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Employment Growth in 50 US States
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Estimated Spectra of Employment Growth in 50 US States
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This Paper

e Bayesian forecasts of n related time series with
— Hierarchical priors (=shrink towards common parameter values)
— Fat-tailed shocks and stochastic volatility (=downweighs outliers and times of turmoil)
— Time varying parameters (=puts more weight on more recent data when forming forecasts)

— Common factor (=captures cross sectional dependence)

e Three applications with monthly data
— Employment in n = 50 U.S. states
— Industrial production in n = 16 European countries

— U.S. inflation series in n = 17 sectors




Results

e Modern computing power allows for fast and accurate MCMC Bayesian inference

With n = 50 and T" = 400 estimation of full model takes about 50 seconds (in Fortran)

e Promising empirical performance

|dentical model systematically outperforms univariate OLS AR(12) forecasts in three applications,

often by substantial margin




Related Literature

e Large literature on Bayesian time series models

Doan, Litterman, Sims (1984), Litterman (1986), Sims (1993), Cogley and Sargent (2005), Banbura,
Giannone, Reichlin (2010), Giannone, Lenza, Primiceri (2015), Carriero, Clark, Marcellino (2015),
Chan (2022), etc.

e Numerically efficient posterior draws of state in linear state space system

Durbin and Koopman (2002), Chan and Jeliazkov (2009), etc.




Outline of Presentation

. Base model and its complications, illustrated in U.S. employment application

Hierarchical priors, Student-t errors, additive outliers, stochastic volatility, time varying parameters,

common factors

. Additional applications

. Performance of Quantile Forecasts

. Conclusion




Basic Gaussian AR(12) Model

e Datay;4, j=1,...,n,t=1,...,T

Yjt = M5+ Ujg
12

Ujp = Z (/bjluj,t—l + O €t Ejt ™ iidN(O, 1)
[=1

uj_11:0 ~ N(0,055(¢;))

where 2 (¢) is unconditional covariance of stationary AR(12) with (scaled) coefficient ¢

[ignore additional common scale to all series to streamline presentation]

e Priors (all independent)
— Flat on p;
2
— Minnesota prior ¢, ~ N(0, Ol—g)

~ Ing% ~ N(0,1)




Algorithm for Posterior Draws

e Recall model

Yjt = Hj T Uj
12

Ujp = Z qﬁjluj’t_l —+ O € jt Ejt ™ iidN(O, 1)
[=1

wj—110 ~ N(0,055($)))

e Algorithm: (i) Draw p; and u; 119 conditional on (a?,qu) by Kalman smoother (using Durbin
Koopman (2002) method)

(ii) Draw qu|(,uj,uj,_11:o,a§) from conditional Gaussian [this requires a Metropolis-Hastings cor-
rection due to the conditioning on u; _11.0 ~ N(0, a?Z(qu))]

(iii) Draw a§|(,uj, uj 110, ®;) via Metropolis algorithm




Out-of-Sample Forecasting Performance, Employment Data

e For T'=1999:12 to T = 2019:6, use data t = 1990:2,...,T to compute
— OLS AR(12) forecasts fort =T +1,...,t =T +6
— Bayes posterior mean forecasts fort =T+ 1,...,t =T + 6 (with 1500 MCMC draws, first 500
discarded)
e For horizons, h = 1, 3,6 months, consider average future values
— compute RMSE relative to OLS benchmark pooled over 50 states

— for each state 2 = 1,...,50, compute RMSE relative to OLS benchmark




Results Relative to OLS, Employment Data

Pooled RMSE
Model h=1 h=3 h=6
Bayes B 0.97 0.99 1.02
Bayes HP
Bayes T
Bayes AO
Bayes SV
Bayes TVP
Bayes F
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Hierarchical Priors

e Instead of prior ¢;; ~ 73dN (O, 0. 22) use
¢ ~ iidN(my, V)
mp ~ N(0,%Z)  InVj ~N(In(22), 1)

= Shrink towards common value m;, with amount of shrinkage also determined by data

e Algorithm: Joint Metropolis step for (m, V'), conditional on ‘z-scores’ {zl}‘7 1 = {(@j—my)/vVV] }‘7 17
so evaluate posterior density at

C
;1 —my

‘/éC

qﬁﬂ = Vl (so Zl = 27)

to see whether we want to jump from (m¢, V¢, {qbc 1) to (mP, VP, {gbp} 1)

[In contrast, textbook algorithm conditions on {qu};”zl when updating (m, V)]

e Same hierarchical structure for a?
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Relative RMSE

Results Relative to OLS, Employment Data

Pooled RMSE
Model h=1 h=3 h=656
Bayes B 0.97 0.99 1.02
Bayes HP 0.95 0.94 0.96
Bayes T
Bayes AO
Bayes SV
Bayes TVP
Bayes F
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Student-t Innovations

e Now
12

wjt = ) Pt + ojeje  eji~ idT(v))
[=1

where 7 (v;) is student-t with v degrees of freedom with hierarchical prior In(v; —2) ~ N(my, V),
my ~ N(In10,1), In Vi, ~ N (In0.52,1)

e Note that sjt ~ th/1 /Sjt where th ~J ZZdN(O, 1) and VSjt ~/ ’L’LdX%

e Algorithm: (i) Draw prior (my, V}/) via ‘z-scores’ as above based on student-t likelihood
(i) Metropolis step for v; conditional on prior based on student-t likelihood

(iii) Conditional on v, draw Sj;|e, then condition on Sj; in all other steps so we recover condi-
tionally Gaussian likelihood
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Relative RMSE

Results Relative to OLS, Employment Data

Pooled RMSE

Model h=1 h=3 h=6

Bayes B 0.97 0.99 1.02

Bayes HP 0.95 0.94 0.96

Bayes T 0.94 0.94 0.96

Bayes AO

Bayes SV

Bayes TVP

Bayes F
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Additive Qutliers

e Now
Yjt = Hj tuj +Kjej, e 1id7 (2)
with hierarchical prior on In Kg ~ N (mu, Vi), mkg ~N(In0.1%,1), InV; ~ N (In0.32,1)

(allows for outliers that do not feed into autoregression)

e Algorithm: (i) Draw prior (my, V,,) as above based on Kalman filter, so no conditioning on realizations
T
of {ejt, ejt}i—1 and p;

(i) Draw {p;, ujt, €5} and u; _11.0 conditional on (a?, o 12) via Kalman smoother




Results Relative to OLS, Employment Data

Pooled RMSE

Model h=1 h=3 h=6

Bayes B 0.97 0.99 1.02

Bayes HP 0.95 0.94 0.96

Bayes T 0.94 0.94 0.96

Bayes AO 0.93 0.93 0.95

Bayes SV

Bayes TVP

Bayes F
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A Low-Dimensional Approximation to Random Walk
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Stochastic Volatility

e Now
12
wje = 3 djuj— +exp(zhi)eje  je ~ idT (v))
=1
where
q
hjt =Ino? + 3 outj &~ iidN (mp, V)
=1

with ¢y suitably scaled sinusoidal functions, ¢ = |7/36] and hierarchical prior on Vfl

e Algorithm: as above, vector version of drawing (prior on) a?
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Relative RMSE

Results Relative to OLS, Employment Data

Method

Pooled RMSE

Model h=1 h=3 h=6
Bayes B 0.97 0.99 1.02
Bayes HP 0.95 0.94 0.96
Bayes T 0.94 0.94 0.96
Bayes AO 0.93 0.93 0.95
Bayes SV 0.93 0.93 0.95
Bayes TVP

Bayes F
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Time Varying Parameters

e Now

Yjt = Hjp T Ujp + Kj€jq
12 1

ujp = ) bjuji—i +exp(zhiej ey ~ 1dT (v))
=1

where
A A
il 1~ N(pj, V; Y djuldii—1 ~ N(djr—1, Vi ?)
Hio ~ N(Oa OO) qulo ~ N(mﬂa le)

and hierarchical prior on (VjAM, V]lA¢)

e Algorithm for {¢;;;}: (i) For Metropolis step for (prior on) (m?l, (?, Vi ¢) use Kalman filter to

obtain likelihood, that is integrate out possible paths

(i) Then draw paths {¢glt}t 1 conditional on (mjl, glb, 147 (b) by Kalman smoothing, as before
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Relative RMSE

Results Relative to OLS, Employment Data
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Pooled RMSE
Model h=1 h=3 h=6
Bayes B 0.97 0.99 1.02
Bayes HP 0.95 0.94 0.96
Bayes T 0.94 0.94 0.96
Bayes AO 0.93 0.93 0.95
Bayes SV 0.93 0.93 0.95
Bayes TVP 0.93 0.93 0.95
Bayes F
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Common Factor
e Now

5
yjt = Wit +uje + wjesr + > Njpfro + pg + wef
=0

Jt ~ Upiit, /ig ~ Hp41 'fgeg ~ Fn+1€n+1.t
= common factor, common random walk and common additive outliers modelled as additional
individual series in previous model (including sharing the same hierarchical prior). Hierarchical priors
on random walks {)\jlt}thl that shrink towards 1 for contemporaneous (I = 0) loading, and towards
zero otherwise.

e Algorithm: (i) For {f;}/_;, exploit that conditional on loadings {Ajlt};sr:1 posterior is Gaussian with
T' x T" band precision matrix, so use specialized linear algebra routines to generate appropriate draws
(cf. Chan and Jeliazkov (2009))

(ii) Use Kalman filter likelihood to update variances of {Ajlt}thl conditional on {f;}]_;, followed
by draw from time-path {Aﬂt}g;l
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Results Relative to OLS, Employment Data

Pooled RMSE
Model h=1 h=3 h=6
Bayes B 0.97 0.99 1.02
Bayes HP 0.95 0.94 0.96
Bayes T 0.94 0.94 0.96
Bayes AO 0.93 0.93 0.95
Bayes SV 0.93 0.93 0.95
Bayes TVP 0.93 0.93 0.95
Bayes F 0.90 0.90 0.95
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Industrial Production in 16 European Countries
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Results Relative to OLS, European IP Data 1985:6-2019:6

Relative RMSE

0.85 !

Pooled RMSE
Model h=1 h=3 h=6
Bayes B 0.98 0.99 0.98
Bayes HP 0.98 0.99 0.98
Bayes T 0.97 0.99 0.99
Bayes AO 0.97 0.98 0.99
Bayes SV 0.97 0.99 0.99
Bayes TVP 0.97 0.98 0.98
Bayes F 0.95 0.96 0.98
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US Inflation in 17 Sectors

(a) All Sectors

(b) Select Sectors
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Results Relative to OLS, US Inflation Data 1984:12-2019:6

Pooled RMSE

Model h=1 h=3 h=6

Bayes B 0.96 0.96 0.97

Bayes HP 0.96 0.98 1.01

Bayes T 0.94 0.97 1.01

Bayes AO 0.94 0.97 1.01

Bayes SV 0.96 1.00 1.02

Bayes TVP 0.95 0.95 0.96

Bayes F 0.95 0.96 0.96
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Results Relative to OLS, US Inflation Data 1984:12-2019:6

Model h=1 h =3 h=6
Pooled RMSE
Bayes F 0.95 0.96 0.96
NYFed 0.95 1.03 1.15
Aggregate Inflation (‘Headline’ — All Sectors)
Bayes F 0.94 0.92 0.87
NYFed 1.00 0.99 1.01
Aggregate Inflation (‘Core’ — excl. Food and Energy)
Bayes F 0.90 0.78 0.69

NYFed 0.93 0.83 0.76




Performance of Bayes Quantile Forecasts

Compute OLS quantile forecasts of average future values

= Assume 3d/N(0, o) innovations with o2 estimated by sample variance of residuals

For each draw of parameters of Bayes model, iterate model forward to obtain posterior distribution
of average future values, then compute quantiles

Compare quality of quantile forecasts by average of quantile loss function

~ ) gy — 4 for y > ¢
eQ(y’Q)_{ (1—q)ly—4q|] fory<gq

= average loss minimizing § for this loss function is the qth quantile of distribution of y

Same sample periods as for RMSE comparisons




Pooled Quantile Losses Relative to OLS, Employment Data

h=1 h=3
Quantile 0.05 0.33 0.50 0.67 0.95 0.05 0.33 0.50 0.67 0.95
Bayes B 1.00 0.99 098 0.99 0.99 1.04 1.02 1.00 1.00 0.98
Bayes HP 0.98 097 0.96 096 0.97 0.93 096 0.96 096 0.96
Bayes T 0.97 095 095 094 0.96 0.92 095 096 096 0.97
Bayes AO 0.97 095 095 094 0.96 0.92 095 096 095 0.96
Bayes SV 0.96 095 0.95 093 0.93 0.92 095 095 094 0.91
Bayes TVP 0.95 094 094 093 0.93 0.89 094 0.95 094 0.92
Bayes F 0.91 091 0.92 091 0.92 0.83 091 0.94 095 0.93
h=26
Bayes B 1.08 1.04 1.00 0.98 0.93
Bayes HP 0.89 096 0.96 096 0.94
Bayes T 0.868 0.95 0.96 0.97 0.96
Bayes AO 0.87 095 0.96 096 0.94
Bayes SV 0.80 0.95 0.95 0.94 0.89

Bayes TVP 0.86 094 096 0.96 0.90
Bayes F 0.84 094 098 0.99 0.90




Pooled Quantile Losses Relative to OLS, European IP Data

h=1 h=3
Quantile 0.05 0.33 050 0.67 0.95 0.05 0.33 050 0.67 0.95
Bayes B 0.99 099 0.98 098 0.99 1.01 099 099 1.00 1.01
Bayes HP 0.99 099 0.98 098 0.99 1.01 0.99 099 0.99 0.99
Bayes T 0.98 097 098 096 0.96 1.00 0.99 099 0.98 0.99
Bayes AO 0.97 097 098 096 0.96 0.99 0.99 099 0.98 0.98
Bayes SV 0.96 097 0.98 096 0.94 0.98 099 0.99 098 0.96
Bayes TVP 0.96 097 097 096 0.93 0.99 098 0.98 0.97 0.94
Bayes F 0.92 095 096 095 0.91 094 096 096 095 0.93
h=26
Bayes B 1.00 0.99 0.99 1.01 1.02
Bayes HP 1.00 0.99 099 1.00 1.00
Bayes T 0.98 099 1.00 1.00 1.00
Bayes AO 0.98 1.00 1.00 1.00 0.99
Bayes SV 0.98 099 1.00 0.99 0.96

Bayes TVP 0.98 0.99 0.99 0.98 0.96
Bayes F 094 097 097 097 0.94




Pooled Quantile Losses Relative to OLS, US Inflation

h=1 h =3
Quantile 0.0 0.33 050 0.67 0.95 0.05 0.33 0.50 0.67 0.95
Bayes B 1.01 0.99 099 0.99 1.00 1.00 099 1.00 1.00 0.99
Bayes HP 0.99 099 099 0.99 0.99 1.00 0.99 0.99 0.99 0.99
Bayes T 1.05 0.99 099 0.98 1.06 1.01 1.00 099 0.98 1.03

Bayes AO 1.04 0.99 099 0.98 1.06 1.01 1.00 099 0.98 1.03
Bayes SV 0.90 0.99 0.99 0.98 0.88 094 101 1.00 0.98 0.92
Bayes TVP 0.86 096 0.97 095 0.88 0.88 096 096 094 0.88

Bayes F 0.83 0.95 096 094 0.85 0.86 0.96 0.95 0.92 0.84
h=6

Bayes B 0.99 1.00 1.02 1.02 1.00

Bayes HP 0.99 1.00 1.00 1.01 1.02

Bayes T 0.09 1.00 1.00 0.99 1.09

Bayes AO 0.98 1.00 1.00 0.99 1.07
Bayes SV 0.95 1.02 1.00 0.99 1.02
Bayes TVP 0.89 096 0.95 0.93 0.94
Bayes F 0.86 096 0.93 0.89 0.88




Summary

e Developed fully-fledged generic Bayesian model for related time series

e Promising MSE and quantile forecast performance in three examples
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