a line drawn along the centre link half-way through the
stroke (configuration I'). Denoting the angle of the centre link in configuration I’ by
B, the (x, y) displacements of the centre C occurring over the course of Motion 1.2
are related to those over Motion 1.1 via

{Afzx] _ {—008(2/3’) —Sin(2ﬂ’)] {Afu} (12)
Afzy —sin(28')  cos(28) A1C.1y
The translation along the x-axis due to Motion 1 is thus given by

Al = ATy, + ATy, =[1 —cos(2p)] AT, —sin(28) AT, (13)

and, from §3.1, the total translation over the four motions of the complete cycle will
be equal to 4AS,.

The displacements in the full-rotation limit shown in figure 8 are based on the
slender-body analysis described in §2, and do not account for lubrication forces or
the fact that the far arm lies on top of the centre link; we show these results because
they are indicative of the displacement of Purcell’s swimmer for large-amplitude
motions where y is slightly less than m and where our analysis is appropriate for
links of sufficiently small slenderness ratio. Our numerical computations for large-
amplitude arm motions indicate that the net translation of Purcell’s swimmer over
configurations I to IV is to the right, and this result may be confirmed intuitively via
the symmetry arguments presented above. From the inset of figure 8§, it can be seen
that the displacement vector of the centre C under Motion 1.2 is simply the negative
of that of Motion 1.1 reflected about the centre link of configuration I’, leading to
a net translation over Motion 1 that is to the right and upwards. Intuitively, one
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might expect a qualitatively similar picture even if lubrication forces were taken into
account at finite values of the slenderness ratio.

While we have not undertaken a more detailed investigation incorporating
hydrodynamic interactions, in the full-rotation limit the centre link and the passive
folded-in arm would essentially behave as one; realistically, this effective link would
have a variable cross-section due to two arms lying side by side, but such variations
have a negligible effect on the hydrodynamics at sufficiently small slenderness ratios
(Batchelor 1970). Thus, in the limit y =mr, Purcell’s swimmer over each stroke is
essentially equivalent to a scallop with generally unequal arms. Neglect of the passive
arm in our numerical simulations does not alter the qualitative features of the motion
shown in figure 8. Corresponding to the case of equal arm lengths (n=1) in the
full-rotation limit, we have already shown in figure 4 that a scallop opening from
the closed to the straight position — Motion 1.1 with neglect of the passive arm —
experiences a positive, rightward displacement of the arm centres (A{, >0); by
symmetry, the same rightward displacement occurs as the scallop closes to the opposite
side (Motion 1.2), yielding A{, =2A¢, > 0 and again supporting our conjecture that,
even at practically reasonable values of the slenderness ratio, Purcell’s swimmer in the
large-amplitude limit should swim in a direction opposite to that for small-amplitude
displacements.

4. Discussion
4.1. Swimming velocity and propulsive efficiency

The question of which aspect ratio n and stroke angle y results in the fastest or most
efficient Purcell’s swimmer depends on how one standardizes the energy-input criteria
across different swimmer configurations. For very slow motions under relatively heavy
load, muscles and machines generally dissipate much of their energy internally, and
their power consumption depends to a large extent on the duration over which they
produce a given force or torque, and less on the mechanical work performed on the
environment; in the extreme case of zero net motion under load, as occurs when
holding a weight out in front of you or when pressing the accelerator just enough to
balance a car on a steep incline, no external work is done and all of the expended
energy is transformed into heat. For a practical implementation of Purcell’s swimmer
operating under such conditions where internal energy dissipation is dominant, one
possible way to compare swimmer configurations is to let each swimmer exert a
constant torque difference S’ over time at either joint for a given arm length
a, as was assumed in the previous section. Alternatively, under conditions where
internal energy is transformed primarily into mechanical work, one could seek the
fastest swimmer such that the mechanical power @ = S*'(¢)w(t), which is dissipated
viscously in the fluid, remains constant over time.

In figure 9, we show the net velocity of translation V, for various n over the complete
range of y for these two energy-input criteria. The slender-body approximation, for
a given slenderness ratio €, becomes less and less valid as y approaches m, and the
arms would begin to cross for y > m — arccos(n/2) when n < 2. Results for 2<y <n
should be applied with caution to practical realizations of Purcell’s swimmer, since
hydrodynamic interactions between links may be especially significant (see discussion
of equation (5) in §2); we focus here primarily on smaller stroke amplitudes where
the velocity of translation is predominantly negative and the swimming sequence
represented by configurations I to IV results in translation to the left. Our numerical
results do, however, indicate that the translation velocity will change sign for
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FiGURE 9. The net velocity of translation V, versus the stroke angle y for various aspect
ratios n: (a) constant torque difference S¢, (b) constant mechanical power @.

large-amplitude motions (y = 2), and these findings are intuitively confirmed by the
symmetry arguments of § 3.3 for the complete-rotation (y =) limit shown in figure 8.

For the case of constant torque difference S’ shown in figure 9(a), the fastest
Purcell’s swimmer translating in the negative x-direction has a configuration of
n=0.58 and y =1.09, with a maximum rotation of the middle link of B,,,. = +0.81.
The motion is qualitatively similar to the one shown in figure 5 for n =2, and the
optimal swimmer has a translational velocity of V, =—0.0615%"/(¢a?). Based solely
on the small-amplitude, linear analysis of §3.2, the optimal aspect ratio would be
n=0.54.

For the case of constant mechanical power @ = S*'w shown in figure 9(b), the fastest
left-moving swimmer has n=0.69, y = 1.14, 8,,.. = £ 0.80, and an average translation
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velocity of V, =—0.053(®/¢a)"/?; the small-amplitude analysis of §3.2 predicts an
optimal aspect ratio of n=0.76. Since & may be written as some function of
instantaneous configuration, g, times (S)?, where g = /S is one component of the
mobility matrix obtained from inversion of the resistance matrix in equation (4), the
constraint of constant mechanical power may be implemented by simply replacing
the forcing S in equation (4) by + ./®@/g and integrating as described in §3 for
the case of constant forcing. Alternatively considering ® as w?/g, a quadratic form
in angular velocities, it follows immediately from calculus of variations that the
total mechanical work performed by Purcell’s swimmer while moving between two
arbitrary points in configuration space over any time interval [t;, f,] is minimized
under constant mechanical power, i.e.

15)
min / & dt = ¢ = constant. (14)

131

This result is completely analogous to that of conservation of energy in Lagrangian
mechanics, where kinetic energy, instead of mechanical power, is of quadratic form
in generalized velocities (see Landau & Lifshitz 1976); in the Appendix, we give
a proof of equation (14) for the general case of an arbitrary, deformable volume.
Thus the fastest swimmer configuration under constant mechanical power will require
the least amount of mechanical work to swim a given distance over any fixed time
interval.

Our determination of the fastest swimmer under either constant torque difference
S or constant mechanical power @ does not allocate greater torque or power to
swimmers of larger aspect ratios 5, a possibly fair comparison if the length of the
middle link is irrelevant to power generation within the swimmer. On the other hand,
previous definitions of efficiency for low-Reynolds-number swimming motions have
accounted for differences in length by comparing the power required to drag the
swimmer at its translation velocity to the average mechanical power generated during
the actual swimming motion (see Lighthill 1975 for the undulating sphere, Purcell
1997 for the rotating helix). In this spirit, we define a swimming efficiency & as the
power necessary to pull the straightened swimmer (of length (n+2)a) along its axis
at the average speed of the actual swimmer, V,, relative to the average mechanical
power generated by the actual swimmer to achieve that speed, i.e.

(n+2)¢aV}?

&= @)

(15)
Note that in the numerator of & we consider the power of pulling the straightened
swimmer as opposed to that of dragging some other fixed configuration. The definition
allows us to compare Purcell’s swimmer to the previously studied motions of the
undulating rod and the rotating helix, as it may be applied universally to any
swimming slender body.

In figure 10, we plot the efficiency & versus stroke angle y under constant mechanical
power, a condition which, as noted above, minimizes the average mechanical power
required by any given swimmer configuration to achieve some specified net-translation
velocity V, and which thus maximizes the efficiency of that swimmer. The efficiencies
given in the figure correspond to the square of the velocities of figure 9(b), multiplied
by the non-dimensionalized body length (n+2). With this weighting in favour of
longer swimmers, the most efficient configuration for leftward propulsion has n =0.81,
y =1.13, and B, =10.74, corresponding to an efficiency of &, =0.00771. The
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FiGUure 10. The efficiency & versus the stroke angle y for various aspect ratios 7.

maximum efficiency for rightward propulsion is about twice as large at 0.0155,
corresponding to a swimmer undergoing nearly full arm rotations with n=0.93,
y =2.98, and B, =12.76, but this high value of the efficiency may not be realized
in practical implementations of Purcell’s swimmer due to hydrodynamic interactions
between links.

For comparison, our efficiency criterion can be applied to the previously studied
swimming motions of the undulating rod and the rotating helix. The former
swimmer propagates a plane wave of lateral displacement and the latter two
counter-rotating spiral waves of opposite handedness, as depicted in figures 11(a)
and 11(b), respectively, with common wavenumber k =2n/A and wave amplitude A.
The velocities of translation V, are in each case opposite to the velocity of wave
propagation x, and are reproduced in figure 11(c) from the analytical results by
Hancock (1953) for arbitrarily large wave amplitude (see Hancock 1953, pp. 106
and 117 for plane- and spiral-wave motions, respectively; figure 11(c) is equivalent
to figure 7 of Hancock but shows a wider range of kA). The velocities may be
re-derived most simply from a force balance in the x-direction, whereas the original
derivation by Hancock is more complicated due to his inclusion of higher-order
non-local hydrodynamic drag. The corresponding values of the efficiency measure &,
formally introduced in equation (15), are shown in figure 11(d). The undulating rod
has a peak efficiency of &, =0.0736 at kA =1.10, while the helical swimmer, for
which we have the simple relation & = (kA)?/[2+ 6(kA)> +4(kA)*], has &, =0.0858
at kA =0.841. Hence the most efficient rod and helix configurations are more than
ten times as efficient as the optimal (left-moving) Purcell’s swimmer of figure 10, a
result of the relatively large up-and-down movement of Purcell’s swimmer relative to
its net swimming direction over each cycle.

4.2. Isotropic drag

As stated in § 3.1, the local resistance of a slender body to motion perpendicular to
its centreline is twice that to tangential motion, and Hancock (1953) emphasized the
importance of this anisotropy of the fluid drag to the propulsion of the undulating
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FiGURre 11. Efficiency comparison of the undulating rod and the counter-rotating linked
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the film Low Reynolds Number Flows by G. 1. Taylor), (¢) translation velocity V, relative to
wave speed y, (d) efficiency &.

rod. The significance of drag anisotropy for more general swimming motions, such as
those of Purcell’s swimmer, has, to our knowledge, not been discussed in the literature,
and some recent studies on the hydrodynamics of slender biological filaments have
considered the case where the drag on the filament is locally isotropic. In these studies,
the local hydrodynamic force per unit length acting on the filament, f, is taken, in
the absence of any background flow, as directly proportional to the local filament
velocity, U, as would be obtained by deleting the term A4 in equation (5). For example,
Goldstein et al. (1998) assumed isotropic drag for the sake of mathematical simplicity
in a study of the nonlinear dynamics of curved and twisted rods, while Camalet
et al. (1999) simply noted from their results that a self-propelled, planar flagellum
propagating small-amplitude wave-like disturbances has zero translation speed when
the drag is taken as isotropic.

Here we present a simple but general argument proving that under locally isotropic
hydrodynamic drag (f oc U), any force-free inextensible swimmer could not change
its average position, 7 (or its centre of mass given a constant mass per unit length).
Differentiating the average position of an inextensible filament of constant length L
with respect to time, we obtain

P 1d [* 1 [For I L
a " rar ), "0 L/O ar & L/OUSOC/OfSO’ (16)

where s denotes the arclength along the centreline of the slender body and the
last equality follows from the fact that the swimmer is assumed to be force-free.
This argument implies that the anisotropy of the slender-body drag is crucial to
the propulsion of slender filaments at low Reynolds numbers. It is hence essential
that qualitative explanations of the swimming of self-propelled, inextensible, slender
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bodies in the inertialess limit, such as the intuitive description of the motion of
Purcell’s swimmer given in §3.1, incorporate the inherent drag anisotropy, without
which swimming would be impossible.

5. Conclusions

Purcell (1976) introduced the three-link swimmer as the simplest ‘animal’ or
mechanism that could swim at low Reynolds number, but the swimming direction
was left as a question for the reader. Our numerical results, based on leading-
order slender-body hydrodynamics, show that Purcell’s swimmer can travel in either
direction along a straight line depending upon the amplitude of the arm motions. For
small to moderate stroke angles of the arms (y < 2), Purcell’s swimmer is qualitatively
similar to approximately one wavelength of an undulating rod propagating a plane-
wave disturbance, and the swimming direction is opposite to that of the wave
velocity; for larger stroke amplitudes, the direction of net translation reverses. The
fastest swimmer configurations under the conditions of constant forcing and of
minimum mechanical work were determined. Via a new efficiency criterion, we
compared Purcell’s swimmer to the undulating rod and the rotating helix; it was
shown that the optimal swimmer has an efficiency of only about 0.77%, and so is
much less efficient than the optimal undulating rod (7.4%) and the rotating helix
(8.6%). Finally, we also proved that under the simplifying assumption of locally
isotropic drag, a self-propelled inextensible filament in an otherwise quiescent fluid
cannot translate its average position, demonstrating the central importance of drag
anisotropy to swimming motions in the inertialess limit.

L.E.B. acknowledges support from DOE grant DE-FG02-88ER25053, and H.A.S.
acknowledges grant DAAG 55-97-1-0114 from the Army Research Office as well
as grant ECS-0004030 from the National Science Foundation. H.A.S. thanks
A. Samuel for numerous helpful discussions about swimming micro-organisms. We
thank R. Day, T. Squires and H. Berg for discussions.

Appendix. Minimum mechanical work

In this Appendix, we consider a continuous, freely deformable volume with
bounding surface S that evolves, in an otherwise quiescent fluid under the inertialess
(zero-Reynolds-number) regime, between two arbitrary surface positions x; and x; in
a given time interval [z, 1,]. We then demonstrate that among all possible displacement
strategies, the one that minimizes the total mechanical work must have constant
mechanical power throughout the motion.

Let each point of the surface be mapped onto a pair of Lagrangian marker
coordinates «; and «;, so that the position on the surface is described by the position
vector x = x(ay, as, t). Consider one particular evolution x =X of the surface between
X(t=1)=x; and X(t =) =x,. Based on this motion, define a configuration space
X(a1, o0, q), g € [t1, 1], where the variable g parameterizes this particular sequence
of surface shapes. This configuration space may be traversed by the volume in time
at different rates, as specified by the function ¢(¢) with g(t =t)=1t; and g(t =1,) =1t.
We will show that for such a configuration space corresponding to any one of all
possible spatial evolutions of the surface between x; and x,, the total mechanical
work is minimized by choosing the function ¢(¢) such that the mechanical power is
constant.
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The velocity at any point of the surface traversing a given configuration space
X(ay, as, g) is given by

0x  dx(ar, a2, q) .
Rl i he sk 04

Al
ar 57 , (A1)

where ¢ =dg/dz, and hence the velocity may be considered as some known function of
q times ¢. The local force per unit area, n - ¢, acting on any point of the surface at time
t may, by the linearity of the quasi-steady Stokes equations (3a) and (3b), be written
as a surface integral of the velocities at time r multiplied by an instantenous Green’s
function (e.g. Kim & Karilla 1991), an expression which may also be transformed via
t =t(gq) into a function of ¢ multiplied by ¢. Thus, the mechanical power, @, taken
as a function of ¢(¢) and ¢(¢), is quadratic in ¢:

q>=/ n-o-udS=[F(q)d]* (A2)
S(t)

where the function F(g) depends only upon the surface shape at time #(g).
The total mechanical work, W, performed in traversing any given configuration
space may be written as

W= /tzdidt: /IZ[F(q)q]2dt, (A3)

and it follows immediately from the calculus of variations that this integral is
minimized when the integrand, the mechanical power @, is constant (e.g. Landau
& Lifshitz 1976). Alternatively, application of the Schwartz inequality for functions
(e.g. Arfken 1985) yields

" 1 L 2 1 I 2
W:/zl [F(Q)Ci]zdtztz_tl[/ F(q)th} - IU F(q)dq], (Ad)

t 27— 4

where the last integral, obtained via application of the chain rule, is equal to some
constant that is independent of ¢, the rate at which the configuration space for a
given surface-shape evolution is traversed. Hence regardless of the choice of ¢(z),
for any particular configuration space the total mechanical work is always greater
than or equal to this constant. Since our form of the Schwartz inequality becomes
an equality only when the integrand of the work integral, the mechanical power @,
is also constant, the minimum mechanical work for each possible spatial evolution
sequence of the surface is thus achieved by choosing ¢ such that

@ = [F(q)4])* = constant. (A5)

The above proof was designed to avoid reference to results from the calculus of
variations. An alternative would be to, for example, expand the dependence of the
surface position x on the Lagrangian markers «; and «, in terms of orthogonal
polynomials with time-dependent mode amplitudes, to then write the mechanical
power @ as a quadratic form in time derivatives of mode amplitudes, and finally to
use the calculus of variations (e.g. Arfken 1985) to conclude that @ must be constant.
The latter approach would also lead, as an intermediate step, to the Euler equations
governing the extrema of the work integral over all possible surface evolutions.
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