Inference for the Mean

Ulrich K. Müller Princeton University

November 2019 *preliminary*

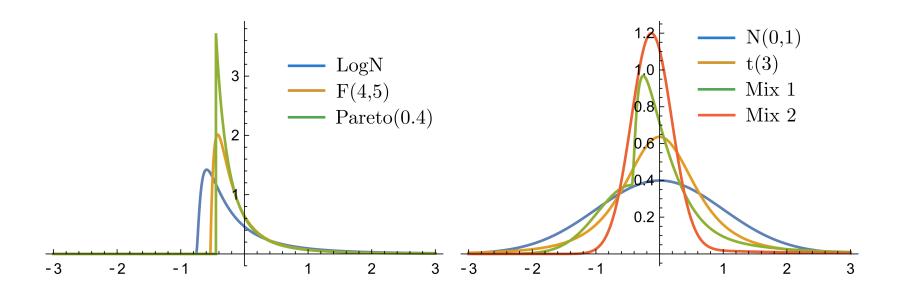
Motivation

- Key building block of econometrics: t-statistic for inference about mean
 - \Rightarrow Inference for regression coefficients reduces to inference about mean of x_ie_i for suitably defined e_i , similar in GMM
- Potential challenge: inaccurate approximations by CLT in numerator and LLN in denominator
 - ⇒ Induced by heavy-tailed population, especially asymmetry, in small samples
 - ⇒ Effective sample size often not very large due to clustering or nonparametrics
- Standard remedy: Bootstrap
 - ⇒ Provides refinement when at least three moments exist

Null Rejection Probabilities

	B1/0 1		- /\	(0)	D (0 1)		
	N(0,1)	LogN	F(4,5)	t(3)	P(0.4)	Mix 1	Mix 2
			n = 50)			
t-stat	5.1	10.0	12.7	4.5	13.8	7.8	18.7
sym-boot	5.1	7.9	10.1	4.0	10.7	7.4	18.1
asym-boot	5.2	6.8	8.3	7.3	8.4	8.4	17.7
			n = 10	0			
t-stat	4.9	8.3	11.0	4.6	11.8	7.0	15.9
sym-boot	4.9	6.7	9.0	4.2	9.4	6.4	14.5
asym-boot	5.0	6.3	7.7	6.8	7.8	7.1	13.6
			n = 50	0			
t-stat	4.9	6.0	7.8	4.8	8.3	5.7	9.3
sym-boot	5.0	5.4	6.8	4.7	7.2	5.3	7.7
asym-boot	5.0	5.7	6.7	5.9	7.0	6.0	7.3

Population Densities



Basic Idea

- W_i i.i.d. sample of size n with cdf F, H_0 : E[W] = 0, long right tail
- Divide and conquer: Largest k order statistics $\mathbf{W}^R=(W_1^R,\ldots,W_k^R)$, and remaining n-k "small" observations W_i^s
- Conditional on \mathbf{W}^R , W_i^s i.i.d. with cdf $F(w)/F(W_k^R)$ for $w \leq W_k^R$ \Rightarrow Conditional mean under H_0 :

$$(1 - P(W > w))E[W|W \le w] + P(W > w)E[W|W > w] = 0$$
, so $m(w) = E[W|W \le w] = -\frac{P(W > w)E[W|W > w]}{1 - P(W > w)}$

Basic Idea, ctd.

- Asymptotic approximations:
 - 1. \mathbf{W}^R has (joint) extreme value distribution
 - 2. Conditional on \mathbf{W}^R , $\sum_{i=1}^{n-k} W_i^s$ is approximately normal with mean $(n-k)(E[W]+m(W_k^R))$
 - 3. EVT assumptions imply parametric approximation for $m(\cdot)$
 - \Rightarrow Obtain approximate parametric model for k+1 observations $(\mathbf{W}^R, \sum_{i=1}^{n-k} W_i^s)$
- Determine 5% level test in approximate parametric model
 - ⇒ Numerically (very) challenging, but computations only need to be performed once, and application of test to new datasets computationally trivial

Contributions

- New asymptotic approximation for inference about mean
 - ⇒ Combines EVT and CLT
- Theory: Generates refinement for population with more than two but less than three moments, while bootstrap does not
- Practice: Implementation that only requires few "tail observations"
 Also applicable to inference about scalar parameter in (clustered) linear regression and GMM, but no theory to support potential improvements
- Bahadur and Savage (1956): Inference about mean impossible without further assumptions
 - ⇒ Assumption here: EVT provides good approximation

Related Literature

- Inference for mean under heavy tails (less than two moments)
 Romano and Wolf (2000), Peng (2001, 2004), Johansson (2003)
- Higher order approximation to distribution of t-statistic
 Bentkus and Götze (1996), Bentkus, Bloznelis and Götze (1996), Bloznelis and Putter (2003), Hall and Wang (2004)
- Fixed-k inference about tail properties Müller and Wang (2017)
- Nearly efficient tests and CIs in nonstandard problems
 Elliott, Müller and Watson (2015), Müller and Watson (2016, 2018),
 Müller and Norets (2016)

Companion Paper

 Use combination of CLT and extreme value distribution for refinement of CLT approximation

$$n^{-1/2} \sum_{i=1}^{n} W_i = n^{-1/2} \left(\sum_{i=1}^{n-k} W_i^s + \sum_{j=1}^{k} W_j^R \right)$$

⇒ Müller (2019) discusses rates of improvement

Outline of Talk

- 1. Introduction
- 2. Review of Extreme Value Theory
- 3. Review of distribution of t-statistic
- 4. Theory: Rates of errors in coverage probability
- 5. Implementation
- 6. Monte Carlo evidence

Review of Extreme Value Theory

ullet Sufficient for convergence of W_1^R to Fréchet extreme value distribution:

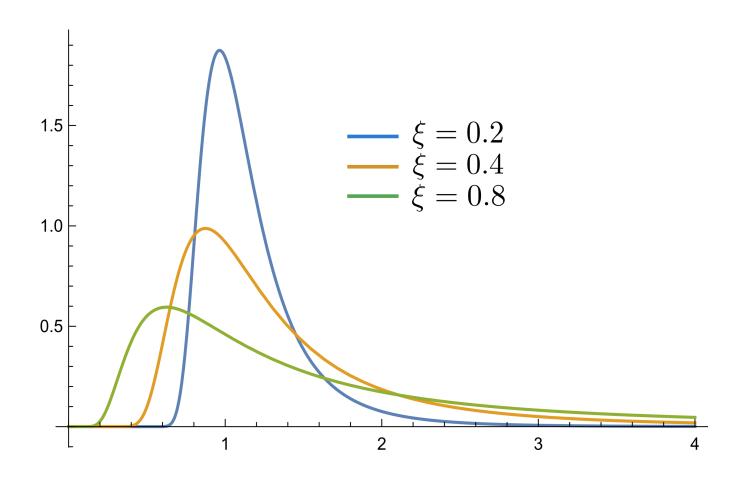
$$\lim_{w\to\infty}\frac{1-F(w)}{(w/\sigma)^{-1/\xi}}=1$$

- ⇒ Convergence if upper tail is approximately Pareto
- ⇒ More-or-less necessary
- \Rightarrow student-t with df degrees of freedom induces convergence with $\xi=1/\operatorname{df}$, etc.
- Then

$$n^{-\xi}W_1^R \Rightarrow \sigma X_1$$

where for x > 0, $P(X_1 \le x) = G(x) = \exp(-x^{-1/\xi})$

Fréchet Densities



Joint Convergence of Largest k Observations

• If $n^{-\xi}W_1^R \Rightarrow \sigma X_1$, then for any fixed k, also

$$n^{-\xi} \mathbf{W}^R = n^{-\xi} \begin{pmatrix} W_1^R \\ \vdots \\ W_k^R \end{pmatrix} \Rightarrow \sigma \mathbf{X} = \sigma \begin{pmatrix} X_1 \\ \vdots \\ X_k \end{pmatrix}$$

where joint pdf of X is given by

$$G(x_k) \prod_{i=1}^k g(x_i) / G(x_i)$$

with g(x) = dG(x)/dx

• X can be generated via $X_1 \sim G$, $X_2|X_1 = x_1 \sim G(x)/G(x_1)$, $X_3|X_2 = x_2, X_1 = x_1 \sim G(x)/G(x_2)$, etc.

Review: Distribution of t-statistic

- If E[W] = 0 and $E[W^2] < \infty$, then $T_n \Rightarrow \mathcal{N}(0,1)$
- Let $T_n^*|\mathbf{W}$ be bootstrap draw of T_n conditional on $\mathbf{W} = \{W_i\}_{i=1}^n$
- Theorem (Bloznelis and Putter, 2003). If F is non-lattice and $E[|W|^3]$ exists, then

$$\sup_{t} |P(T_n^* < t | \mathbf{W}) - P(T_n < t)| = o(n^{-1/2}) \text{ a.s.}$$

while, for $E[W^3] \neq 0$, $\liminf_{n\to\infty} n^{1/2} \sup_t |P(T_n < t) - \Phi(t)| > 0$, where $\Phi(t) = P(Z < t)$, $Z \sim \mathcal{N}(0, 1)$.

Review: Distribution of t-statistic

• Theorem (Bentkus and Götze, 1996): For some C>0, and $E[W^2]=1$,

$$\sup_{t} |P(T_n < t) - \Phi(t)| \le CE[W^2 \mathbf{1}[|W| > \sqrt{n}]] + Cn^{-1/2} E[|W|^3 \mathbf{1}[|W| \le \sqrt{n}]]$$

• Is sharp (Hall and Wang, 2004), holds uniformly in F (Bentkus, Bloznelis, Götze, 1996)

Theory Contributions

- 1. No bootstrap refinement if extreme value theory holds with $1/3 < \xi < 1/2$
- 2. Combining CLT for truncated sample with extreme value approximation for k largest observations yields refinement for $1/3 < \xi < 1/2$

Bootstrap under $1/3 < \xi < 1/2$

• Assume that for some $1/3 < \xi < 1/2$, $\lim_{w\to\infty} \frac{P(|W|>w)}{w^{-1/\xi}} > 0$, so that |W| has Pareto tail with index ξ

• Theorem:

- (a) $\liminf_{n \to \infty} n^{1/(2\xi)-1} \sup_{t} |P(T_n < t) \Phi(t)| > 0$
- (b) $n^{3(1/2-\xi)} \sup_t |P(T_n^* < t|\mathbf{W}) \Phi(t)| = O_p(1).$
- \Rightarrow Since $3(1/2 \xi) > 1/(2\xi) 1$, also $\sup_t |P(T_n^* < t|\mathbf{W}) P(T_n < t)| = O_p(n^{1-1/(2\xi)})$, so no refinement.
- Proof: (a) Follows from sharpness of Bentkus/Götze bound.
 - (b) Apply Bentkus/Götze to bootstrap distribution: $n^{-1}\sum_{i=1}^n W_i^2\mathbf{1}[|W_i|>\sqrt{n}] \xrightarrow{p} \mathbf{0}$ from $\max_i |W_i|=O_p(n^\xi)$, and $\sum_{i=1}^n |W_i|^3=O_p(n^{3\xi})$.

New Asymptotic Approximation

• Under approximate Pareto tail $\lim_{w \to \infty} \frac{1 - F(w)}{(w/\sigma)^{-1/\xi}} = 1$,

$$m(w) = E[W|W \le w] \approx -\sigma^{1/\xi} \frac{\xi}{1-\xi} w^{1-1/\xi}$$

- Let $s_n^2 = (n-k)^{-1} \sum_{i=1}^{n-k} (W_i^s \bar{W}^s)^2$. Then $s_n^2 \xrightarrow{p} \text{Var}[W]$. By scale invariance of ultimate test, set Var[W] = 1 wlog.
- Under local alternatives $E[W] = n^{-1/2}\mu$, from $n^{-\xi}\mathbf{W}^R \stackrel{a}{\sim} \sigma \mathbf{X}$ and CLT

$$\left(\frac{\sum_{i=1}^{n-k} W_i^s}{\sqrt{(n-k)s_n^2}}, \frac{\mathbf{W}^R}{\sqrt{(n-k)s_n^2}}\right) \stackrel{a}{\sim} \left(Z + \mu - \eta_n \frac{\xi}{1-\xi} X_k^{1-1/\xi}, \eta_n \mathbf{X}\right)$$

with $\eta_n = \sigma n^{-(1/2-\xi)}$ and $Z \sim \mathcal{N}(0,1)$ independent of \mathbf{X}

New Test

Joint approximation

$$\mathbf{Y}_n := \left(\frac{\sum_{i=1}^{n-k} W_i^s}{\sqrt{(n-k)s_n^2}}, \frac{\mathbf{W}^R}{\sqrt{(n-k)s_n^2}}\right)$$

$$\stackrel{a}{\sim} \left(Z + \mu - \eta \frac{\xi}{1-\xi} X_k^{1-1/\xi}, \eta \mathbf{X}\right) := \mathbf{Y} = (Y_0, \mathbf{Y}^R)$$

- Construct test $\varphi: \mathbb{R}^{k+1} \mapsto [0,1]$ such that under $H_0: \mu = 0$, for all $\eta = \eta_n > 0$ and $\xi < 1/2$, $E[\varphi(\mathbf{Y})] \leq \alpha$
 - \Rightarrow Many such φ
 - \Rightarrow Aim to maximize weighted average power, and apply numerical techniques of Elliott, Müller and Watson (2015)

Asymptotic Refinement

Theorem: Under some technical assumptions, for k>1, $\frac{1+k}{1+3k}<\xi<1/2$ and all $\epsilon>0$, under H_0

$$|E[\varphi(\mathbf{Y}_n)] - E[\varphi(\mathbf{Y})]| \le Cn^{-r_k(\xi) + \epsilon}$$

where
$$r_k(\xi) = \frac{3(1+k)(1-2\xi)}{2(1+k+2\xi)} > 1/(2\xi) - 1$$
.

- \Rightarrow Recall $\liminf_{n\to\infty} n^{1/(2\xi)-1} \sup_t |P(T_n < t) \Phi(t)| > 0$, so new approximation is refinement over usual t-test
- \Rightarrow Proof: Given Bentkus/Götze, only hard part is to deal with s_n^2 (but that is very involved)

Both Tails Potentially Heavy

- Same approach for two potentially fat tails, where now $\mathbf{W}^e = (\mathbf{W}^L, \mathbf{W}^R)$ and W_i^m are remaining n-2k middle observations
- Asymptotic approximations then become

$$\begin{pmatrix} \frac{\mathbf{W}^R}{\sqrt{(n-2k)s_n^2}} \\ \frac{-\mathbf{W}^L}{\sqrt{(n-2k)s_n^2}} \end{pmatrix} \approx \begin{pmatrix} n^{-(1/2-\xi^R)}\sigma^R \mathbf{X}^R \\ n^{-(1/2-\xi^L)}\sigma^L \mathbf{X}^L \end{pmatrix} = \begin{pmatrix} \mathbf{Y}^R \\ \mathbf{Y}^L \end{pmatrix}$$

and

$$\frac{\sum_{i=1}^{n-2k} W_i^m}{\sqrt{(n-2k)s_n^2}} | \mathbf{W}^e \stackrel{a}{\sim} Z - \eta^R \frac{\xi^R}{1-\xi^R} (X_k^R)^{1-1/\xi^R} + \eta^L \frac{\xi^L}{1-\xi^L} (X_k^L)^{1-1/\xi^L}
= Y_0 | (\mathbf{Y}^R, \mathbf{Y}^L)$$

Tail Location Parameters

- EVT holds regardless of (fixed) population shifts
 - ⇒ Poor small sample approximations
 - ⇒ Reflected in lower rates for EVT approximation
- ullet Introduce location parameters κ^L and κ^R for tails
 - ⇒ Parametric problem now indexed by six dimensional nuisance parameter

$$\theta = (\kappa^L, \eta^L, \xi^L, \kappa^R, \eta^R, \xi^R)$$

Implementation

- $\xi^J \leq 1/2$, κ^J such that $E[X_{12}^J] \geq 0$ Upper bound on η^J from assumption that tail model holds up to X_{25}^J
- Impose that φ never rejects if

$$\frac{|Y_0 + \sum_{j=1}^k Y_j^R - \sum_{j=1}^k Y_j^L|}{\sqrt{1 + \sum_{j=1}^k (Y_j^R)^2 + \sum_{j=1}^k (Y_j^L)^2}} < 2.0$$

- Seek to maximize power against alternative with tail parameters independent, $\xi^J \sim U(-1/2,1/2)$ and improper density on (κ^J,σ^J) proportional to $1/\sigma^J$
- ullet Determination of φ for k=8 takes about one hour
 - \Rightarrow But evaluations of φ are essentially instantaneous

Null Rejection Probabilities

	N(0,1)	LogN	F(4,5)	t(3)	P(0.4)	Mix 1	Mix 2
			n = 50)			
t-stat	5.1	10.0	12.7	4.5	13.8	7.8	18.7
sym-boot	5.1	7.9	10.1	4.0	10.7	7.4	18.1
asym-boot	5.2	6.8	8.3	7.3	8.4	8.4	17.7
$new\ k = 8$	3.8	3.4	4.6	3.1	5.8	3.2	11.8
			n = 100	0			
t-stat	4.9	8.3	11.0	4.6	11.8	7.0	15.9
sym-boot	4.9	6.7	9.0	4.2	9.4	6.4	14.5
asym-boot	5.0	6.3	7.7	6.8	7.8	7.1	13.6
$new\ k = 8$	4.7	2.9	3.6	3.8	3.7	3.3	8.6
			n = 50	0			
t-stat	4.9	6.0	7.8	4.8	8.3	5.7	9.3
sym-boot	5.0	5.4	6.8	4.7	7.2	5.3	7.7
asym-boot	5.0	5.7	6.7	5.9	7.0	6.0	7.3
$new\ k = 8$	4.6	4.2	4.4	4.2	4.5	4.2	2.8

Normalized Average Lengths

	N(0,1)	LogN	F(4,5)	t(3)	P(0.4)	Mix 1	Mix 2			
n = 50										
t-stat	0.99	0.75	0.67	1.01	0.63	0.87	0.59			
sym-boot	0.99	1.06	1.33	1.12	1.45	1.09	1.42			
asym-boot	1.00	0.96	1.07	1.07	1.15	1.00	1.07			
$new\ k = 8$	1.12	0.92	0.75	1.44	0.69	1.08	0.61			
			n = 10	0						
t-stat	1.00	0.84	0.73	1.01	0.71	0.91	0.60			
sym-boot	1.01	1.05	1.19	1.08	1.25	1.06	1.18			
asym-boot	1.01	0.98	1.01	1.05	1.04	1.00	0.95			
$new\ k = 8$	1.01	1.24	1.03	1.34	0.99	1.29	0.73			
			n = 50	0						
t-stat	1.00	0.95	0.87	1.01	0.85	0.97	0.79			
sym-boot	1.00	1.01	1.13	1.03	1.18	1.01	1.06			
asym-boot	1.00	1.00	1.03	1.02	1.04	1.00	0.97			
new k = 8	1.02	1.18	1.20	1.13	1.19	1.18	1.27			

Note: Normalized by average length of size corrected t-stat; bold indicates size < 6%

Null Rejection Probabilities

	N(0,1)	LogN	F(4,5)	t(3)	P(0.4)	Mix 1	Mix 2
			n = 50				
t-stat	4.9	10.3	12.6	4.7	13.5	7.7	19.2
$new\ k = 4$	3.5	3.0	3.9	3.4	4.2	2.9	10.6
$new\ k = 8$	3.8	3.4	4.6	3.1	5.8	3.2	11.8
$new\ k = 12$	3.3	6.2	8.3	3.0	9.9	3.1	11.5
			n = 100				
t-stat	5.2	8.2	10.8	4.6	11.5	7.1	15.4
$new\ k = 4$	4.8	2.8	3.5	3.5	3.6	2.9	4.8
$new\ k = 8$	4.7	2.9	3.6	3.8	3.7	3.3	8.6
$new\ k = 12$	4.2	2.7	3.3	3.7	3.5	3.0	7.8
			n = 500)			
t-stat	5.2	5.8	7.6	5.1	7.9	5.8	9.2
$new\ k = 4$	4.9	3.7	3.7	4.3	3.7	3.8	2.7
new $k=8$	4.6	4.2	4.4	4.2	4.5	4.2	2.8
$new\ k = 12$	4.9	3.4	3.6	3.6	3.7	3.5	2.7

Normalized Average Lengths

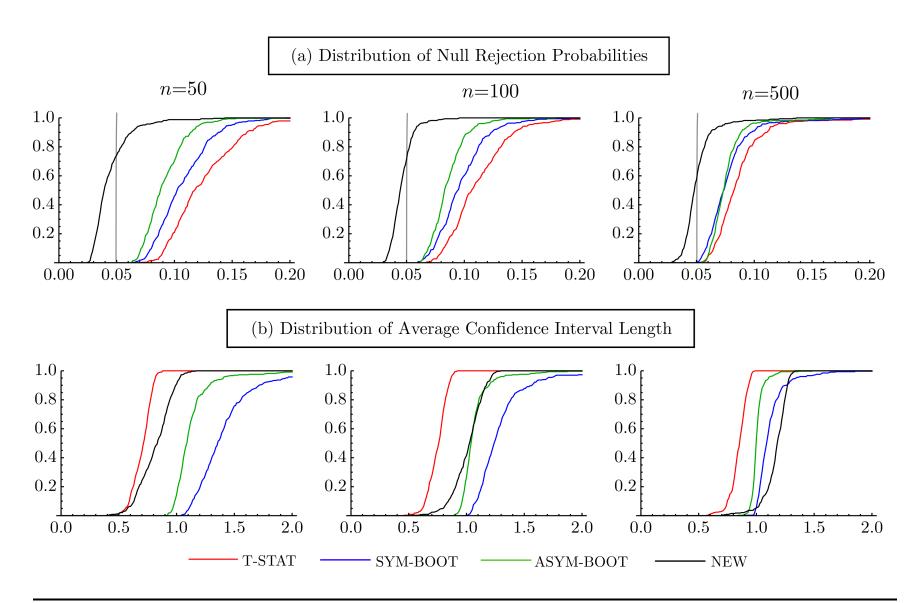
	N(0,1)	LogN	F(4,5)	t(3)	P(0.4)	Mix 1	Mix 2
			n = 50				
t-stat	1.00	0.73	0.65	1.01	0.63	0.87	0.59
$new\ k = 4$	1.22	0.98	0.80	1.48	0.76	1.17	0.63
$new\ k = 8$	1.12	0.92	0.75	1.44	0.69	1.08	0.61
$new\; k = 12$	1.17	0.79	0.67	1.34	0.64	1.01	0.60
			n = 100)			
t-stat	0.98	0.83	0.73	1.01	0.72	0.90	0.61
$new\ k = 4$	1.03	1.24	1.02	1.54	0.98	1.32	0.73
${\sf new}\ k={\sf 8}$	1.01	1.24	1.03	1.34	0.99	1.29	0.73
$new\; k = 12$	1.05	1.24	1.05	1.29	1.01	1.29	0.74
			n = 500)			
t-stat	0.99	0.96	0.88	1.00	0.86	0.96	0.80
$new\ k = 4$	1.01	1.34	1.30	1.35	1.29	1.35	1.21
${\sf new}\ k={\sf 8}$	1.02	1.18	1.20	1.13	1.19	1.18	1.27
$new\ k = 12$	1.01	1.20	1.17	1.19	1.17	1.21	1.28

Note: Normalized by average length of size corrected t-stat; bold indicates size < 6%

Empirical Monte Carlo

- Consider applicant's income in 2016 Home Mortgage Disclosure Act (HMDA) universe of \approx 16m mortgage applications
- Create subpopulations by conditioning on gender, purpose of loan, US state, race
 - \Rightarrow 330 subpopulations with more than 4000 individuals
- For each subpopulation:
 - Compute mean of applicant's income
 - Repeat 20,000 times: Draw n data points at random, compute CIs and check whether it contains subpopulation mean
 - ⇒ Obtain 330 null rejection probabilities, and average lengths

HMDA Results



Regression with Clustered Standard Errors

• Consider inference about β_0 in linear regression with clustered errors

$$Y_{it} = \alpha + \beta R_{it} + X'_{it}\gamma + u_{it}$$

$$u_{it} = \nu_i R_{it} + \varepsilon_{it}$$

for $i=1,\ldots,n,\ t=1,\ldots,T$ with $R_{it},\ X_{it,j},\ \varepsilon_{it}\sim iid\mathcal{N}(\mathbf{0},\mathbf{1})$, and ν_i i.i.d. mean-zero

ullet Let \hat{R}_{it} be the residuals of a regression of R_{it} on X_{it} and a constant. By Frisch-Waugh

$$\hat{\beta} - \beta = \left(\sum_{i=1}^{n} \sum_{t=1}^{T} \hat{R}_{it}^{2}\right)^{-1} \sum_{i=1}^{n} \sum_{t=1}^{T} \hat{R}_{it} u_{it}$$

and STATA computes clustered standard error via

$$\hat{\sigma}_{\hat{\beta}}^{2} = \frac{nT}{nT - k} \frac{n}{n-1} \left(\sum_{i=1}^{n} \sum_{t=1}^{T} \hat{R}_{it}^{2} \right)^{-2} \sum_{i=1}^{n} \left(\sum_{t=1}^{T} \hat{R}_{it} \hat{u}_{it} \right)^{2}$$

Regression with Clustered Standard Errors

Nearly equivalent to inference about mean of

$$W_i = \hat{\beta} + c^{-1} \sum_{t=1}^{T} \hat{u}_{it} \hat{R}_{it}$$
 $c = n^{-1} \sum_{i=1}^{n} \sum_{t=1}^{T} \hat{R}_{it}^2$

- \Rightarrow Apply new procedure to $\{W_i\}_{i=1}^n$
- Compare to alternative approaches
 - STATA
 - Cameron, Gelbach and Miller (2008): Wild Bootstrap with null hypothesis imposed
 - Imbens and Kolesár (2016): Degrees of freedom adjustment as function of design matrix and estimated intra-cluster random effect type correlation

Null Rejection Probabilities, T=10

	N(0,1)	LogN	F(4,5)	t(3)	P(0.4)	Mix 1	Mix 2
			n = 50				
STATA	5.5	10.5	13.4	4.6	12.5	7.8	17.8
Im-Ko	5.3	10.3	13.2	4.4	12.3	7.6	17.5
CGM	5.2	10.6	13.4	4.8	12.6	7.8	17.7
$new\ k = 8$	3.3	4.5	5.8	2.8	4.6	3.1	8.8
			n = 100)			
STATA	4.9	9.0	11.2	4.9	11.0	7.1	15.9
Im-Ko	4.8	8.9	11.1	4.8	10.9	7.0	15.8
CGM	4.7	9.0	11.3	5.1	11.2	7.1	16.2
$new\ k = 8$	4.1	3.0	3.7	4.0	3.8	3.9	8.3
			n = 500)			
STATA	5.6	6.0	8.1	4.6	8.1	6.0	10.2
Im-Ko	5.6	6.0	8.1	4.6	8.1	6.0	10.2
CGM	5.5	6.2	8.4	4.7	8.2	6.1	10.5
${\rm new}\ k=8$	5.2	3.9	4.3	4.1	4.5	4.1	3.5

Normalized Average Lengths, T=10

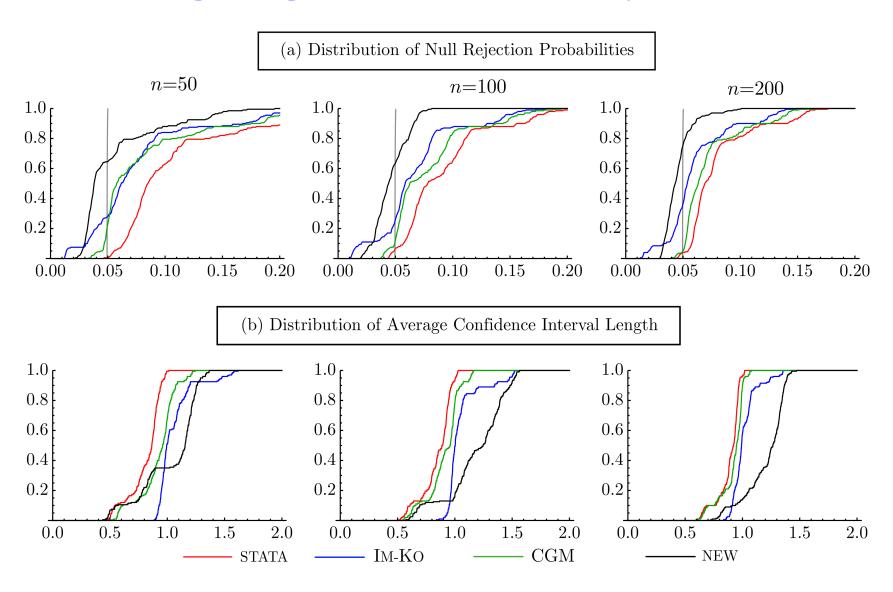
	N(0,1)	LogN	F(4,5)	t(3)	P(0.4)	Mix 1	Mix 2
			n = 50)			
STATA	0.98	0.74	0.65	1.02	0.69	0.88	0.63
Im-Ko	0.99	0.74	0.66	1.02	0.70	0.88	0.64
CGM	0.99	0.71	0.61	1.00	0.65	0.85	0.57
$new\ k = 8$	1.36	0.84	0.71	1.43	0.76	1.11	0.66
			n = 10	0			
STATA	1.00	0.82	0.72	1.01	0.73	0.91	0.63
Im-Ko	1.01	0.82	0.73	1.01	0.74	0.91	0.64
CGM	1.01	0.80	0.68	0.99	0.69	0.89	0.57
$new\ k = 8$	1.11	1.19	1.00	1.41	1.00	1.29	0.76
			n = 50	0			
STATA	0.98	0.95	0.85	1.02	0.86	0.96	0.76
Im-Ko	0.98	0.95	0.86	1.02	0.86	0.96	0.76
CGM	0.98	0.94	0.82	1.01	0.82	0.95	0.72
$new\ k = 8$	0.99	1.24	1.20	1.17	1.20	1.21	1.20

Note: Normalized by average length of size corrected t-stat; bold indicates size < 6%

Empirical Monte Carlo

- Treat 2018 CPS data of outgoing rotation as population, appr. 150,000 observations
- Consider regressions of log wage on random 5 element subset of gender, race, age, education, union status, marriage status, education, etc.
 - ⇒ obtain 200 population regression coefficients
- Interest in clustered inference by Metropolitan Statistical Areas (MSA), total of 308
- For each population regression, repeat 20,000 times:
 - draw n clusters at random, compute clustered CI, and check whether first population coefficient is included

Log-Wage CPS Clustered by MSA



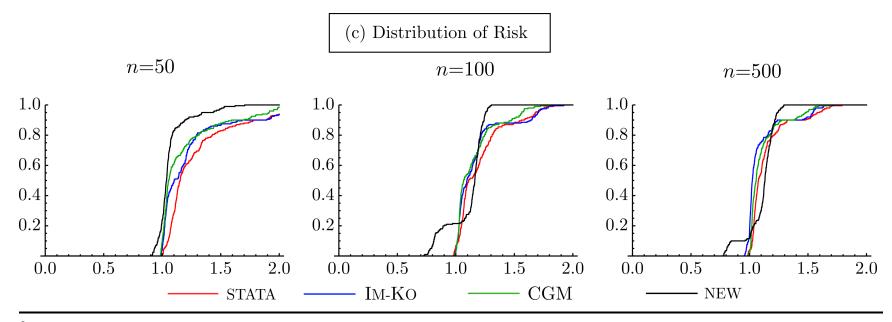
Log-Wage CPS Clustered by MSA

Loss function of the form

$$\ell(CI) = length(CI) + c1[\theta_0 \notin CI]$$

and for each population, determine c such that risk minimizing STATA cv yields 5% level test

For each population, normalize risk of optimal STATA to unity



Heavy Tails from Clustering

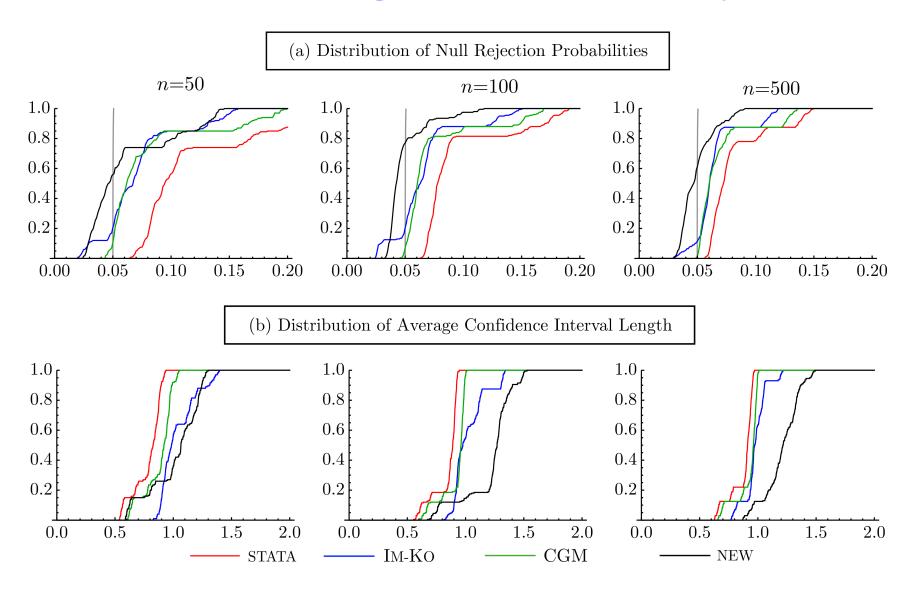
ullet Recall that under clustering, variability in \hat{eta} conditional on regressors is driven by variability of

$$\sum_{i=1}^{n} \left(\sum_{t=1}^{T_i} \hat{R}_{it} u_{it} \right) = \sum_{i=1}^{n} W_i^0$$

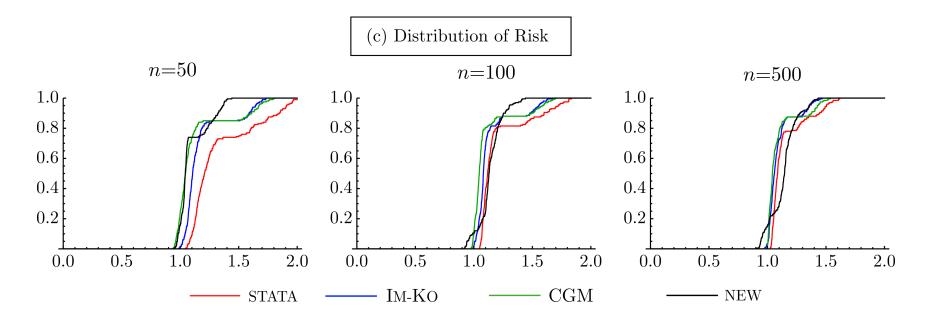
- ullet W_i^0 can be heavy-tailed because
 - u_{it} has cluster-specific heavy-tailed component, $u_{it} = \varepsilon_{it} + \nu_i$
 - \hat{R}_{it} is heterogeneous across clusters
 - T_i is heterogeneous across clusters

or combinations thereof

Union Status Regression Clustered by MSA



Union Status Clustered by MSA

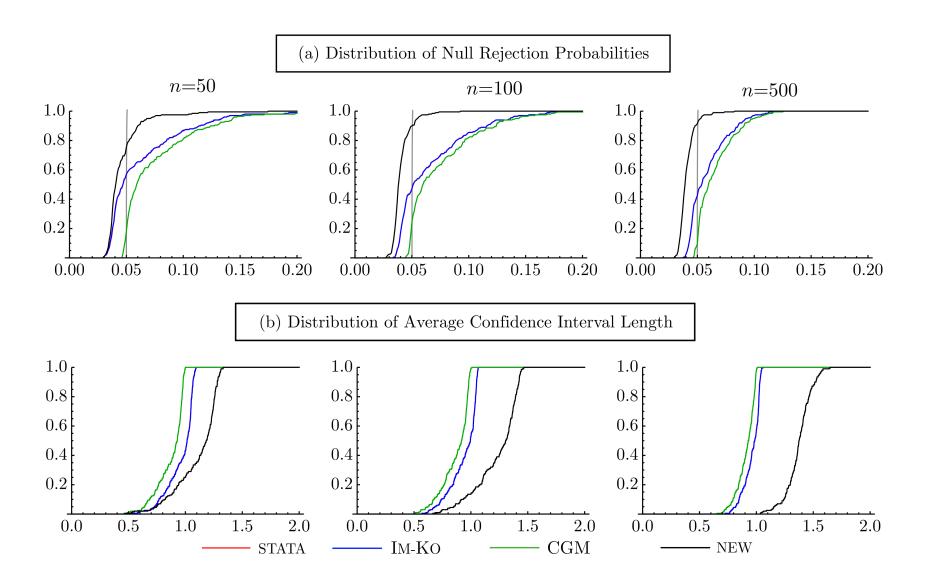


Two Sample t-statistic

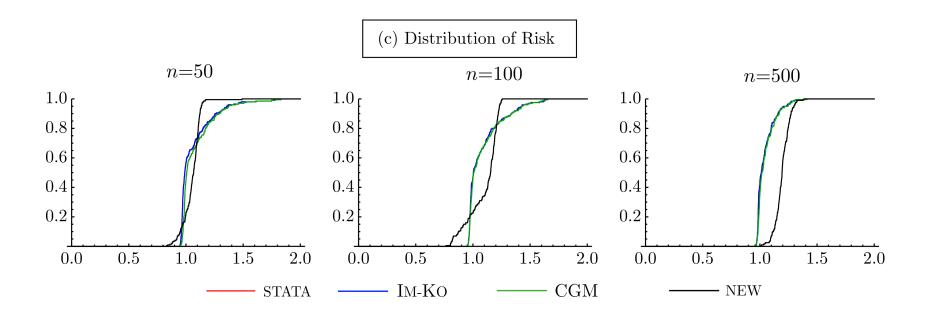
• Inference about difference in population mean between two randomly chosen 330 subpopulations of the HMDA data set

• Draw n/2 i.i.d. observations from each subpopulation and apply standard regression inference (= treat each observation as its own cluster)

HMDA Two Sample



HMDA Two Sample



Conclusions

- New approach to inference for mean in presence of potentially fat tails that combines EVT and CLT
- Theory: Provides refinement under Pareto-like fat tails (more than two but less than three moments), while bootstrap does not
- Practice: Implementation that yields noticeably better size control in fattailed populations, also in clustered regression inference