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Appeal of Bayesian Inference

Complete class theorem: A decision rule is admissible if and only if it is Bayes

= Rules generated by other reasoning are either inadmissible, or implicitly Bayes
If there are multiple objectives, Bayes actions are automatically coherent
Ability to express soft constraints on parameters via prior

Bayes descriptions of uncertainty make sense conditional on data

=- Even optimal frequentist confidence intervals sometimes do not (Fisher (1956), Buehler (1959),
Wallace (1959), Cornfield (1969), ..., Miiller and Norets (2016))




Major Practical Concern: How to Specify the Likelihood?

e Linear regression: Need to specify the distribution of the disturbances conditional on the regressors

e In practice, Bayesian inference typically based on convenient parametric assumptions (say, student-t
regression) that seems a reasonable fit to data

e Concern about small/local misspecification
= Local misspecification leads in general to bias of same order as posterior standard deviation

= Potentially highly misleading posterior inference unless sure that parametric assumption is correct




This Paper

e “Augment” parametric model in a way that eliminates asymptotic bias under local misspecification
= Requires that parameter of interest has interpretation in encompassing semiparametric model
= Augmented model has additional parameter ¢ of the same dimension as the parameter of interest
= Form of augmentation intimately linked to theory of semiparametric efficient estimation
= Augmented model is a model, so continue to do real Bayes inference

e Theory: Posterior in augmented model is asymptotically Gaussian, centered on semiparametrically

efficient estimator, with variance equal to semiparametric efficiency bound

e Practice: Generic suggestion for MCMC sampler for augmented model (not obvious, as it involves

an intractable constant of integration)




Alternative Approaches

1. Limited Information Bayes

e Example: Treat OLS estimator and its approximate normal distribution as (only) observation,

proceed to be Bayesian with that normal likelihood
e Often good idea, but lose coherency of multiple objectives and requires buying into (frequenitist)
asymptotic approximations
2. Semiparametric/Nonparametric Bayes
e Difficult to do

e Typically not known whether semiparametric efficiency bound is achieved, so still concern about

misspecification
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Standard Theory for Baseline Model

Y; ~ 1tdPg with density pg(-|0), scalar parameter of interest is 8 (for expositional ease; see paper

for theory with nuisance parameters), prior 7(6)

Standard results:

MLE : +/n(d—6) = Tlelzée(Y)JrOﬂ»g(l) =9 N(0,T;")
1=1

BM = /(8 — 9){Yi}iy ¥ N (0, 15 )
where £4(Y;) = dlog p(Y;|0)/00 and Iy = E[Egﬁ ]

Example: inference for mean 6 of student-t observations with known degrees of freedom v and known
scale 0 =1 —2/v (so E[Yf] =1)

(v +1)(y —0)
v—2+(y —0)?

lo(y) =




Local Misspecification

o Consider semiparametric model Py ,, where 7 € H is nonparametric and Py = Py ;.
= Importantly, parameter of interest in PPy ,, remains ¢

= In example: Y; ~ iidn(6,1)

e Smooth one-dimensional path n; € H for t € [0, 00) characterized by score

n dP

0, 1/4/n 1 &
og [T — . (Y) = 7= X a(¥:) = 3Bla(Y)’] + op,(1)

e Consider effect of such local misspecification Py on 6 (and thus posterior of )

1/
= Cannot be detected from data with probability one, even asymptotically




Local Misspecification Il

e Under Py

/) L1 S (YD)
— Vn' 0 i=1%0 )
( . dIP’e,m/\/ﬁ(Yi) ) ( %52?21 g(Y;) — %E[Q(Y;)z] ) + op,(1)
= N 0 -19_1 .
6 _%E[g(}/’b)z] 7 Ie_lE[EQ(E)g(}/Z)] E[g(}/Z)Z]

by LeCam’s Third Lemma

e Under Peﬂh/\/ﬁ'

V(0 —0) =g, - N (I "Bl (Ya)g(Ya)l, Iy )

= MLE (and thus posterior center) biased unless E[¢y(Y;)g(Y;)] = 0
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Density of Hansen's (2004) skewed student-t distribution for v = 5 and skewness parameter ¢t € {0,0.1,0.2}

Here E[¢o(Y;)g(Y;)] # 0, so t = O(n~1/2) induces local bias in location estimator of student-t model




Semiparametric Efficient Estimation

e Estimation € in semiparametric model ]P)@,77 at least as hard as in two-dimensional parametric model

(0,9), where § parametrizes particular smooth submodel of 1

e By usual MLE expansion
A . —1 .
0°—0) 1 E[fp(Y;)?] - U ly(Y7)
ﬁ( 55 ) ‘ﬁ(E[ée(méa(ml E[é(s(Yz‘)2]> ;(ezsm))“%(”

E[ée(_}?)é(s(%)]é
E[lo(Y;)?]

SO

5(v)

V(0 —0) =g N(0,Ellg15(Y) 1Y), LoLs(y) = bp(y) —

e Least favorable submodel maximizes E[¢y | s(Y;)2] ™1 and yields efficient score £y | s(y) = £(y) that

is orthogonal to £5 of all such one-parameter submodels. Corresponding nuisance score is

s(y) = Ly(y) — Lo(y)

(v+1)(y—0)
1/—2—}—(5—9)2 —(y—90)

= In example, g(y) =y — 0, so éé(y) —




Model Augmentation
Augmented model has density

q(y]0,8) = (0, 8)p(y|0)ko(6¢5(y))

where ¢(0,8)™1 = [ p(y|0)ko(5¢5(y))dy and kg(0) = ko(0) = 1, such as ko(z) = 1+62_22
(Example 26.16 in van der Vaart (1998))

This augmentation induces ¢, 5(y) = #(y). MLE 8" immune to local misspecification, since
BlZy(Y:)g(Y:)] = 0

Theorem: Under regularity conditions, with dpy, the total variation distance and MM%(0|Y) the
posterior distribution of € in augmented model,

IP)Q,
dry(NOY), N (@, n B Y)Y 0

Implementation only requires knowledge of efficient score to construct £5(y) = £y(y) — Zo(y)




Augmented Model in Example
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Augmented Student-t density for v =5 and 6 € {0,0.4,0.8}




MCMC Algorithm

e Posterior in augmented model is

7(0,8]Y) o 7r(9,5)ﬁq(Y;;|9,5)

1=1
n 2 . . ~
= 0,0 0,0)p(Y;|0 : / =/ — /L
(0,0) [L 0 Vl0) e dav) = lotw) = fow

e Standard MCMC does not require p(Y), but would require ¢(8, §)

e Following Rao, Lin and Dunson (2016), use auxiliary latent variables and acceptance sampling
= See paper for details

=> Generic Matlab code for Hamiltonian Monte Carlo




Regression with Student-t Errors

Model: y; = :E,’L-B + €4, €;/0 has student-t density with v degrees of freedoms
= (Subset of) 3 is parameter of interest, (o, ) are nuisance parameters
=> Recommended for heavy tailed data in most Bayesian textbooks (Koop (2003), Geweke (2005),

Greenberg (2012))

OLS is semiparametrically efficient with efficient score

i _ x;(y; — x3)
K Var|g]

In Monte Carlo, set 1 = 1, o ~ #dN(0,1), v = 2.5 and n = 1000, independent Gaussian priors
on 3,9,Ino,In(v — 2)

Consider performance under local misspecification: true distribution is skewed student-t




MC Averages in Student-t Regression

t=20 t = n_1/2azz-2 t = 5n_1/2337;2

base aug. base  aug. base aug.

|Bl — E[B1|Y]] 0.018 0.012 0.022 0.016 0.022 0.015
|32 — E[B5|Y]] 0.019 0.014 0.025 0.014 0.060 0.018
sd(61|Y)/sd(f31) 0.63 1.38 0.61 1.35 0.60 1.09
sd(81|Y)/sd(31) 0.65 1.34 0.62 1.24 0.64 1.12
E[61]Y] — B1 0.000 -0.001 -0.001 0.002 0.003 0.003
E[B>|Y] — B> 0.001 0.003 -0.011 0.004 -0.061 -0.003

Notes: t is skewness parameter. Results averaged over 100 data sets.




Empirical lllustration

Jackman (2000) uses Bayesian student-t regression to study the degree of incumbency advantage
y; . proportion of two party vote for Democrat in district 2

x; . proportion of two party vote for Democrat in previous election, previous winning party, indicators

for Democratic and Republican incumbency, 20 dummy variables for time effects

n = 5090 observations




Posterior Distributions of Baseline and Augmented Model
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Implied Posterior Probability of Democrat Candidate Winning

Prev Dem Vote share base aug. Gaussian
31 0.7 1.3 0.3
33 0.8 1.9 0.5
35 1.3 2.2 0.9
37 1.9 2.3 1.5
39 2.7 3.2 2.5

Notes: Conditional on previous winner is a Republican, Democratic candidate is not incumbent, Republican candidate is

incumbent. In percent.




Summary

Augmented model is generalization of baseline model
It is parametric—easier to estimate and interpret
Inference is fully Bayesian

Semiparametric efficient and robust to local misspecification




Thank you!




