Prediction and Entropy of Printed English i
By C. E. SHANNON
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A new method of estimating the entro‘)y and redundancy of a language is

described. This method exploits the knowledge of the language statistics pos-

sessed by those who speek the language, and depends on experimental results

in prediction of the next letter when the preceding text is known. Results of

gxpgrimeegtsin prediction are given, and some properties of an ideal predictor are
level oped.

1. INTRODUCTION

N A previous paper! the entropy and redundancy of a language have
been defined. The entropy is a statistical parameter which measures,
in a certain sense, how much information is produced on the average for
each letter of atext in the language. If the language is translated into binary
digits (Oor 1) in themost efficient way, the entropy H isthe average number
of binary digits required per letter of the original language. The redundancy,
on the other hand, measures the amount of constraint imposed on a text in
the language due to its dtatistical structure, eg., in English the high fre-
quency of the letter E, the strong tendency of H to follow T or of V to follow
Q. It was estimated that when statistical effects extending over not more
than eight letters are considered the entropy is roughly 2.3 bits per letter,
the redundancy about 50 per cent.

Since then a new method has been found for estimating these quantities,
which ismore sensitive and takes account of long range statistics, influences
extending over phrases, sentences, etc. This method is based on a study of
the predictability of English; how well can the next letter of a text be pre-
dicted when the preceding AV letters are known. The results of some experi-
ments in prediction will be given, and a theoretical andysis of some of the
properties of ideal prediction. By combining the experimental and theoreti-
cal results it is possible to estimate upper and lower bounds for the entropy
and redundancy. From this analysis it appears that, in ordinary literary
English, the long range statistical effects (up to 100 letters) reduce the
entropy to something of the order of one hit per letter, with a corresponding
redundancy of roughly 75%. The redundancy may be still higher when
structure extending over paragraphs, chapters, etc. isincluded. However, as
the lengths involved are increased, the parameters in question become more

1 C. E. Shannon, "A Mathematical Theory of Communication," Bell System Technical
Journal, v. 27, pp. 379-423, 623-656, July, October, 1948,
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erraﬁc and uncertain, and they depend more critically on the type of text
involved:
2. ENTROPY CALCULATION FROM tmr STATISTICS OF ENGLISH

One method of calculating the entropy // is by a series of approximations
7? F,, F2>""", which successively take more and more of the statistics
;)f the language into account and approach 7 as a limit. /v may be called
the y.gram entropy; it measures the amount of information or entropy due
to statistics extending over .\ adjacent |etters of text. v is given by?!

FN = —Z p(bs, Dlogs pv;(7)

V) PR
(1)
= —Z p(bi, 7) loge p(bs, 5) + Z p(0:) log p(b2)

inwhich: bi isablock of \-1 letters [(A-1)-gram]
j is an arbitrary letter following &
p(b., |) is the probability of the ¥-gram b, , |
pv;(7) is the conditional probability of letter j after the block &,

and is given by p(d; , 7)/p(b.).

The equation (1) can be interpreted as measuring the average uncertainty
(conditional entropy) of the next letter /' when the preceding V-1 letters are
known. As .V is increased, I~ includes longer and longer range statistics
and the entropy, 7, is given by the limiting value of Fyas V —» = :

4 = Lim Fy. @)
N—owo

The N-gram entropies Fy for smal values of N can be calculated from
standard tables of letter, digram and trigram frequencies.” If spaces and
punctuation are ignored we have a twenty-six letter alphabet and s may
be taken (by definition) to be logs 26, or 4.7 bits per letter. #; involves letter
frequencies and is given by

I = —;g) p(1) logs p(3) = 4.14 bits per letter. 3
The digram approximation I gives the result
by = = 2 40, ]) loga £:(J)
= = 2 6.7) loga p6,9) + 22 () Jog: (i) @

= 7.70 - 414 = 3.56 bits per letter.
2 Fletcher Pratt, "Secret and Urgent,” Blue Ribbon Books, 1942.
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The trigram entropy is given by
By = - 2 pli g, ) log, pis(k)

=~ > pli.j. K o plij, ) + Z 2G.9) log. pii) ()

=10-7,7=33

In this calculation the trigram table? used did not take into account tri-
grams bridging two words, such as WOW and OWO in TWO WORDS. To
compensate partially for this omission, corrected trigram probabilities p(i,
j, K) were obtained from the probabilitiesp’(i, j, k) of the table by the follow-
ing rough formula:

g PR J— 1 g 3
PG5 R = —p (1, 7, K) oo DK + 1% p(i, 7)s(k)

where 7(i) is the probability of letter ¢ as the terminal letter of a word and
s(k) is the probability of k as an initia letter. Thus the trigrams within
words (an average of 2.5 per word) are counted according to the table; the
bridging trigrams (one of each type per word) are counted approximately
by assuming independence of the terminal letter of one word and the initial
digram in the next or vice versa. Because of the approximations involved
here, and aso because of the fact that the sampling error in identifying
probability with sample frequency is more serious, the value of F; is less
reliable than the previous numbers.

Since tables of .Y-gram frequencies were not available for NV > 3, Fy, [7;,
etc. could not be calculated in the same way. However, word frequencies
have been tabulated® and can be used to obtain a further approximation.
Figure 1 is a plot on log-log paper of the probabilities of words against
frequency rank. The most frequent English word "the" has a probability
071 and this is plotted against 1. The next most frequent word "of" hasa
probability of .034 and is plotted against 2, etc. Using logarithmic scaes
both for probability and rank, the curve is approximately a straight line
with dope — 1 ; thus, if p.. isthe probability of the rath most frequent word,
we have, roughly

1
P = (6)
Zipf* has pointed out that thistype of formula, p, = %/#, givesarather good
approximation to the word probabilities in many different languages. The

3 G. Dewey, "Relative Frequency of English Speech Sounds,"” Harvard University

Press, 1923
+G. K. Zipf, "Human Behavior and the Principle of Least Effort,” Addison-Wesley

Press, 1949,
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(6) clearly cannot hold indefinitely since the total probability Zp.,

formula
must pe unity, while X, .1/x is infinite. If we assume (in the absence of any
1

b tter estimate) that the formula p, = .1/% holds out to the # at which the
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Fig. 1—Relative frequency against rank for English words.

total probability is unity, and that p. — O for larger n, we find that the
critical n is the word of rank 8,727. The entropy is then:
8727

— pn logs p, = 11.82 bits per word, @)
1

or 11,82/45 = 2.62 bits per letter since the average word length in English
is 45 |etters. One might be tempted to identify this value with F,;, but
actually the ordinate of the I’y curve at .V’ = 4.5 will be above this value.
The reason is that F4 or 75 involves groups of four or five letters regardless
of word division. A word is a cohesive group of letters with strong internal
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statistical influences, and consequently the N-grams within words are

restricted than those which bridge words. The effect of thisis that we have;l

obtained, in 2.62 bits per letter, an estimate which corresponds more Dearly
to, say, Fs or Fs.

A similar set of calculations was carried out including the space as a
additional letter, giving a 27 letter alphabet. The results of both 26- anj
27 letter calculations are summarized below:

Fa F Fa F, Fword
4,70 414 3.56 3.3 2.62
%9 :gg 4.76 4.03 3.32 3.1 2.14

The estimate of 2.3 for /5 , alluded to above, was found by several methods
one of which is the extrapolation of the 26-letter series above out to that
point. Since the space symbol is almost completely redundant when se
quences of one or more words are involved, the values of £~ in the 27-letter
case will be 22 or 818 of F yfor the 26-letter alphabet when ¥ is reasonably
5.0
large.
3. PREDICTION OF ENGLISH

The new method of estimating entropy exploits the fact that a@mnyon
speaking a language possesses, implicitly, an enormous knowledge of th
statistics of the language. Familiarity with the words, idioms, cliches and
grammar enables him to fill in missing or incorrect letters in proof-reading,
or to complete an unfinished phrase in conversation. An experimental demo
stration of the extent to which English is predictable can be given as follows;
Select a short passage unfamiliar to the person who is to do the predicting
He is then asked to guess the first letter in the passage. If the guessis correct
he is so informed, and proceeds to guess the second letter. If not, he is.t°]§
the correct first letter and proceeds to his next guess. This is continue
through the text. As the experiment progresses, the subject writes down th
correct text up to the current point for use in predicting future letters. Th
result of a typical experiment of this type is given below. Spaces werein-
cluded as an additional letter, making a 27 letter alphabet. The first line*
the original text; the second line contains a dash for each letter correctly
guessed. [N the case of incorrect guesses the correct letter is copied in th
second line.

1) THE ROOMWAS NOT VERY LI GHT A SMALL OBLONG roi
2 ROO NOT-V I SM__ OBL_

)

1) READI NG LAVP ON THE DESK SHED GLOWON
2 REA 0____D___ SHED-GLO--0--
1)
2

PCLI SHED WOCD BUT LESS ON THE SHABBY RED CARPET

P-I-8—0---BU--L-8--0 SH RE --C
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Ofa total of 129 letters, 89 or 69% were guessed correctly. The errors, as
-+ * e expected, occur most frequently at the beginning of words and

:V(:: hles Where the line of thought has more possibility of branching out. It
4 nt e thought that the second line in (8), which we will call the reduced
BRLAgy

1ok, contains much lessinformation than the first. Actually, both lines con-
 ggme information in the sense that it is possible, at least in prin-
-1 to recover the first line from the second. To accomplish this we need
3;: identical twin of the individual who produced the sequence. The twin
(_ho must be mathematically, not just biologically identical) will respond in
1. same way when faced with the same problem. Suppose, now, we have
on’. the reduced text of (8). We ask the twin to guess the passage. At each
oint Wwewill know whether hisguessis correct, since he is guessing the same
as the first twin and the presence of a dash in the reduced text corresponds
to a correct guess. The letters he guesses wrong are also available, so that at
each stage he can be supplied with precisely the same information the first
twin had available.

COMPARISON
ORIGINAL
. REDUCED TEXT EXT

sy L - — —_— T—->
\ PREDICTOR J Kl—w PREDICTOR |4

Fig. 2-~Communication system using reduced text.

COMPARISON

IGINAL
0ﬁTEX’l’

The need for an identical twin in this conceptual experiment can be
eliminated as follows. In general, good prediction does not require knowl-
edge of more than N preceding letters of text, with N fairly small. There are
only a finite number of possible sequences of N letters. We could ask the
subject to guess the next letter for each of these possible V-grams. The com-
plete list of these predictions could then be used both for obtaining the
reduced text from the original and for the inverse reconstruction process.

To put this another way, the reduced text can be considered to be an
encoded form of the original, the result of passing the original text through
areversible transducer. In fact, a communication system could be con-
structed in which only the reduced text is transmitted from one point to
the other. This could be set up as shown in Fig. 2, with two identical pre-
diction devices.

An extension of the above experiment yields further information con-
cerning the predictability of English. As before, the subject knows the text
up to the current point and is asked to guess the next letter. If he is wrong,
heis told so and asked to guess again. This is continued until he finds the
correct letter. A typical result with this experiment is shown below. The
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3
first line is the original text and the numbers in the second line indicate the*
guess at which the correct letter was obtained.

() THERE IS8 NO REVERSE ON A MOTORCYCLE A
(2)111511211211151171112132122711114111113]

M) FRIEND OF MINE FOUND THIS OUT
(2)8613111111111118211111121 1111
THE

1
) RATHER D RAMATICALLY THE o R DAY
(2)41111111151111111111161111111111111 (9

Out of 102 symbols the subject guessed right on the first guess 79 times
on the second guess 8 times, on the third guess 3 times, the fourth and fifth
guesses 2 each and only eight times reguired more than five guesses. Results
of thisorder aretypical of prediction by agood subject withordinary literary
English. Newspaper writing, scientific work and poetry generally lead to
somewhat poorer scores.

The reduced text in this case also contains the same information as the
original. Again utilizing the identical twin we ask him at each stage to guess
as many times as the number given in the reduced text and recover in this
way the original. To eliminate the human element here we must ask ow
subject, for each possible V-gram of text, to guess the most probable next
letter, the second most probable next letter, etc. This set of data can then
serve both for prediction and recovery.

Just as before, the reduced text can be considered an encoded version of
the original. The original language, with an alphabet of 27 symbols, A,
B, ***  Z space, has been translated into a new language with the alphabe
1,2 eee,27. The translating has been such that the symbol 1 now hasan
extremely high frequency. The symbols 2, 3, 4 have successively smaller
frequenciesand thefinal symbols 20, 21, « ¢ ¢ , 27 occur very rarely. Thusthe
translating has simplified to a considerable extent the nature of the statisti-
cal structure involved. The redundancy which originally appeared in com-
plicated constraints among groups of letters, has, by the translating process,
been made explicit to alarge extent in the very unequal probabilities of the
new symbols. It is this, as will appear later, which enables one to estimate
the entropy from these experiments. ]

In order to determine how predictability depends on the number -V oi
preceding letters known to the subject, a more involved experiment **
carried out. One hundred samples of English text were selected at random
from a book, each fifteen letters in length. The subject was required to 8ues
the text, letter by letter, for each sample as in the preceding experiment.
Thus one hundred samples were obtained in which the subject had availablt
0, 1, 2,3, ¢+, 14 preceding letters. To aid in prediction the subject made
such use as he wished of various statistical tables, letter, digram and trigra®
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bles atable of the frequencies of initial letters in words, a list of the fre-
’ ncj% of common words and a dictionary. The samples in this experiment
9 “from "Jefferson the Virginian" by Dumas Malone. These results, to-
W&t _with a similar test in which 100 letters were known to the subject, are
su;@arized in Table I. The column correspondslto the number of preceding
olters known to the subject plus one; the row is the number of the guess.
The entry in column N at row S is the number of times the subject guessed
the right letter at the Sth guess when (V-1)letters were known. For example,

TABLE |
== 2 3| al s el 78] ool nr|B|u]s w
182 [ 292 | 36147 |51 |58{48|66|66|67|62(58|66|72|60 80

% 07 | 148 | 20| 18| 13| 19|17 15| 13|10 9(14| 9| 6| 18 7
31'"86| 200 [12|124| 8| 5 3| 5| 9| 4! 7| 7| 4| 9| 5

41 67| 86| 7| 3| 4| 1| 4| 4| 4| 4| 5| 64 4| 3| 5 3
5/ 65| 71| 1| 1| 3, 4| 3| 6| 1| 6| 5| 2| 3 4
6/ 58| 55| 4| 5| 2| 3| 2 1 4| 2] 3| 4| 1 2
71 561 45| 3| 3| 2| 2| 8 1] 1| 1] 4| 1 4 1
g| 52| 36| 2 2| 1| 1| 2| 1] 1| 1| 1 21 1| 3

9( 50( 3.0 4 5/ 1] 4 2 1/ 1) 2 1 1
0| 43| 26| 2| 1| 3 31 2

n| 31| 22| 2| 2 2 1 1| 3 1] 1) 2 1

| 28| 19| 4 2 11 1) 1 2 1f 1 I 1
13| 24 15 1| 1, 1{ 1| 1| 1| 1| 1 10 1

1, 23| 12 1 il 1 1
5| 21| 10| 1] 1 1] 1

6| 20 9 1 1 1

7| 16 7101 1] 1 1 2| 2

8| 16 D) 1

9y 16 4 1 1 . 1 i

20| 13 3 1 1) 1

2| 12 2

2 8 A

230 3 1

4| 1 0

25 A

26 i

27 i |

the entry 19 in column 6, row 2, means that with five letters known the cor
rect letter was obtained on the second guess nineteen times out of the hun
dred. The first two columns of this table were not obtained by the experi-
mental procedure outlined above but were calculated directly from the
known letter and digram frequencies. Thus with no known letters the most
probable symbol is the space (probability .182); the next guess, if this is
wrong, should be E (probability .107), etc. These probabilities are the
frequencies with which the right guess would occur at the first, second, etc.,
trials with best prediction. Similarly, a smple calculation from the digram
table gives the entries in column 1 when the subject uses the table to best
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v

advantage. Since the frequency tables are determined from long samples
English, these two columnsare subject to lesssampling error than the othey

It will be seen that the prediction gradually improves, apart from son,
statistical fluctuation, with increasing knowledge of the past as indicate
by the larger numbers of correct first guesses and the smaller numbers
high rank guesses.

One experiment was carried out with "reverse” prediction, in which ,
subject guessed the letter preceding those aready known. Although th
task is subjectively much more difficult, the scores were only dightly poorg
Thus, with two 101 letter samples from the same source, the subject g,
tained the following results:

No. of guess 1 2 3 4 5 6 7 8 >8
Forward ... 70 10 7 2 2 3 3 0 4
Reverse .. 66 7 4 4 6 2 1 2 9

Incidentally, the V-gram entropy I/~ for a reversed language is equal
that for the forward language as may be seen from the second form in equs
tion (1). Both terms have the same vaue in the forward and reversed case

4. IDEAL N-Gram PREDICTION

The data of Table | can be used to obtain upper and lower bounds to th
N-gram entropies Fy ¢ In order to do this, it is necessary first to devely
some general results concerning the best possible prediction of a languagt
whenthepreceding Nl ettersareknown. Therewill befor thelanguage aset
of conditional probabilities p;; , 4, , -+ , iy_, (J). Thisistheprobability whet
the (V-1)gram iy, 4z, * = , iy— Ooccurs that the next letter will bej. Th
best guess for the next letter, when this (N-1) gram is known to have o
curred, will be that letter having the highest conditional probability. The
second guess should be that with the second highest probability, etc. A
machine or person guessing in the best way would guess letters in the orde
of decreasing conditional probability. Thus the process of reducing a tex
with such an ideal predictor consists of a mapping of the letters into th
numbers from 1 to 27 in such a way that the most probable next lette
[conditional on the known preceding (V-1) gram] is mapped into 1, et
The frequency of 1’sin the reduced text will then be given by

g = Zplin, ia, oo 5 vty ) ©

where the sum istaken over dl (N-1)grams; , é», »» , iy thes being tin
one which maximizes p for that particular (V-1) gram. Similarly, the fr
quency of 2’s, g5 , is given by the same formula with j chosen to be the
letter having the second highest value of p, etc.

On the basis of ¥-grams, a different set of probabilities for the symbo
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 the reduced text, qf“ , qlz%l, e, q§’7+l, would normally result. Since this

. tion is on the basis of a greater knowledge of the past, one would ex-
i;;t the probabilities of low numbers to be greater, and in fact one can
prove the following inequalities:

s s
2G> S 200, {11
j=al 7=l
This Means that the probability of being right in the first S guesses when
the preceding N letters are known is greater than or egual to that when
onlV (¥-1) are known, for dl S To prove this, imagine the probabilities
o(i iz, -+, > j)arrangedin atable withj running horizontally and all
the N-grams vertically. The table will therefore have 27 columns and 277
— The term on the left of (11) isthe sum of the Slargest entriesin each
row summed over al the rows. The right-hand member of (11) isalso a sum
of entries from this table in which Sentries are taken from each row but not
necessarily the S largest. This follows from the fact that the right-hand
member would be calculated from a similar table with (N-1) grams rather
than TV-grams listed vertically. Each row in the N-1 gram table is the sum
of 27 rows of the N-gram table, since:
27
P(iZyi:‘]; S iN;j): Zlﬁ(ilji% e lNa]) (12)
The sum of the Slargest entriesin arow of the TV-1 gram table will equal
the sum of the 275 selected entries from the corresponding 27 rows of the
N-gram table only if the latter fall into S columns. For the equality in (11)
to hold for a particular S, this must be true of every row of the TV-1 gram
table. In this case, thefirst letter of the TV-gram does not affect the set of the
S most probable choices for the next letter, although the ordering within
the set may be affected. However, if the equality in (11) holds for al S it
follows that the ordering as well will be unaffected by the first letter of the
N-gram. The reduced text obtained from an ideal V-1 gram predictor is then
identical with that obtained from an ideal N-gram predictor.
Since the partial sums

&
ngzlqlf 5:1:2;"' (13)
are monotonic increasing functions of N, <1 for al N, they must all ap-
proach limits as N — . Their first differences must therefore approach
limitsas N — =, i.e, the ¢, approach limits, ¢7 . These may be interpreted
asthe relative frequency of correct first, second, « ¢ ¢ , guesses with knowl-
edge of the entire (infinite) past history of the text.
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The idedl N-gram predictor can be considered, as has been pointed out,
be a transducer which operates on the language trandating it into a sequence
of numbers running from 1 to 27. As such it has the following two properties.

1. The output symbal is a function of the present input (the predicted

next letter when we think of it as a predicting device) and the preceq.
ing (N-1) letters.

2. It is instantaneously reversible. The original input can be recovered by

a suitable operation on the reduced text without loss of time. In fact
the inverse operation aso operates on only the (NV-1) preceding sym,.
bols of the reduced text together with the present output.

The above proof that the frequencies of output symbols with an ¥
gram predictor satisfy the inegudities:

-] 8
;q§>;q?“‘ 5=1,2---,27 (14

can be applied to any transducer having the two properties listed above,
In fact we can imagine again an array with the various (¥-1) grams listed
vertically and the present input letter horizontally. Since the present output
is a function of only these quantities there will be a definite output symbol
which may be entered at the corresponding intersection of row and column,
Furthermore, the instantaneous reversibility requires that no two entries
in the same row be the same. Otherwise, there would be ambiguity betwee
the two or more possible present input letters when reversing the tranda.
tion.sThe total probability of the 5 most probable symboals in the output

say > 7, will bethesum of the probabilitiesfor5 entriesineachrow, summed
1

over the rows, and consequently is certainly not greater than the sum of the
S largest entries in each row. Thus we will have

8

5
L@z 2rn 5=12-,27 (15
In other words ideal prediction as defined above enjoys a preferred positior
among all translating operations that may be applied to a language an
which satisfy the two properties above. Roughly speaking, ided prediction
collapses the probabilities of various symbols to a small group more tha
any other translating operation involving the same number of letters whid
is instantaneously reversible.

Sets of numbers satisfying the inequdities (15) have been studied by
Muirhead in connection with the theory of algebraic inequalities.® If (15
holdswhen the 47 and », are arranged in decreasing order of magnitude, ant

5 Hardy, Littlewood and Polya, "Inequalities," Cambridge University Press, 1934.
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27 i o . o
. ZQ;Y = 2.7, (thisistrue here since the total probability in each
o oL 5

case 1S 1), then the first set, gy , is said to majorizzthe second set, 7,. It is
known that the majorizing property is equivalent to either of the following
properties: .
- 1 They,; can be obtained from the ¢; by a finite series of “flows.” By a
" flow isunderstood a transfer of probability from a larger q to a smaller
one, as heat flows from hotter to cooler bodies but not in the reverse
direction.
2 The r; can be obtained from the g; by a generalized "averaging"
operation. There exists a set of non-negative real numbers, a;; , with
3" a;; = 2. ai; = 1and such that
i k3

ri = Zj a:;(g3). (16)

5. ENTROPY BOUNDS FROM PREDICTION FREQUENCIES

If we know the frequencies of symbols in the reduced text with the idedl
N-gram predictor, ¢ , it is possible to set both upper and lower bounds to
the ¥-gram entropy, Fr, of the original language. These bounds are as

follows:
27 2

;
Z_li(q’! - g% logi < Fy < — Zl g3 log ¢ 7
. 1=

The upper bound follows immediately from the fact that the maximum
possible entropy in a language with letter frequencies ¢3 is — 2, ¢7 log ¢7 .
Thus the entropy per symbol of the reduced text is not greater than this.
The N-gram entropy of the reduced text is equal to that for the original
language, as may be seen by an inspection of the definition (1) of . The
sumsinvolved will contain precisely, the same terms although, perhaps, in a
different order. This upper bound is clearly valid, whether or not the pre-
diction is idedl.

The lower bound ismore difficult to establish. It is necessary to show that
with any selection of N-gram probabilitiesp(i;, i2, ... , ix), we will have

27
2t — i) logi < 20 pl, e e indlog pi, ¢+ v inalin) (19
1= ilreeinN .
The left-hand member of the inequality can be interpreted as follows:
Imagine the ¢7 arranged as a sequence of lines of decreasing height (Fig. 3).
The actual ¢7 can be considered as the sum of a set of rectangular distribu-
tions as shown. The left member of (18) is the entropy of this set of distribu-
tions. Thus, the #** rectangular distribution has a total probability of
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k- eneral theorem that f,(x) < H{x) for any chance variables x and y.
— . . The entropy of the distribution is log i. The total entropy E of the fuality holds only if the distributions being added are proportional.
%F‘?é’n Gix1)- e

add the different components of the same width without
B Now iy i€ entropy (since in this case the distributions are proportional).
Y ilgi — 9m) logii. 4

¢ Cha . that we have arrived at the rectangular decomposition of the
i=1 . 1t 18 .

* PG, wv  “B'series of processes which decrease or leave constant the entropy,
The problem, then, is to show that any system of probab|I|t|es

Fy o ]qn mﬁg with the original N-gram probabilities. Consequently the entropy
with best prediction frequencies ¢: has an entropy = * greater thanq q, Lystem s greater than or equal to that of the rectangular
‘aual to that of this rectangular system, derived from the same set of grtl e orlgmaL

of the ¢,. This proves the desired result.
e;ow?ﬁ%e noted that the lower bound is definitely less than FN unless each
t

fthe table has a rectangular distribution. This requires that for each
w O
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| Fig. 4—Upper and lower experimental bounds for the entropy of 27-letter English
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| possible (N-1) gram there is a set of possible next letters each with equal
! probability, while al other next letters have zero probability.

| —— — It will now be shown that the upper and lower bounds for Fx N given by

yoozs | ] '((14 q5) %

i ! ! _1, (17) aremonotonic decreasi ng functionsof N. Thisistrue of the upper bound
10025

e =) dncethe »+1 majorize the 47 and any equalizing flow in a set of probabilities
Fig. 2 Rectangular decomposition of a monoto™E distribution. increases the entropy. To prove that the lower bound is also monotonic de-
. . N : rrangit
The gi as we have sad are obtained from the #(is -+ | ix) by jertxcif creasing we will show that the quantity
each row of the table in decreasing order of magnitude and dnd'?r' e tions. Re U= 2. i(g - g0 log i (20)
Thusthe are the sum of a set of monotonic decreasing )

place eacf of these distributions by its rectangular decomposition.

(FaCthh s Increased by an equalizing flow among the ¢: - Suppose aflow occurs from
is replaced then (in general) by 27 rectangular distributionss ypo

argy 4 q,t gint the first decreased by Agq and the latter increased by the same
sum of 27 x 7N rectangular distributions, of from 1 to 27 elements, o757 tt amoun

t. Then threetermsin the sum change and the changein U isgiven by
starting at the left column. The entropy for this set is less than or Oiwo ¢ AU =[G — 1) log (i
that of the origina g of distributions since a termwWise aitior = i

- 1) +2ilogi- (i + 1) log (i + VA7 (21)
s - L pphcath‘
more distributions always increases entropy. This is actually an
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The term in brackets has the form —f(x- 1) + 2f(®) - f(x + 1) whey §
J(x) = xlog x. Now f(x) isafunction which is concave upward for positive,,
since f” (x) = 1/x> 0. Thebracketed term istwice the difference between the §
ordinate of the curve at x = i and the ordinate of the midpoint of the chord E
joiningi — 1 and i + 1, and consequently is negative. Since Aq also is nega

tive, the change in U brought about by the flow is positive. An even simple; *
calculation shows that thisis also true for aflow from ¢ to g. or from gy to
g2 (where only two terms of the sum are affected). It follows that the lower
bound based on the N-gram prediction frequencies ¢; is greater than or

N+1

equal to that calculated from the N + 1 gram freguencies g

6. EXPERIMENTAL BOUNDS FOR ENGLISH

Working from the data of Table I, the upper and lower bounds were calcu-
lated from relations (17). The data were first smoothed somewhat to over-
come the worst sampling fluctuations. The low numbers in this table are
the least reliable and these were averaged together in groups. Thus, in
column 4, the 47, 18 and 14 were not changed but the remaining group
totaling 21 was divided uniformly over the rowsfrom 4 to 20. The upper and
lower bounds given by (17) were then calculated for each column giving the
followingresults:

Column 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 100
Upper. . ... . 403 342302627 222818192.1 222321 172113
Lower ... .. 3.192.502.11.71.71.31.81.0101.01.31.31.2 .91.2 .6

It is evident that there is still considerable sampling error in these figures
due to identifying the observed sample frequencies with the prediction
probabilities. It must also be remembered that the lower bound was proved
only for the ideal predictor, while the frequencies used here are from human
prediction. Some rough calculations, however, indicate that the discrepancy
between the actual ¥y and the lower bound with ideal prediction (due to
the failure to have rectangular distributions of conditiona probability)
more than compensates for the failure of human subjects to predict in the
ideal manner. Thus we feel reasonably confident of both bounds apart from
sampling errors. The values given above are plotted against N in Fig. 4.
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