

---

# Locally Robust Semiparametrically Efficient Bayesian Inference

Ulrich K. Müller and Andriy Norets  
Princeton University and Brown University

July 2025

---

---

## Appeal of Bayesian Inference

- Complete class theorem: A decision rule is admissible if and only if it is Bayes
  - ⇒ Rules generated by other reasoning are either inadmissible, or implicitly Bayes
- If there are multiple objectives, Bayes actions are automatically coherent
- Ability to express soft constraints on parameters via prior
- Bayes descriptions of uncertainty make sense conditional on data
  - ⇒ Even optimal frequentist confidence intervals sometimes do not (Fisher (1956), Buehler (1959), Wallace (1959), Cornfield (1969), ..., Müller and Norets (2016))

---

## Major Practical Concern: How to Specify the Likelihood?

- Linear regression: Need to specify the distribution of the disturbances conditional on the regressors
- In practice, Bayesian inference typically based on convenient parametric assumptions (say, student-t regression) that seems a reasonable fit to data
- Concern about small/local misspecification
  - ⇒ Local misspecification leads in general to bias of same order as posterior standard deviation
  - ⇒ Potentially highly misleading posterior inference unless sure that parametric assumption is correct

---

## This Paper

- “Augment” parametric model in a way that eliminates asymptotic bias under local misspecification
  - ⇒ Requires that parameter of interest has interpretation in encompassing semiparametric model
  - ⇒ Augmented model has additional parameter  $\delta$  of the same dimension as the parameter of interest
  - ⇒ Form of augmentation intimately linked to theory of semiparametric efficient estimation
  - ⇒ Augmented model is a model, so continue to do real Bayes inference
- Theory: Posterior in augmented model is asymptotically Gaussian, centered on semiparametrically efficient estimator, with variance equal to semiparametric efficiency bound
- Practice: Generic suggestion for MCMC sampler for augmented model (not obvious, as it involves an intractable constant of integration)

---

---

## Alternative Approaches

### 1. Limited Information Bayes

- Example: Treat OLS estimator and its approximate normal distribution as (only) observation, proceed to be Bayesian with that normal likelihood
- Often good idea, but lose coherency of multiple objectives and requires buying into (frequentist) asymptotic approximations

### 2. Semiparametric/Nonparametric Bayes

- Difficult to do
- Typically not known whether semiparametric efficiency bound is achieved, so still concern about misspecification

---

---

# Outline of Talk

1. Theory
2. Implementation
3. Empirical Illustration
4. Conclusion

---

---

## Standard Theory for Baseline Model

- $Y_i \sim iid \mathbb{P}_\theta$  with density  $p_\theta(\cdot|\theta)$ , scalar parameter of interest is  $\theta$  (for expositional ease; see paper for theory with nuisance parameters), prior  $\pi(\theta)$
- Standard results:

$$\begin{aligned} \text{MLE} &: \sqrt{n}(\hat{\theta} - \theta) = \frac{1}{\sqrt{n}} I_\theta^{-1} \sum_{i=1}^n \dot{\ell}_\theta(Y_i) + o_{\mathbb{P}_\theta}(1) \Rightarrow_\theta \mathcal{N}(0, I_\theta^{-1}) \\ \text{BvM} &: \sqrt{n}(\theta - \hat{\theta}) | \{Y_i\}_{i=1}^n \stackrel{a}{\sim} \mathcal{N}(0, I_\theta^{-1}) \end{aligned}$$

where  $\dot{\ell}_\theta(Y_i) = \partial \log p(Y_i|\theta) / \partial \theta$  and  $I_\theta = \mathbb{E}[\dot{\ell}_\theta \dot{\ell}_\theta']$

- Example: inference for mean  $\theta$  of student-t observations with known degrees of freedom  $\nu$  and known scale  $\sigma = 1 - 2/\nu$  (so  $\mathbb{E}[Y_i^2] = 1$ )

$$\dot{\ell}_\theta(y) = \frac{(\nu + 1)(y - \theta)}{\nu - 2 + (y - \theta)^2}$$

---

---

## Local Misspecification

- Consider semiparametric model  $\mathbb{P}_{\theta, \eta}$  where  $\eta \in H$  is nonparametric and  $\mathbb{P}_{\theta} = \mathbb{P}_{\theta, \eta_0}$ 
  - ⇒ Importantly, parameter of interest in  $\mathbb{P}_{\theta, \eta}$  remains  $\theta$
  - ⇒ In example:  $Y_i \sim iid \eta(\theta, 1)$
- Smooth one-dimensional path  $\eta_t \in H$  for  $t \in [0, \infty)$  characterized by score

$$\log \prod_{i=1}^n \frac{d\mathbb{P}_{\theta, \eta_{1/\sqrt{n}}}}{d\mathbb{P}_{\theta}}(Y_i) = \frac{1}{\sqrt{n}} \sum_{i=1}^n g(Y_i) - \frac{1}{2} \mathbb{E}[g(Y_i)^2] + o_{\mathbb{P}_{\theta}}(1)$$

- Consider effect of such local misspecification  $\mathbb{P}_{\theta, \eta_{1/\sqrt{n}}}$  on  $\hat{\theta}$  (and thus posterior of  $\theta$ )
  - ⇒ Cannot be detected from data with probability one, even asymptotically

---

## Local Misspecification II

- Under  $\mathbb{P}_\theta$

$$\begin{aligned} \begin{pmatrix} \sqrt{n}(\hat{\theta} - \theta) \\ \log \prod_{i=1}^n \frac{d\mathbb{P}_{\theta, \eta_{1/\sqrt{n}}}}{\mathbb{P}_\theta}(Y_i) \end{pmatrix} &= \begin{pmatrix} \frac{1}{\sqrt{n}} I_\theta^{-1} \sum_{i=1}^n \dot{\ell}_\theta(Y_i) \\ \frac{1}{\sqrt{n}} \sum_{i=1}^n g(Y_i) - \frac{1}{2} \mathbb{E}[g(Y_i)^2] \end{pmatrix} + o_{\mathbb{P}_\theta}(1) \\ &\Rightarrow \theta \mathcal{N} \left( \begin{pmatrix} 0 \\ -\frac{1}{2} \mathbb{E}[g(Y_i)^2] \end{pmatrix}, \begin{pmatrix} I_\theta^{-1} & \cdot \\ I_\theta^{-1} \mathbb{E}[\dot{\ell}_\theta(Y_i)g(Y_i)] & \mathbb{E}[g(Y_i)^2] \end{pmatrix} \right) \end{aligned}$$

- Under  $\mathbb{P}_{\theta, \eta_{1/\sqrt{n}}}$ , by LeCam's Third Lemma

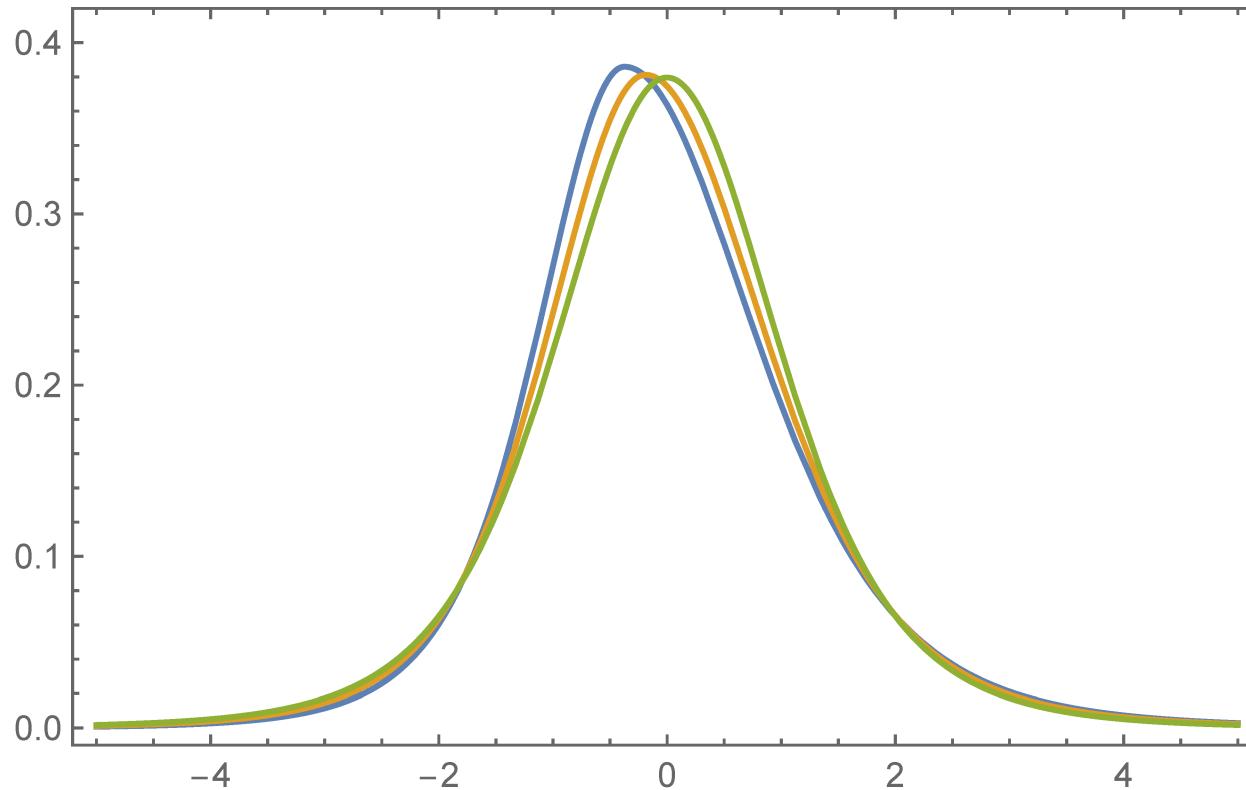
$$\sqrt{n}(\hat{\theta} - \theta) \Rightarrow_{\theta, \eta_{1/\sqrt{n}}} \mathcal{N}(I_\theta^{-1} \mathbb{E}[\dot{\ell}_\theta(Y_i)g(Y_i)], I_\theta^{-1})$$

$\Rightarrow$  MLE (and thus posterior center) biased unless  $\mathbb{E}[\dot{\ell}_\theta(Y_i)g(Y_i)] = 0$

---

---

## Example



Density of Hansen's (2004) skewed student-t distribution for  $\nu = 5$  and skewness parameter  $t \in \{0, 0.1, 0.2\}$

Here  $\mathbb{E}[\dot{\ell}_\theta(Y_i)g(Y_i)] \neq 0$ , so  $t = O(n^{-1/2})$  induces local bias in location estimator of student-t model

---

---

## Semiparametric Efficient Estimation

- Estimation  $\theta$  in semiparametric model  $\mathbb{P}_{\theta, \eta}$  at least as hard as in two-dimensional parametric model  $(\theta, \delta)$ , where  $\delta$  parametrizes particular smooth submodel of  $\eta$
- By usual MLE expansion

$$\sqrt{n} \begin{pmatrix} \hat{\theta}^s - \theta \\ \hat{\delta} - \delta \end{pmatrix} = \frac{1}{\sqrt{n}} \begin{pmatrix} \mathbb{E}[\dot{\ell}_\theta(Y_i)^2] & \cdot \\ \mathbb{E}[\dot{\ell}_\theta(Y_i)\dot{\ell}_\delta(Y_i)] & \mathbb{E}[\dot{\ell}_\delta(Y_i)^2] \end{pmatrix}^{-1} \sum_{i=1}^n \begin{pmatrix} \dot{\ell}_\theta(Y_i) \\ \dot{\ell}_\delta(Y_i) \end{pmatrix} + o_{\mathbb{P}_\theta}(1)$$

so

$$\sqrt{n}(\hat{\theta}^s - \theta) \Rightarrow_{\theta} \mathcal{N}(0, \mathbb{E}[\dot{\ell}_{\theta \perp \delta}(Y_i)^2]^{-1}), \quad \dot{\ell}_{\theta \perp \delta}(y) = \dot{\ell}_\theta(y) - \frac{\mathbb{E}[\dot{\ell}_\theta(Y_i)\dot{\ell}_\delta(Y_i)]}{\mathbb{E}[\dot{\ell}_\theta(Y_i)^2]} \dot{\ell}_\delta(y)$$

- *Least favorable submodel* maximizes  $\mathbb{E}[\dot{\ell}_{\theta \perp \delta}(Y_i)^2]^{-1}$  and yields *efficient score*  $\dot{\ell}_{\theta \perp \delta}(y) = \tilde{\ell}(y)$  that is orthogonal to  $\dot{\ell}_\delta$  of all such one-parameter submodels. Corresponding *nuisance score* is

$$\dot{\ell}_\delta(y) = \dot{\ell}_\theta(y) - \tilde{\ell}_\theta(y)$$

$$\Rightarrow \text{In example, } \tilde{\ell}(y) = y - \theta, \text{ so } \dot{\ell}_\delta(y) = \frac{(\nu+1)(y-\theta)}{\nu-2+(y-\theta)^2} - (y - \theta)$$

---

---

## Model Augmentation

- Augmented model has density

$$q(y|\theta, \delta) = c(\theta, \delta)p(y|\theta)k_0(\delta \dot{\ell}_\delta(y))$$

where  $c(\theta, \delta)^{-1} = \int p(y|\theta)k_0(\delta \dot{\ell}_\delta(y))dy$  and  $k_0(0) = k_0'(0) = 1$ , such as  $k_0(z) = \frac{2}{1+e^{-2z}}$   
(Example 26.16 in van der Vaart (1998))

- This augmentation induces  $\dot{\ell}_{\theta \perp \delta}(y) = \tilde{\ell}(y)$ . MLE  $\hat{\theta}^a$  immune to local misspecification, since  $\mathbb{E}[\tilde{\ell}_\theta(Y_i)g(Y_i)] = 0$
- **Theorem:** Under regularity conditions, with  $d_{TV}$  the total variation distance and  $\Pi^a(\theta|Y)$  the posterior distribution of  $\theta$  in augmented model,

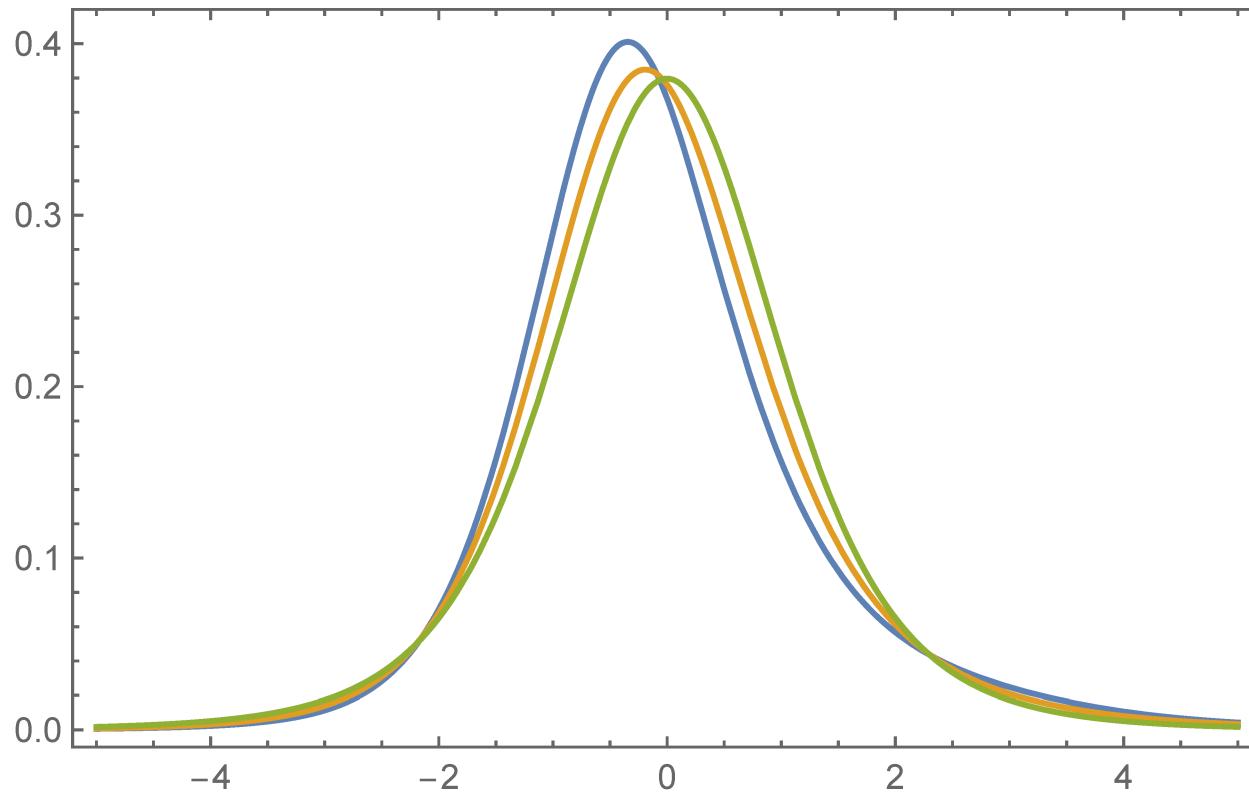
$$d_{TV}(\Pi(\theta|Y), \mathcal{N}(\hat{\theta}^a, n^{-1}\mathbb{E}[\tilde{\ell}(Y_i)^2]^{-1})) \xrightarrow{\mathbb{P}_{\theta, \eta_1/\sqrt{n}}} 0$$

- Implementation only requires knowledge of efficient score to construct  $\dot{\ell}_\delta(y) = \dot{\ell}_\theta(y) - \tilde{\ell}_\theta(y)$

---

---

## Augmented Model in Example



Augmented Student-t density for  $\nu = 5$  and  $\delta \in \{0, 0.4, 0.8\}$

---

---

## MCMC Algorithm

- Posterior in augmented model is

$$\begin{aligned}\pi(\theta, \delta | Y) &\propto \pi(\theta, \delta) \prod_{i=1}^n q(Y_i | \theta, \delta) \\ &= \pi(\theta, \delta) \prod_{i=1}^n c(\theta, \delta) p(Y_i | \theta) \frac{2}{1 + e^{-2\delta \dot{\ell}_\delta(Y_i)}} \quad \dot{\ell}_\delta(y) = \dot{\ell}_\theta(y) - \tilde{\ell}_\theta(y)\end{aligned}$$

- Standard MCMC does not require  $p(Y)$ , but would require  $c(\theta, \delta)$
- Following Rao, Lin and Dunson (2016), use auxiliary latent variables and acceptance sampling
  - ⇒ See paper for details
  - ⇒ Generic Matlab code for Hamiltonian Monte Carlo

---

## Regression with Student-t Errors

- Model:  $y_i = x_i' \beta + \varepsilon_i$ ,  $\varepsilon_i/\sigma$  has student-t density with  $\nu$  degrees of freedoms
  - ⇒ (Subset of)  $\beta$  is parameter of interest,  $(\sigma, \nu)$  are nuisance parameters
  - ⇒ Recommended for heavy tailed data in most Bayesian textbooks (Koop (2003), Geweke (2005), Greenberg (2012))
- OLS is semiparametrically efficient with efficient score
$$\tilde{\ell}_\gamma = \frac{x_i(y_i - x_i' \beta)}{\text{Var}[\varepsilon_i]}$$
- In Monte Carlo, set  $x_1 = 1$ ,  $x_2 \sim iid\mathcal{N}(0, 1)$ ,  $\nu = 2.5$  and  $n = 1000$ , independent Gaussian priors on  $\beta, \delta, \ln \sigma, \ln(\nu - 2)$
- Consider performance under local misspecification: true distribution is skewed student-t

---

---

## MC Averages in Student-t Regression

|                                                 | $t = 0$ |        | $t = n^{-1/2}x_{i2}$ |       | $t = 5n^{-1/2}x_{i2}$ |        |
|-------------------------------------------------|---------|--------|----------------------|-------|-----------------------|--------|
|                                                 | base    | aug.   | base                 | aug.  | base                  | aug.   |
| $ \hat{\beta}_1 - \mathbb{E}[\beta_1 Y] $       | 0.018   | 0.012  | 0.022                | 0.016 | 0.022                 | 0.015  |
| $ \hat{\beta}_2 - \mathbb{E}[\beta_2 Y] $       | 0.019   | 0.014  | 0.025                | 0.014 | 0.060                 | 0.018  |
| $\text{sd}(\beta_1 Y)/\text{sd}(\hat{\beta}_1)$ | 0.63    | 1.38   | 0.61                 | 1.35  | 0.60                  | 1.09   |
| $\text{sd}(\beta_2 Y)/\text{sd}(\hat{\beta}_2)$ | 0.65    | 1.34   | 0.62                 | 1.24  | 0.64                  | 1.12   |
| $\mathbb{E}[\beta_1 Y] - \beta_1$               | 0.000   | -0.001 | -0.001               | 0.002 | 0.003                 | 0.003  |
| $\mathbb{E}[\beta_2 Y] - \beta_2$               | 0.001   | 0.003  | -0.011               | 0.004 | -0.061                | -0.003 |

Notes:  $t$  is skewness parameter. Results averaged over 100 data sets.

---

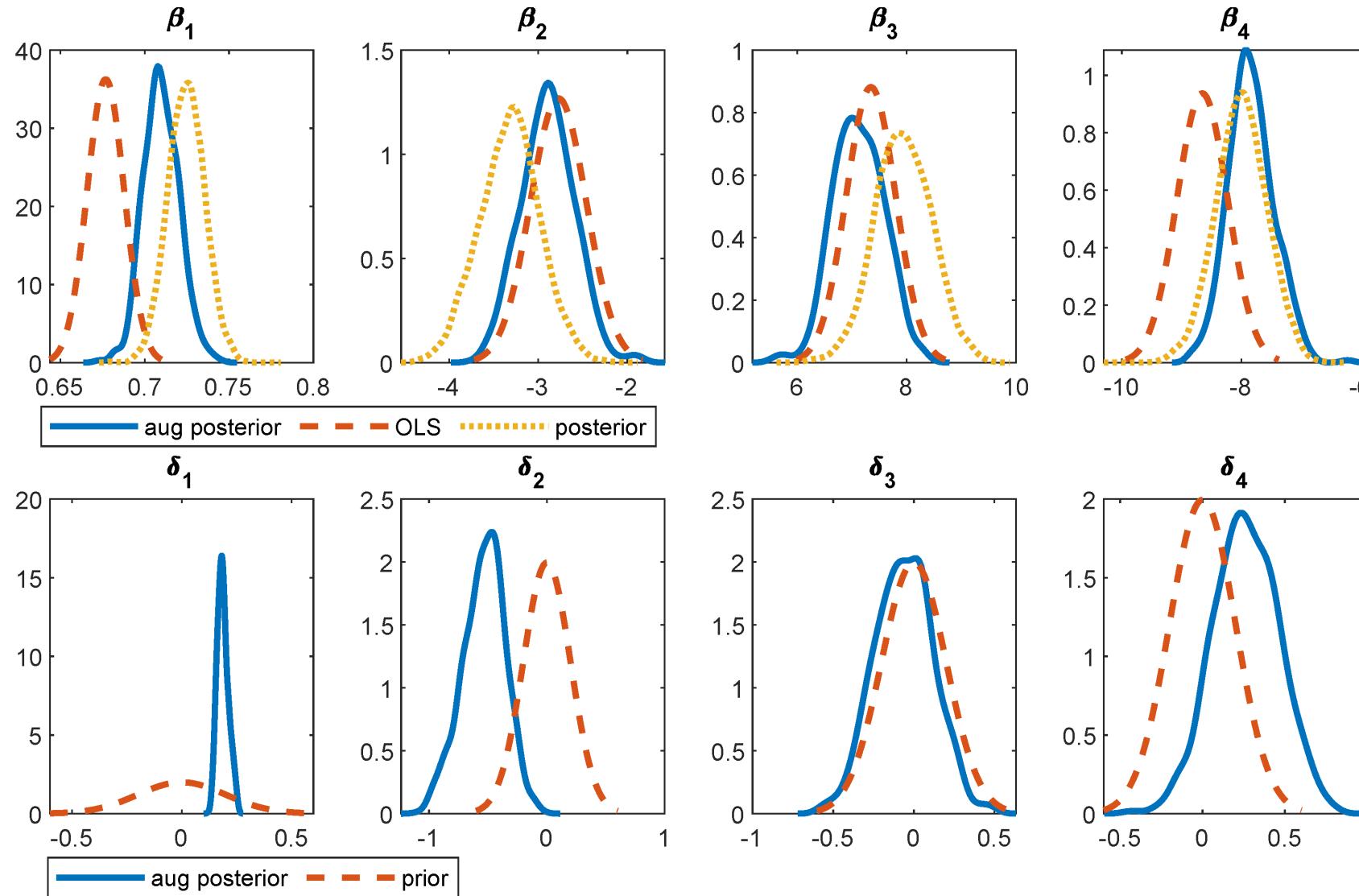
---

## Empirical Illustration

- Jackman (2000) uses Bayesian student-t regression to study the degree of incumbency advantage
- $y_i$  : proportion of two party vote for Democrat in district  $i$
- $x_i$  : proportion of two party vote for Democrat in previous election, previous winning party, indicators for Democratic and Republican incumbency, 20 dummy variables for time effects
- $n = 5090$  observations

---

# Posterior Distributions of Baseline and Augmented Model



---

## Implied Posterior Probability of Democrat Candidate Winning

| Prev Dem Vote share | base | aug. | Gaussian |
|---------------------|------|------|----------|
| 31                  | 0.7  | 1.3  | 0.3      |
| 33                  | 0.8  | 1.9  | 0.5      |
| 35                  | 1.3  | 2.2  | 0.9      |
| 37                  | 1.9  | 2.3  | 1.5      |
| 39                  | 2.7  | 3.2  | 2.5      |

Notes: Conditional on previous winner is a Republican, Democratic candidate is not incumbent, Republican candidate is incumbent. In percent.

---

---

## Summary

- Augmented model is generalization of baseline model
- It is parametric—easier to estimate and interpret
- Inference is fully Bayesian
- Semiparametric efficient and robust to local misspecification

---

---

Thank you!

---