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Spiking neurons encode continuous, time-varying 
signals in sequences of identical action potentials. 
Relatively simple algorithms allow one to 'decode' this 
neural representation of sensory data to estimate the 
input signals. Decoding experiments provide a quanti- 
tative characterization of information transmission and 
computational reliability under real-time conditions. 
The results of these studies show that neural coding and 
computation in several systems approach fundamental 
physical and informational theoretic limits to per- 
formance. 

The world presents a rich variety of sensory signals, 
most of which may be thought of as varying continu- 
ously in time - sound pressure at the eardrum, light 
intensity in a region of the visual field, trajectories of 
objects, chemical concentrations, etc. Sensory data 
are carried to the brain not as continuously varying 
electrical signals, but as sequences of essentially 
identical discrete pulses, termed action potentials or 
spikes. The classic experiments of Adrian ~, Hartline 
(in Ref. 2), and co-workers identified many key 
features of this encoding. The rate of spike generation 
varies with the stimulus intensity (rate coding), the 
rate decreases in response to prolonged static stimu- 
lation (adaptation), and the rate can be affected by 
transformed versions of the stimulus, as in lateral 
inhibition (filtering or feature selectivity). Given the 
idea of rate coding, the strategy for experiments on 
sensory neurons is to plot the rate of firing as a 
function of a key parameter in the stimulus, mapping a 
'receptive field 3,4 or 'tuning curve '5'6 for the cell in 
question. This approach has provided the basic 
language for thinking about sensory neurons for 
nearly 40 years; a significant proportion of what we 
know about the function and organization of the 
nervous system is based on measurements of neur- 
onal firing rates. 

Is the spike rate a complete description of the 
neural code? In the earliest experiments this rate was 
defined simply as the number of spikes in a given time 
interval following onset of the stimulus. In modern 
(computer assisted) experiments the rate is obtained 
by averaging multiple presentations of the same 
stimulus waveform, so that the rate defines the 
probability per unit time of a spike occurring. White 
noise or Wiener kernel methods eliminate the need 
for repeating a particular stimulus waveform many 
times, allowing measurement of stimulus-rate 
relations for an entire stimulus ensemble rather than 
just one waveform from the ensemble. These 
methods have been used extensively to study coding 
in the auditory and visual systems 7-H. 

To go beyond rate coding, one can examine the 
statistical relations of the spikes to one another using 
interval distributions or correlation functions of the 
spike trains. This leads to classification of cells as 
being 'regular' or 'irregular', 'bursters', and so on. In 
several sensory systems one can find neurons with 
comparable feting rates but very different spike 
statistics (for example, Ref. 12), and in at least one 

case it was shown that a postsynaptic neuron gives 
different responses to presynaptic spike sequences 
with the same mean rate but different statistics 13. 
These results raise the possibility that information is 
conveyed by more than just the rate, specifically by 
the timing of individual spikes. These ideas can be 
traced back at least to Wever's early work on 
synchronous activity in the auditory nerve 14. Recent 
experiments on the mammalian visual system have 
again brought attention to the possible incomplete- 
ness of rate-based descriptions 15-17. In addition to the 
possible importance of spike correlations as a coding 
scheme, many groups explored inter-neuron corre- 
lations as a diagnostic of network connectivity (see, 
for example, Ref. 18). 

The best-studied example of a timing code is a code 
based on the distribution of inter-spike intervals19'~°; 
the rate is the first moment of this distribution. 
Consider an auditory neuron stimulated at low fre- 
quencies (<lkHz).  The number of spikes in re- 
sponse to a tone-burst provides no information about 
phase, and there is a confusion between amplitude and 
frequency, since loud sounds away from the peak of 
the cell's frequency sensitivity produce the same 
firing rate as quiet sounds at the best frequency. But 
the phase-locking of auditory fibers causes the inter- 
spike intervals to cluster around integer multiples of 
the stimulus period 7. This effect yields an indepen- 
dent estimate of the frequency, and the amplitude of 
the sound can then be estimated unambiguously from 
the firing rate. Thus by keeping track of spike arrival 
times, one can resolve the amplitude/frequency 
ambiguity that arises in a rate code. 

Our interest in neural coding stems from a desire to 
answer two sets of questions about neurons as 
physical devices for computation and communication. 
Firstly, how much information can the spike train of a 
single neuron provide about continuous sensory 
inputs? Is there any way in which the representation 
of signals in spike trains constitutes an efficient 
representation? Secondly, how reliably can a given 
piece of the nervous system compute the quantities 
that control behavior? Does the coding of sensory 
signals in a spike format limit the kinds of compu- 
tations which the nervous system can perform? 

Different answers to these questions drive theoreti- 
cal efforts in quite different directions. For example, 
if computation in small pieces of the nervous system 
is unreliable, the problem for the animal is how to 
synthesize reliable behavioral decisions out of a 
system with unreliable elements; this leads to sharp 
mathematical problems, as first posed by von 
Neumann 21. If single cells are quite reliable, the 
problem is how to make maximal use of the available 
signal-to-noise ratio, which again leads us to well- 
posed mathematical problemsZ2,23. As Bullock 
emphasized 20 years ago, measuring the reliability of 
computation in a spiking neuron requires that we 
make sense of its output; it is easy to confuse a 
complex code with noise 24. Thus we are led back to 
the neural code. 
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Taking the organism's point of view 
The conventional formulation of the neural coding 

problem misses an important point: firing rates, 
interval distributions and so on are average quantities, 
properties of an ensemble of spike trains rather than 
a single spike train. In the real world an animal may 
not have access to these averages. Consider again an 
auditory neuron. The distribution of spike intervals 
characterizes the response to a single tone of fixed 
amplitude and frequency. Real-world signals can be 
thought of as tones that are modulated (perhaps by 
large amounts) in both amplitude and frequency. If the 
modulations are slow compared to the mean interval, 
many spikes are fired before the parameters of the 
tone change significantly. In this case one can build up 
the interval distribution and thereby estimate the 
amplitude and frequency. However, modulations in 
many biologically significant sounds (speech, bat 
echolocation, frog calls, cricket chirps, etc.) occur on 
timescales comparable to the mean interval between 
spikes, so that sensory neurons can generate only a 
few spikes during the correlation time of the input 
signal. With such a small number of spikes we cannot 
accumulate a reasonable inter-spike interval distri- 
bution, nor even get a good estimate of the fLring 
rate before the parameters of the stimulus change. 

The fact that timescales in natural signals are 
comparable to typical inter-spike intervals is not 
confined to the auditory system. In the fly visual 
system, as discussed below, movements across the 
visual field result in the generation of a compensating 
torque within 30 ms, during which time the movement- 
sensitive neurons generate just a few spikes each. 
In the mammalian visual cortex, pre-attentively dis- 
criminable textures produce an average of just 1-3 
spikes per cell within the 50-100ms behavioral 
decision time 25, while optimally chosen moving 
gratings produce modulations of less than 3 spikes per 
100 ms (see, for example, Ref. 26). 

One might argue that larger spike counts are 
available by averaging over many cells. This is 
certainly not possible for the fly, which relies on only a 
handful of wide-field movement-sensitive neurons for 
stable flight. Even for other systems such averaging is 
an untested assumption; simple averaging throws 
away information carried by correlations in the spike 
trains of different cells. We now discuss how we can 
measure information transmission and reliability in 
individual cells without making assumptions about how 
information is coded. 

We approach neural coding from the position of the 
organism and ask: 'Given the spike train defined by 
the set of arrival times {t~}, what can we say about the 
unknown, time-varying stimulus waveform s(t)?'. This 
approach to neural coding is nearly opposite the 
conventional one, in which one seeks a model of the 
neuron's response to known external signals. Ideas 
much closer to our point of view were fn-st advocated 
by FitzHugh 27 who used individual spike trains to 
make choices from a limited set of input stimuli. 
Barlow and Levick 28 carried out a similar analysis in 
experiments on detection and discrimination of inten- 
sity in the cat retina, and Barlow subsequently went 
on to investigate the statistical limits of neural 
processing for more complex tasks 29. This work 
focused, however, on forced-choice discrimination 
between a small number of possible signals. 
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Fig. 1. (A) Probability distributions. Stimulus waveforms are described by a 
large number of parameters (e.g. their Fourier coefficients). Here we show the 
distribution of two such parameters in the stimulus ensemble defined by P[s(t)] 
(shown as box). For simplicity, we illustrate a case where the parameters are 
uniformly distributed over a region of the stimulus space. Once we observe the 
spike train, this distribution is narrowed (P[s(t)/ {ti}]). In this example, the spike 
train provides a great deal of in formation about one of the stimulus parameters 
but almost no information about the other. The quantitative measure of 
'information' is the logarithm of the ratio of areas occupied by the two 
distributions. Our best estimate of the stimulus given the spike train is the 
centroid of the conditional distribution (shown by the filled circle). (B) A 
schematic of the reconstruction process. We place ourselves as observers of 
the spike train and devise an algorithm that takes the spikes as input and 
produces as output an estimate of the unknown, time-dependent stimulus 
waveform. The algorithm operates on a single example of the spike train and 
functions in real time so that the estimates are continuously updated. This 
algorithm is not the simple inverse of the input/output relation of the neuron. 

Johannesma, Gielen and Hesselmans developed a 
probabifistic formalism to address the more general 
problem of estimating an unknown, time-varying 
signal 3°,31, and arrived independently at many of the 
ideas discussed in Refs 32, 33. In early applications 
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Fig. 2. Signal (broken line) and reconstruction (unbroken fine) m a single 
mechanosensor afferent from the cricket cercal system 39. The stimulus consists 
of broad-band (25-525 Hz) Gaussian random motions of the sensory hair, 
and spikes (shown at the bottom) are recorded intracellularly. The reconstruc- 
tions are accomplished by finear filtering of the spike train, as in Eqn 1, with the 
filter K1 chosen to minimize the mean-square error between the signal and the 
reconstruction, as described in the text. Note that the spike sequence is 
extremely sparse, yet the reconstruction succeeds in capturing some of the 
high-frequency details in the waveform. 

of white-noise methods to the auditory system, 
de Boer 8 emphasized the interpretation of the re- 
verse correlation function - the mean stimulus that 
triggers a spike - as the 'feature' of the stimulus 
waveform that is signalled by the occurrence of a 
spike (see also the review in Ref. 10). It was 
suggested 31 that one could estimate the stimulus 
waveform simply by adding up these features. This 
raises the problem that as the spikes arrive more 
frequently, the reverse correlation functions that are 
centered on successive spikes begin to overlap and 
can provide conflicting estimates of the stimulus. The 
correct resolution of these conflicts requires that we 
attach measures of confidence to the different esti- 
mates, and this is accomplished by measuring the 
relevant probability distributions a2' as described in the 
following section. 

One of the most important aspects of the decoding 
approach is that the stimulus is unknown to the 
animal. In the natural environment or in an exper- 
iment, stimuli are chosen at random from some 
probability distribution P[s(t)] that defines the 
'stimulus ensemble'. Many experiments use simple 
ensembles (e.g. sine waves), but in these cases s(t) 

can be predicted perfectly from knowledge of its past 
s(t' < t). In this sense one can know the waveform 
without looking at the spike train, and there is no new 
information gained by observation of the spikes. 
Natural stimulus ensembles, on the other hand, are 
difficult to study because of their complex correlation 
structure. One might hope that a system could be 
characterized completely, so that its responses to 
signals drawn from any ensemble could be predicted. 
However, the nervous system is highly nonlinear so 
that the effective input/output relations on short 
timescales (receptive fields and tuning curves) depend 
on statistical features of the stimulus ensemble that 
are defined on longer timescales. We believe that it 
makes sense to take an empirical approach, studying 
the structure of the code in a variety of stimulus 
ensembles chosen to capture different aspects of the 
signals to which the animal is evolutionarily adapted. 

R e c o n s t r u c t i n g  t h e  s t i m u l u s  w a v e f o r m  
Assume that we record the spike times {ti} in a 

sensory neuron while stimulating the system with a 
continuous waveform chosen from a stimulus en- 
semble defined by the distribution P[s(t)]. With access 
only to the spike times, we, like the animal, do not 
know the stimulus. Before observing the spikes, all 
we know is that s(t) was chosen from P[s(t)]; for any 
reasonably complex stimulus ensemble, this a priori 
knowledge gives only very crude information about 
the time-varying waveform. Once we observe the 
spike train, the set of possible waveforms narrows 
around the signals that are most likely to have 
generated that particular spike train, as schematized 
in Fig. 1A. This narrowing is described by the 
conditional probability distribution e[s(t)l{ti}], which 
measures the relative likelihood of different stimulus 
waveforms given a particular spike train. This distri- 
bution is everything that the animal could know about 
the stimulus as a result of observing the spike train. 

The distribution of e[s(t)]{ti}] was measured for 
short spike sequences in experiments on a move- 
ment-sensitive cell (HI) of the fly visual system a2. 
The structure of P[s(t)l{ti }] suggested that it should 
be possible to systematically reconstruct the wave- 
form s(t) using only the spike train {ti}, and an attempt 
at this reconstruction was made 32. The results of 
these studies suggested that we should try to decode 
the spike trains directly. 

We describe the decoding process as a (generally 
nonlinear) filter operating on the spikes to produce an 
estimated stimulus: 

Sest(t) = Z. K l ( t - t i )  + ½ ~,. K2( t - t i ,  t - t j )  + . . .  (1) 
1 1j 

The filters K~ are related to the spiking statistics of 
the neuron and to the statistics of the stimulus 
ensemble (e.g. the power spectrum). In the context 
of a model of spike generation, the series is often 
dominated by the first (linear) term 33, so that the 
estimate takes the simple form of a linear filter applied 
to the spikes. The important point is that this series 
can be dominated by the linear term even when 
conventional measures of neural input/output relations 
are nonlinear. This means that it is in some sense 
easier to decode the spike train than it is to describe 
the encoding! 

Eqn 1 describes a 'box' which could in principle be 
built out of real electronic (or neural) components. It 
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takes the spike train as an input 
and produces a continuous function 
of time that is our best estimate 
of the stimulus waveform; see 
Fig. lB. When K1 dominates, the 
box produces a stereotyped impulse 
response to each spike, and adds 
up the results. Timing of the spikes 
controls the estimate of s(t) because 
the impulse responses to success- 
ive spikes overlap and interfere. 
In the limit that K1 is very slow and 
the contributions of many spikes 
overlap, the output of the box 
resembles an estimate of the firing 
rate versus time; in this limit we 
recover a rate code which ignores 
fine variations in the times {ti}. In 
the systems studied so far (see 
below), the impulse response K1 
typically overlaps just a few spikes, 
in accord with the discussion above. 

Stimulus reconstruction is not 
necessarily a problem that is actu- 
ally solved by the animal. It is, 
however, of the same nature as 
the problems that the animal must 
solve. As an example, the fly 
generates an opto-motor torque 
from the spike output of its motion- 
sensitive visual neurons, and this 
torque has a component roughly 
proportional to the time-dependent 
angular velocity 34'35. The torque 
signal is a continuous analog wave- 
form that the fly synthesizes out of 
discrete spike sequences in its 
sensory neurons. The fact that 
analog signals can be recovered so 
simply from the spike train is a 
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Fig. 3. Snapshots of the fly photoreceptor voltage array in response to small displacements. 
(A),  (B) Displacement of a random bar pattern by 0.36 ° [from (A) to (B)]. (C), (D) Displacement 
of the same pattern by 0.48 ° [from (C) to (D)]. Simulations are based on signal and noise charac- 
teristics of the receptor cells measured under conditions identical to those used in the experiments 
on H1. In Ref. 29 it is shown that a single example of the spike train from H1 is sufficient to 
discriminate between these two displacements with a reliability >~ 75%. 

fundamental characteristic of the neural representation 
of sensory data. 

In fo rmat ion  ra te  and  coding eff ic iency 
When we observe the spike train we learn, in 

principle, about many different aspects of the 
stimulus. A frog call, for example, can be described by 
its fundamental frequency, the amplitudes and phases 
of the different harmonics, and the shape of the 
envelope. Each parameter can be estimated with a 
certain precision; measuring this precision in a single 
cell (see, for example, Refs 28, 36) is analogous to 
the psychophysical measurement of discrimination 
thresholds. However, discrimination thresholds 
measure performance when each stimulus dimension 
is isolated; in the real world, signals are varying 
continuously along all dimensions at once. How do we 
characterize the system's performance under these 
natural conditions? 

Information theory provides a framework for adding 
up the many different discrimination abilities relevant 
to real-world signals a7'38. In particular, the theory 
allows us to compare different stimulus dimensions 
(e.g. whether a given neuron provides more infor- 
mation about the amplitude or the pitch of a sound), 
even when discrimination abilities would be measured 
in different units (e. g. dB and Hz). We can think about 

the information in terms of the schematic in Fig. 1A. 
When we observe the spike train, the range of 
possible stimulus waveforms is narrowed into a 
smaller region of the stimulus space. The information 
provided by the spikes about the stimulus measures 
this reduction on a logarithmic scale, so that a factor of 
two reduction in the range of possible stimuli is 
counted as one bit of information. For example, 
imagine that flogs call with fundamental frequencies 
scattered uniformly throughout a 50 Hz range, and ob- 
servation of the spike train of a single cell allows us 
to determine this frequency with a precision of 5 Hz. 
Then we gain 1og2(50/5) ~ 3.3 bits of information. 

One way to measure the reduction in the range of 
possible stimuli given the spike train is to reconstruct 
the stimulus and measure the 'noise' in the recon- 
struction - the random errors of the reconstruction 
around the true stimulus. One can show mathemat- 
ically that the information transmission rate can be 
estimated in terms of the variance or power spectrum 
of this noise, and that the true rate of information 
transmission is at least as high as our estimate. 
Together with David Warland, we used this approach 
to analyse experiments on primary afferent neurons 
from several different sensory systems 39-41 (see also 
Rieke, F. M. and Warland, D. K., PhD theses, 
University of California at Berkeley, 1991). 
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Fig. 4. Time-dependent angular velocity signals (broken line) are reconstructed 
(unbroken line) by filtering the spike train of H1 (shown at the bottom). 
Positive spikes represent the response of i l l  to the stimulus as shown; negative 
spikes represent the response to the negative of the stimulus, as would be seen 
by the H1 cell on the other side of the head during rigid rotation of the fly. The 
precision of the reconstructions can be quantified by computing the spectral 
density of the errors 22'46. This measure of performance approaches the 
fundamental physical limits imposed by noise in the photoreceptors, as 
described in the text. 

Figure 2 illustrates one experiment on the mechano- 
receptive neurons of the cricket cercal system. The 
stimulus is the angular displacement of the sensory 
hair, and spikes are recorded intracellularly from the 
primary afferent neuron. The reconstructed wave- 
form clearly interpolates between the spikes, and in 
some places gives a close match to details of the 
stimulus on very short timescales. This tells us that 
the bandwidth of the system is large. On the other 
hand, the typical errors are comparable to the 
stimulus itself, so the overall signal-to-noise ratio is 
about one. Qualitatively, the estimate of the signal at 
any instant of time is imprecise, so that we obtain the 
order of one bit of information (the signal is positive or 
negative, for example). However, because of the large 
bandwidth, this estimate is updated very often, so the 
number of bits per second is large. Quantitative 
analysis shows that the single cell in Fig. 2 provides 
nearly 300 bits of information per second about the 
angular trajectory of the sensory hair. This is roughly 
three bits per spike (or per inter-spike interval), clear 
evidence that the timing of individual spikes carries 
significant information about the stimulus. Similar bit- 
to-spike ratios were obtained in experiments on 

neurons from the bullfrog sacculus, a vibratory sensory 
region in the inner ear 4°. 

In 1952, MacKay and McCulloch 42 pointed out that 
a system that keeps track of spike arrival times or 
inter-spike intervals could in principle convey several 
bits of information per spike, far more than a system 
relying only on firing rates averaged over a large time- 
window. Could the information rates we observe 
approach these limits? The absolute upper boundary 
to the transmitted information is set by the entropy of 
the spikes, which measures roughly the number of 
distinguishable spike sequences given some timing 
precision. The information rate measures the number 
of stimulus waveforms that can be distinguished from 
observation of the spikes. One cannot distinguish 
more waveforms than spike trains in any coding 
scheme. To compare the cell's performance to this 
fundamental limit, we estimated the spike-train 
entropy from the same experiments in which we 
found the high information rates. In both the cricket 
and the bullfrog, information rates are within a factor 
of two of the spike-train entropy, corresponding to a 
coding efficiency of greater than 50% (Ref. 41). This 
implies that although the spike sequences are highly 
variable, most of this variability is in fact being used to 
convey information about the stimulus. 

Reliability in neural computation 
To assess the reliability of neural computation we 

need to measure the signal and noise characteristics 
of the receptor cells providing the input data for the 
computation, and we need to measure the effective 
noise level of the signals carried by the neurons 
coding the output of the computation 22'23. In the fly 
visual system, information about rigid rotation of the 
fly relative to the world is carried by a handful of 
identified wide-field neurons in the lobular complex; 
the input to these cells comes from a single class of 
photoreceptors in the compound eye 43'44. Together 
with de Ruyter van Steveninck and Warland, we 
reported a series of experiments on the precision of 
the movement computation in the H1 cell, which 
senses rigid horizontal movements 32'36'45'46 (see also 
de Ruyter van Steveninck, R. R., Academisch 
Proefschrift, Rijksuniversiteit Groningen, 1986). 

It turns out that the fly, like humans, can reliably 
distinguish displacements that differ by a small frac- 
tion of the spacing between receptors on the retina - 
the system achieves a displacement resolution much 
better than the nominal limit imposed by diffraction 
around the photoreceptor aperture. This class of 
phenomena is termed hyperacuity 47. Microscopists 
have known for a century that one can resolve 
displacements far below the 'diffraction limit' provided 
that one has a sufficient signal-to-noise ratio. What is 
the signal-to-noise ratio in the fly's eye and how 
effectively is this signal-to-noise ratio used in displace- 
ment resolution? 

Signal-to-noise ratios depend on the time over 
which we integrate the receptor response. In re- 
sponse to a sudden movement, the fly can generate a 
torque within 30 ms (Ref. 48). But most of this time is 
taken up in signal transmission from the retina to H1 
( -  15ms), and in the rise time of the photoreceptor 
response ( -  10 ms). The remaining time is essentially 
equal to the correlation time in the photoreceptor 
voltage noise; so rather than looking at time-averaged 
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signals, the fly must base its behavioral decisions on 
one or perhaps two snapshots of the voltage array. 
The signal and noise characteristics of the photo- 
receptors were measured under conditions identical 
to the H1 recordings (de Ruyter van Steveninck, 
R. R., Academisch Proefschrift, Rijksuniversiteit 
Groningen, 1986), so we can simulate snapshots of 
the photoreceptor response to patterns that are 
displaced by small fractions of the receptor spacing, as 
in Fig. 3. This simulation demonstrates that on the 
timescales relevant to fly behavior the signals rep- 
resented in the photoreceptor array are very noisy; 
and as a result, the hyperacuity task is hard. To 
quantify these results we developed the theory of the 
optimal motion estimator, an idealized device that 
uses the voltage signals from all of the eye's 
photoreceptors to generate the best possible estimate 
of the angular velocity waveform 2~. The measured 
photoreceptor noise limits the quality of this estimate, 
so that for movements in the frequency range from 10 
to 25 Hz the minimum displacement noise is -0.1 ° in 
the behaviorally relevant 30 ms integration time. This 
is one-tenth of the angular spacing between recep- 
tors. The noise level of the optimal motion estimator 
sets an absolute standard against which we can judge 
the reliability of computation in the fly's visual system. 

Following the approach described above, we de- 
coded the spike train of HI to estimate the trajectory 
of random patterns moving across the visual field; 
Fig. 4 shows an example of these reconstructions. 
The spike train of H1 contains enough information to in- 
fer - in real time, without averaging - details of the 
stimulus waveform on times comparable to the typical 
inter-spike interval, as suggested by the behavioral 
reaction times. Comparing these estimated wave- 
forms with the real trajectories we found that the 
effective noise level in our reconstruction corre- 
sponds to an angular displacement noise within a 
factor of two of the theoretical limit imposed by the 
measured receptor cell noise. The discriminability of 
displacement differences in the range of 0.1 ° was 
confirmed directly in a separate series of exper- 
iments 36. We conclude that the fly's visual system 
performs an optimal and nearly noiseless extraction of 
rigid movement signals from the photoreceptor array. 

Looking ahead 
By learning to decode neural spike trains we can 

quantitatively characterize the signals carried by 
sensory neurons. For the examples discussed here, 
this approach reveals that the nervous system 
reaches the fundamental physical and informational 
theoretic limits to reliability and efficiency. These 
examples fit into a growing body of data pointing to 
near optimal performance at different stages of 
sensory processing, as reviewed in Ref. 23. These 
data provide direct evidence that the theories of 
optimal coding and processing are relevant to the 
function and architecture of real neural circuits; in at 
least one case this argument can be carried to 
completion, resulting in successful parameter-free 
predictions of the signal transfer from photoreceptors 
to bipolar cells in the dark-adapted vertebrate 
retina 49'5°. To test these ideas fully we must study 
the way in which neural coding and computation are 
adapted to progressively more naturalistic ensembles 
of signals, and we must move away from the study of 

single cells to understand information transmission 
and coding efficiency for spike trains in arrays of 
neurons. Decoding methods have straightforward 
generalizations to these situations, and preliminary 
results are emerging 51'52. 
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Modelling of intersegmental coordination in the lamprey 
central pattern generator for locomotion 

Av i s  H. C o h e n ,  G. Bard E r m e n t r o u t ,  T i m  K iemel ,  N a n c y  Kope l l ,  Karen  A. S i g v a r d t  and  
T h e l m a  L. W i l l i a m s  

Rhythmic motor activffy requires coordination of dif- 
ferent muscles or muscle groups so that they are all active 
with the same cycle duration and appropriate phase 
relationships. The neural mechanisms for such phase 
coupling in vertebrate locomotion are not known. 
Swimming in the lamprey is accomplished by the gen- 
eration of a travelling wave of body curvature in which 
the phase coupling between segments is so controlled as to 
give approximately one full wavelength on the body at any 
swimming speed. This article reviews work that has 
combined mathematical analysis, biological experimen- 
tation and computer simulation to provide a conceptual 
framework within which intersegmental coordination 
can be investigated. Evidence is provided to suggest that 
in the lamprey, ascending coupling is dominant over 
descending coupling and controls the intersegmental 
phase lag during locomotion. The significance of long- 
range intersegmental coupling is also discussed. 

Production of rhythmic motor patterns typically in- 
volves networks called central pattern generators 
(CPGs) that are believed to be composed of sub- 
networks of neurones, not necessarily identical, each 
capable of producing a rhythmic output; these are 
coordinated to provide proper relative timing. For 
example, in locomotion of limbed vertebrates, the 
network of neurons controlling the muscles of a single 
limb can be thought of as a group of such unit 
oscillators, each of which underlies the activity of a 
functionally related group of muscles. The mechan- 
isms that produce the relative timing among the 
muscle groups have not been easily unravelled, 
largely because it is often difficult to understand or 
predict the behaviour of such oscillatory systems. In 
higher vertebrates such as mammals the problem is 
compounded by the large number of neurones involved 
in the respective CPGs. 

Given these problems, the search for basic prin- 
ciples of oscillator coordination has focused on a more 
primitive vertebrate, the lamprey (reviewed in Refs 
1, 2). Locomotor output patterns in the lamprey are 
conveniently simple: waves of lateral undulation travel 
down the body, propelling the animal through the 

water. Regardless of its speed, the lamprey maintains 
approximately one wavelength of curvature along its 
body at any time. The pattern of ventral root activity 
giving rise to this movement is correspondingly 
simple: there are alternating bursts of activity in the 
left and right motor roots of each segment, with a 
rostral-caudal delay of activation along the length of 
the spinal cord. Changes in speed are accomplished by 
either an increase or a decrease in the cycle duration 
at all segments with a proportional change in the 
intersegmental delay. Thus, the phase lag between 
segments (intersegmental time delay divided by cycle 
period; see Fig. 1A) is roughly constant at about 1% 
of the period per segment, independent of swimming 
frequency. 

This phase delay cannot simply be composed of 
conduction delays or synaptic delays because these 
delays are constant, while the intersegmental delays 
must vary with the period to preserve the constant 
phase characteristic of the behaviour. It is intuitively 
difficult to see how a network might be connected to 
produce delays that remain a constant fraction of the 
cycle period, independent of frequency. Thus, it 
seemed prudent to turn to mathematical modelling for 
mechanisms that might govern the production of 
appropriate phase lags by coupled oscillators. 

Since very little was known about the specific 
neurones involved in the local circuit oscillators or the 
intersegmental coordination, it was desirable to have 
a theory not tied to specific cellular mechanisms, but 
whose conclusions could nevertheless be tested 
experimentally. The theory described below 3-8 
suggests mathematical mechanisms for production 
of the phase lags that are testable and which are 
compatible with a large range of underlying cellular 
mechanisms. 

It is known that each segment or small group of 
segments from anywhere in the lamprey's body can 
produce bursting 9'1°. Thus, it is natural to describe 
the lamprey spinal cord as a chain of coupled limit 
cycle oscillators. A limit cycle oscillator is a dynamical 
system with a periodic solution to which the system 
returns after a perturbation, perhaps with a shift in 
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