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Employment Growth in 50 US States



Estimated Spectra of Employment Growth in 50 US States



This Paper

• Bayesian forecasts of  related time series with

— Hierarchical priors (=shrink towards common parameter values)

— Fat-tailed shocks and stochastic volatility (=downweighs outliers and times of turmoil)

— Time varying parameters (=puts more weight on more recent data when forming forecasts)

— Common factor (=captures cross sectional dependence)

• Three applications with monthly data

— Employment in  = 50 U.S. states

— Industrial production in  = 16 European countries

— U.S. inflation series in  = 17 sectors



Results

• Modern computing power allows for fast and accurate MCMC Bayesian inference

With  = 50 and  = 400 estimation of full model takes about 50 seconds (in Fortran)

• Promising empirical performance

Identical model systematically outperforms univariate OLS AR(12) forecasts in three applications,

often by substantial margin



Related Literature

• Large literature on Bayesian time series models

Doan, Litterman, Sims (1984), Litterman (1986), Sims (1993), Cogley and Sargent (2005), Banbura,

Giannone, Reichlin (2010), Giannone, Lenza, Primiceri (2015), Carriero, Clark, Marcellino (2015),

Chan (2022), etc.

• Numerically efficient posterior draws of state in linear state space system

Durbin and Koopman (2002), Chan and Jeliazkov (2009), etc.



Outline of Presentation

1. Base model and its complications, illustrated in U.S. employment application

Hierarchical priors, Student-t errors, additive outliers, stochastic volatility, time varying parameters,

common factors

2. Additional applications

3. Performance of Quantile Forecasts

4. Conclusion



Basic Gaussian AR(12) Model

• Data ,  = 1     ,  = 1     
 =  + 

 =
12X
=1

− + ,  ∼ N (0 1)

−11:0 ∼ N (0 2Σ())
where Σ() is unconditional covariance of stationary AR(12) with (scaled) coefficient 

[ignore additional common scale to all series to streamline presentation]

• Priors (all independent)

— Flat on 

— Minnesota prior  ∼ N (0 02
2

2
)

— ln2 ∼ N (0 1)



Algorithm for Posterior Draws

• Recall model

 =  + 

 =
12X
=1

− + ,  ∼ N (0 1)

−11:0 ∼ N (0 2Σ())

• Algorithm: (i) Draw  and −11:0 conditional on (2  ) by Kalman smoother (using Durbin
Koopman (2002) method)

(ii) Draw |( −11:0 2) from conditional Gaussian [this requires a Metropolis-Hastings cor-

rection due to the conditioning on −11:0 ∼ N (0 2Σ())]

(iii) Draw 2 |( −11:0 ) via Metropolis algorithm



Out-of-Sample Forecasting Performance, Employment Data

• For  = 1999:12 to  = 2019:6, use data  = 1990:2      to compute

— OLS AR(12) forecasts for  =  + 1      =  + 6

— Bayes posterior mean forecasts for  =  +1      =  +6 (with 1500 MCMC draws, first 500

discarded)

• For horizons,  = 1 3 6 months, consider average future values

— compute RMSE relative to OLS benchmark pooled over 50 states

— for each state  = 1     50, compute RMSE relative to OLS benchmark



Results Relative to OLS, Employment Data

Pooled RMSE

Model  = 1  = 3  = 6

Bayes B 0.97 0.99 1.02

Bayes HP

Bayes T

Bayes AO

Bayes SV

Bayes TVP

Bayes F



Hierarchical Priors

• Instead of prior  ∼ N (0 022
2
), use

 ∼ N ( )

 ∼ N (0 022
2
) ln ∼ N (ln(02

2

2
) 1)

⇒ Shrink towards common value , with amount of shrinkage also determined by data

• Algorithm: Joint Metropolis step for ( ) conditional on ‘z-scores’ {}=1 = {(−)
√
}=1,

so evaluate posterior density at



 = 


 +

q




 −
q

 


(so 

 =  )

to see whether we want to jump from (   {}=1) to (   {}=1)
[In contrast, textbook algorithm conditions on {}=1 when updating ( )]

• Same hierarchical structure for 2



Results Relative to OLS, Employment Data

Pooled RMSE

Model  = 1  = 3  = 6

Bayes B 0.97 0.99 1.02

Bayes HP 0.95 0.94 0.96

Bayes T

Bayes AO

Bayes SV

Bayes TVP

Bayes F



Student-t Innovations

• Now

 =
12X
=1

− + ,  ∼ T ()

where T () is student-t with  degrees of freedom with hierarchical prior ln(−2) ∼ N ( ),

 ∼ N (ln 10 1) ln ∼ N (ln 052 1)

• Note that  ∼ 
q
 where  ∼ N (0 1) and  ∼ 2

• Algorithm: (i) Draw prior ( ) via ‘z-scores’ as above based on student-t likelihood

(ii) Metropolis step for  conditional on prior based on student-t likelihood

(iii) Conditional on , draw |, then condition on  in all other steps so we recover condi-
tionally Gaussian likelihood



Results Relative to OLS, Employment Data

Pooled RMSE

Model  = 1  = 3  = 6

Bayes B 0.97 0.99 1.02

Bayes HP 0.95 0.94 0.96

Bayes T 0.94 0.94 0.96

Bayes AO

Bayes SV

Bayes TVP

Bayes F



Additive Outliers

• Now
 =  +  + ,  ∼ T (2)

with hierarchical prior on ln2 ∼ N ( ),  ∼ N (ln 012 1), ln ∼ N (ln 032 1)

(allows for outliers that do not feed into autoregression)

• Algorithm: (i) Draw prior ( ) as above based on Kalman filter, so no conditioning on realizations

of { }=1 and 
(ii) Draw {  } and −11:0 conditional on (2   2) via Kalman smoother



Results Relative to OLS, Employment Data

Pooled RMSE

Model  = 1  = 3  = 6

Bayes B 0.97 0.99 1.02

Bayes HP 0.95 0.94 0.96

Bayes T 0.94 0.94 0.96

Bayes AO 0.93 0.93 0.95

Bayes SV

Bayes TVP

Bayes F



A Low-Dimensional Approximation to Random Walk



Stochastic Volatility

• Now

 =
12X
=1

− + exp(12),  ∼ T ()

where

 = ln
2
 +

X
=1

,  ∼ N (
  


)

with  suitably scaled sinusoidal functions,  = b36c and hierarchical prior on  


• Algorithm: as above, vector version of drawing (prior on) 2



Results Relative to OLS, Employment Data

Pooled RMSE

Model  = 1  = 3  = 6

Bayes B 0.97 0.99 1.02

Bayes HP 0.95 0.94 0.96

Bayes T 0.94 0.94 0.96

Bayes AO 0.93 0.93 0.95

Bayes SV 0.93 0.93 0.95

Bayes TVP

Bayes F



Time Varying Parameters

• Now

 =  +  + 

 =
12X
=1

− + exp(12),  ∼ T ()

where

|−1 ∼ N (  ∆
 ) |−1 ∼ N (−1  ∆

 )

0 ∼ N (0∞) 0 ∼ N (
 


)

and hierarchical prior on (
∆
  

∆
 )

• Algorithm for {}: (i) For Metropolis step for (prior on) (
 


  

∆
 ), use Kalman filter to

obtain likelihood, that is integrate out possible paths

(ii) Then draw paths {}=1 conditional on (

 


  

∆
 ) by Kalman smoothing, as before



Results Relative to OLS, Employment Data

Pooled RMSE

Model  = 1  = 3  = 6

Bayes B 0.97 0.99 1.02

Bayes HP 0.95 0.94 0.96

Bayes T 0.94 0.94 0.96

Bayes AO 0.93 0.93 0.95

Bayes SV 0.93 0.93 0.95

Bayes TVP 0.93 0.93 0.95

Bayes F



Common Factor

• Now

 =  +  +  +
5X
=0

− + 

 + 




 ∼ +1, 

 ∼ +1, 


 ∼ +1+1

⇒ common factor, common random walk and common additive outliers modelled as additional

individual series in previous model (including sharing the same hierarchical prior). Hierarchical priors

on random walks {}=1 that shrink towards 1 for contemporaneous ( = 0) loading, and towards
zero otherwise.

• Algorithm: (i) For {}=1, exploit that conditional on loadings {}=1 posterior is Gaussian with
 × band precision matrix, so use specialized linear algebra routines to generate appropriate draws

(cf. Chan and Jeliazkov (2009))

(ii) Use Kalman filter likelihood to update variances of {}=1 conditional on {}=1, followed
by draw from time-path {}=1



Results Relative to OLS, Employment Data

Pooled RMSE

Model  = 1  = 3  = 6

Bayes B 0.97 0.99 1.02

Bayes HP 0.95 0.94 0.96

Bayes T 0.94 0.94 0.96

Bayes AO 0.93 0.93 0.95

Bayes SV 0.93 0.93 0.95

Bayes TVP 0.93 0.93 0.95

Bayes F 0.90 0.90 0.95



Industrial Production in 16 European Countries



Results Relative to OLS, European IP Data 1985:6-2019:6

Pooled RMSE

Model  = 1  = 3  = 6

Bayes B 0.98 0.99 0.98

Bayes HP 0.98 0.99 0.98

Bayes T 0.97 0.99 0.99

Bayes AO 0.97 0.98 0.99

Bayes SV 0.97 0.99 0.99

Bayes TVP 0.97 0.98 0.98

Bayes F 0.95 0.96 0.98



US Inflation in 17 Sectors



Results Relative to OLS, US Inflation Data 1984:12-2019:6

Pooled RMSE

Model  = 1  = 3  = 6

Bayes B 0.96 0.96 0.97

Bayes HP 0.96 0.98 1.01

Bayes T 0.94 0.97 1.01

Bayes AO 0.94 0.97 1.01

Bayes SV 0.96 1.00 1.02

Bayes TVP 0.95 0.95 0.96

Bayes F 0.95 0.96 0.96



Results Relative to OLS, US Inflation Data 1984:12-2019:6

Model  = 1  = 3  = 6

Pooled RMSE

Bayes F 0.95 0.96 0.96

NYFed 0.95 1.03 1.15

Aggregate Inflation (‘Headline’ — All Sectors)

Bayes F 0.94 0.92 0.87

NYFed 1.00 0.99 1.01

Aggregate Inflation (‘Core’ — excl. Food and Energy)

Bayes F 0.90 0.78 0.69

NYFed 0.93 0.83 0.76



Performance of Bayes Quantile Forecasts

• Compute OLS quantile forecasts of average future values

⇒ Assume N (0 2) innovations with 2 estimated by sample variance of residuals

• For each draw of parameters of Bayes model, iterate model forward to obtain posterior distribution
of average future values, then compute quantiles

• Compare quality of quantile forecasts by average of quantile loss function

( ̂) =

(
| − ̂| for  ≥ 

(1− )| − ̂| for   

⇒ average loss minimizing ̂ for this loss function is the th quantile of distribution of 

• Same sample periods as for RMSE comparisons



Pooled Quantile Losses Relative to OLS, Employment Data

 = 1  = 3

Quantile 0.05 0.33 0.50 0.67 0.95 0.05 0.33 0.50 0.67 0.95

Bayes B 1.00 0.99 0.98 0.99 0.99 1.04 1.02 1.00 1.00 0.98

Bayes HP 0.98 0.97 0.96 0.96 0.97 0.93 0.96 0.96 0.96 0.96

Bayes T 0.97 0.95 0.95 0.94 0.96 0.92 0.95 0.96 0.96 0.97

Bayes AO 0.97 0.95 0.95 0.94 0.96 0.92 0.95 0.96 0.95 0.96

Bayes SV 0.96 0.95 0.95 0.93 0.93 0.92 0.95 0.95 0.94 0.91

Bayes TVP 0.95 0.94 0.94 0.93 0.93 0.89 0.94 0.95 0.94 0.92

Bayes F 0.91 0.91 0.92 0.91 0.92 0.83 0.91 0.94 0.95 0.93

 = 6

Bayes B 1.08 1.04 1.00 0.98 0.93

Bayes HP 0.89 0.96 0.96 0.96 0.94

Bayes T 0.88 0.95 0.96 0.97 0.96

Bayes AO 0.87 0.95 0.96 0.96 0.94

Bayes SV 0.89 0.95 0.95 0.94 0.89

Bayes TVP 0.86 0.94 0.96 0.96 0.90

Bayes F 0.84 0.94 0.98 0.99 0.90



Pooled Quantile Losses Relative to OLS, European IP Data

 = 1  = 3

Quantile 0.05 0.33 0.50 0.67 0.95 0.05 0.33 0.50 0.67 0.95

Bayes B 0.99 0.99 0.98 0.98 0.99 1.01 0.99 0.99 1.00 1.01

Bayes HP 0.99 0.99 0.98 0.98 0.99 1.01 0.99 0.99 0.99 0.99

Bayes T 0.98 0.97 0.98 0.96 0.96 1.00 0.99 0.99 0.98 0.99

Bayes AO 0.97 0.97 0.98 0.96 0.96 0.99 0.99 0.99 0.98 0.98

Bayes SV 0.96 0.97 0.98 0.96 0.94 0.98 0.99 0.99 0.98 0.96

Bayes TVP 0.96 0.97 0.97 0.96 0.93 0.99 0.98 0.98 0.97 0.94

Bayes F 0.92 0.95 0.96 0.95 0.91 0.94 0.96 0.96 0.95 0.93

 = 6

Bayes B 1.00 0.99 0.99 1.01 1.02

Bayes HP 1.00 0.99 0.99 1.00 1.00

Bayes T 0.98 0.99 1.00 1.00 1.00

Bayes AO 0.98 1.00 1.00 1.00 0.99

Bayes SV 0.98 0.99 1.00 0.99 0.96

Bayes TVP 0.98 0.99 0.99 0.98 0.96

Bayes F 0.94 0.97 0.97 0.97 0.94



Pooled Quantile Losses Relative to OLS, US Inflation

 = 1  = 3

Quantile 0.05 0.33 0.50 0.67 0.95 0.05 0.33 0.50 0.67 0.95

Bayes B 1.01 0.99 0.99 0.99 1.00 1.00 0.99 1.00 1.00 0.99

Bayes HP 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99

Bayes T 1.05 0.99 0.99 0.98 1.06 1.01 1.00 0.99 0.98 1.03

Bayes AO 1.04 0.99 0.99 0.98 1.06 1.01 1.00 0.99 0.98 1.03

Bayes SV 0.90 0.99 0.99 0.98 0.88 0.94 1.01 1.00 0.98 0.92

Bayes TVP 0.86 0.96 0.97 0.95 0.88 0.88 0.96 0.96 0.94 0.88

Bayes F 0.83 0.95 0.96 0.94 0.85 0.86 0.96 0.95 0.92 0.84

 = 6

Bayes B 0.99 1.00 1.02 1.02 1.00

Bayes HP 0.99 1.00 1.00 1.01 1.02

Bayes T 0.99 1.00 1.00 0.99 1.09

Bayes AO 0.98 1.00 1.00 0.99 1.07

Bayes SV 0.95 1.02 1.00 0.99 1.02

Bayes TVP 0.89 0.96 0.95 0.93 0.94

Bayes F 0.86 0.96 0.93 0.89 0.88



Summary

• Developed fully-fledged generic Bayesian model for related time series

• Promising MSE and quantile forecast performance in three examples



Thank you!


