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Appeal of Bayesian Inference

� Complete class theorem: A decision rule is admissible if and only if it is Bayes

) Rules generated by other reasoning are either inadmissible, or implicitly Bayes

� If there are multiple objectives, Bayes actions are automatically coherent

� Ability to express soft constraints on parameters via prior

� Bayes descriptions of uncertainty make sense conditional on data

) Even optimal frequentist con�dence intervals sometimes do not (Fisher (1956), Buehler (1959),

Wallace (1959), Corn�eld (1969), : : :, Müller and Norets (2016))



Major Practical Concern: How to Specify the Likelihood?

� Linear regression: Need to specify the distribution of the disturbances conditional on the regressors

� In practice, Bayesian inference typically based on convenient parametric assumptions (say, student-t
regression) that seems a reasonable �t to data

� Concern about small/local misspeci�cation

) Local misspeci�cation leads in general to bias of same order as posterior standard deviation

) Potentially highly misleading posterior inference unless sure that parametric assumption is correct



This Paper

� �Augment�parametric model in a way that eliminates asymptotic bias under local misspeci�cation

) Requires that parameter of interest has interpretation in encompassing semiparametric model

) Augmented model has additional parameter � of the same dimension as the parameter of interest

) Form of augmentation intimately linked to theory of semiparametric e¢ cient estimation

) Augmented model is a model, so continue to do real Bayes inference

� Theory: Posterior in augmented model is asymptotically Gaussian, centered on semiparametrically
e¢ cient estimator, with variance equal to semiparametric e¢ ciency bound

� Practice: Generic suggestion for MCMC sampler for augmented model (not obvious, as it involves
an intractable constant of integration)



Alternative Approaches

1. Limited Information Bayes

� Example: Treat OLS estimator and its approximate normal distribution as (only) observation,
proceed to be Bayesian with that normal likelihood

� Often good idea, but lose coherency of multiple objectives and requires buying into (frequenitist)
asymptotic approximations

2. Semiparametric/Nonparametric Bayes

� Di¢ cult to do

� Typically not known whether semiparametric e¢ ciency bound is achieved, so still concern about
misspeci�cation
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Standard Theory for Baseline Model

� Yi � iidP� with density p�(�j�), scalar parameter of interest is � (for expositional ease; see paper
for theory with nuisance parameters), prior �(�)

� Standard results:
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where _̀�(Yi) = @ log p(Yij�)=@� and I� = E[ _̀� _̀0�]

� Example: inference for mean � of student-t observations with known degrees of freedom � and known
scale � = 1� 2=� (so E[Y 2i ] = 1)
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Local Misspeci�cation

� Consider semiparametric model P�;� where � 2 H is nonparametric and P� = P�;�0

) Importantly, parameter of interest in P�;� remains �

) In example: Yi � iid�(�; 1)

� Smooth one-dimensional path �t 2 H for t 2 [0;1) characterized by score
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� Consider e¤ect of such local misspeci�cation P�;�1=pn on �̂ (and thus posterior of �)

) Cannot be detected from data with probability one, even asymptotically



Local Misspeci�cation II
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� Under P�;�1=pn, by LeCam�s Third Lemma
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) MLE (and thus posterior center) biased unless E[ _̀�(Yi)g(Yi)] = 0



Example

Density of Hansen�s (2004) skewed student-t distribution for � = 5 and skewness parameter t 2 f0; 0:1; 0:2g

Here E[ _̀�(Yi)g(Yi)] 6= 0, so t = O(n�1=2) induces local bias in location estimator of student-t model



Semiparametric E¢ cient Estimation

� Estimation � in semiparametric model P�;� at least as hard as in two-dimensional parametric model
(�; �), where � parametrizes particular smooth submodel of �

� By usual MLE expansion
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� Least favorable submodel maximizes E[ _̀�?�(Yi)2]�1 and yields e¢ cient score _̀�?�(y) = ~̀(y) that

is orthogonal to _̀� of all such one-parameter submodels. Corresponding nuisance score is
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Model Augmentation
� Augmented model has density

q(yj�; �) = c(�; �)p(yj�)k0(� _̀�(y))

where c(�; �)�1 =
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(Example 26.16 in van der Vaart (1998))

� This augmentation induces _̀�?�(y) = ~̀(y): MLE �̂
a
immune to local misspeci�cation, since

E[~̀�(Yi)g(Yi)] = 0

� Theorem: Under regularity conditions, with dTV the total variation distance and �a(�jY ) the
posterior distribution of � in augmented model,
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� Implementation only requires knowledge of e¢ cient score to construct _̀�(y) = _̀
�(y)� ~̀

�(y)



Augmented Model in Example

Augmented Student-t density for � = 5 and � 2 f0; 0:4,0:8g



MCMC Algorithm

� Posterior in augmented model is

�(�; �jY ) / �(�; �)
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� Standard MCMC does not require p(Y ), but would require c(�; �)

� Following Rao, Lin and Dunson (2016), use auxiliary latent variables and acceptance sampling

) See paper for details

) Generic Matlab code for Hamiltonian Monte Carlo



Regression with Student-t Errors

� Model: yi = x0i� + "i, "i=� has student-t density with � degrees of freedoms

) (Subset of) � is parameter of interest, (�; �) are nuisance parameters

) Recommended for heavy tailed data in most Bayesian textbooks (Koop (2003), Geweke (2005),

Greenberg (2012))

� OLS is semiparametrically e¢ cient with e¢ cient score

~̀
 =
xi(yi � x0i�)
Var["i]

� In Monte Carlo, set x1 = 1, x2 � iidN (0; 1), � = 2:5 and n = 1000, independent Gaussian priors
on �; �; ln�; ln(� � 2)

� Consider performance under local misspeci�cation: true distribution is skewed student-t



MC Averages in Student-t Regression

t = 0 t = n�1=2xi2 t = 5n�1=2xi2
base aug. base aug. base aug.

j�̂1 � E[�1jY ]j 0.018 0.012 0.022 0.016 0.022 0.015

j�̂2 � E[�2jY ]j 0.019 0.014 0.025 0.014 0.060 0.018

sd(�1jY )=sd(�̂1) 0.63 1.38 0.61 1.35 0.60 1.09

sd(�1jY )=sd(�̂1) 0.65 1.34 0.62 1.24 0.64 1.12

E[�1jY ]� �1 0.000 -0.001 -0.001 0.002 0.003 0.003

E[�2jY ]� �2 0.001 0.003 -0.011 0.004 -0.061 -0.003

Notes: t is skewness parameter. Results averaged over 100 data sets.



Empirical Illustration

� Jackman (2000) uses Bayesian student-t regression to study the degree of incumbency advantage

� yi : proportion of two party vote for Democrat in district i

� xi : proportion of two party vote for Democrat in previous election, previous winning party, indicators
for Democratic and Republican incumbency, 20 dummy variables for time e¤ects

� n = 5090 observations



Posterior Distributions of Baseline and Augmented Model



Implied Posterior Probability of Democrat Candidate Winning

Prev Dem Vote share base aug. Gaussian

31 0.7 1.3 0.3

33 0.8 1.9 0.5

35 1.3 2.2 0.9

37 1.9 2.3 1.5

39 2.7 3.2 2.5

Notes: Conditional on previous winner is a Republican, Democratic candidate is not incumbent, Republican candidate is

incumbent. In percent.



Summary

� Augmented model is generalization of baseline model

� It is parametric� easier to estimate and interpret

� Inference is fully Bayesian

� Semiparametric e¢ cient and robust to local misspeci�cation



Thank you!


