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A new method of estimating the entropy and redundancy of a language is
described. This method exploits the knowledge of the language statistics pos-
sessed by those who speak the language, and depends on experimental results
in prediction of the next letter when the preceding text is known. Results of
experiments in prediction are given, and some properties of an ideal predictor are
developed.

1. INTRODUCTION

IN A previous paper1 the entropy and redundancy of a language have
been defined. The entropy is a statistical parameter which measures,

in a certain sense, how much information is produced on the average for
each letter of a text in the language. If the language is translated into binary
digits (0 or 1) in the most efficient way, the entropy // is the average number
of binary digits required per letter of the original language. The redundancy,
on the other hand, measures the amount of constraint imposed on a text in
the language due to its statistical structure, e.g., in English the high fre-
quency of the letter £, the strong tendency of H to follow T or of V to follow
Q. It was estimated that when statistical effects extending over not more
than eight letters are considered the entropy is roughly 2.3 bits per letter,
the redundancy about 50 per cent.

Since then a new method has been found for estimating these quantities,
which is more sensitive and takes account of long range statistics, influences
extending over phrases, sentences, etc. This method is based on a study of
the predictability of English; how well can the next letter of a text be pre-
dicted when the preceding N letters are known. The results of some experi-
ments in prediction will be given, and a theoretical analysis of some of the
properties of ideal prediction. By combining the experimental and theoreti-
cal results it is possible to estimate upper and lower bounds for the entropy
and redundancy. From this analysis it appears that, in ordinary literary
English, the long range statistical effects (up to 100 letters) reduce the
entropy to something of the order of one bit per letter, with a corresponding
redundancy of roughly 75%. The redundancy may be still higher when
structure extending over paragraphs, chapters, etc. is included. However, as
the lengths involved are increased, the parameters in question become more

1 C. E. Shannon, "A Mathematical Theory of Communication," Bell System Technical
Journal, v. 27, pp. 379-423, 623-656, July, October, 1948.
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tic and uncertain, and they depend more critically on the type of text

involved.

2. ENTROPY CALCULATION FROM TIIK STATISTICS OF ENGLISH

One method of calculating the entropy // is by a series of approximations
7? Fi , F-2 > ' ' ' ' which successively take more and more of the statistics
f the language into account and approach 77 as a limit. Fx may be called

the Y-grani entropy; it measures the amount of information or entropy due
to statistics extending over A" adjacent letters of text. F.v is given by1

FN = -Tfp(bi,j) \0gzpbi(j)
V) , ,

= ~Z p(bi,j) lo&pQi.j) + Z p(^ log #(6V)
i.j 1:

in which: bi is a block of _Y-1 letters [(Ar-l)-gram]

j is an arbitrary letter following hi

p(bi , j) is the probability of the JV-gram 6» , j

pbi(j) is the conditional probability of letter j after the block b,,

and is given by p(b{ , j)/p(bf).

The equation (1) can be interpreted as measuring the average uncertainty
(conditional entropy) of the next letter /' when the preceding _V-1 letters are
known. As .V is increased, /'V includes longer and longer range statistics
and the entropy, 77, is given by the limiting value of FN as N — -> ^ :

H = Lim TV . (2)
JV-»oo

The T-gram entropies F.\ for small values of N can be calculated from
standard tables of letter, digram and trigram frequencies.2 If spaces and
punctuation are ignored we have a twenty-six letter alphabet and Ff, may
be taken (by definition) to be log-2 26, or 4.7 bits per letter. 7<\ involves letter
frequencies and is given by

26

Fi = — X) p(i) Iog2 p(i) = 4.14 bits per letter. (3)
t— i

The digram approximation 7^ gives the result

(4)

= 7.70 - 4.14 = 3.56 bits per letter.
2 Fletcher Pratt, "Secret and Urgent," Blue Ribbon Books, 1942.
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The trigram entropy is given by

F-i = - Z p(i,j,k) log, p,-j(k)

X p(i, j, k) log, p(i, j, k) (*, j) log, p(i, j) (5)

= 11.0 - 7,7 = 3.3

In this calculation the trigram table2 used did not take into account tri-
grams bridging two words, such as WOW and OWO in TWO WORDS. To
compensate partially for this omission, corrected trigram probabilities p(it

j, k) were obtained from the probabilities p'(i,j, k) of the table by the follow-
ing rough formula:

, J, = ~ p'(i,j, k) + ~ r(f)p(j, k)

where r(i) is the probability of letter i as the terminal letter of a word and
s(k) is the probability of k as an initial letter. Thus the trigrams within
words (an average of 2.5 per word) are counted according to the table; the
bridging trigrams (one of each type per word) are counted approximately
by assuming independence of the terminal letter of one word and the initial
digram in the next or vice versa. Because of the approximations involved
here, and also because of the fact that the sampling error in identifying
probability with sample frequency is more serious, the value of F;i is less
reliable than the previous numbers.

Since tables of .Y-gram frequencies were not available for ,Y > 3, F^ , Fj ,
etc. could not be calculated in the same way. However, word frequencies
have been tabulated3 and can be used to obtain a further approximation.
Figure 1 is a plot on log-log paper of the probabilities of words against
frequency rank. The most frequent English word "the" has a probability
.071 and this is plotted against 1. The next most frequent word "of" has a
probability of .034 and is plotted against 2, etc. Using logarithmic scales
both for probability and rank, the curve is approximately a straight line
with slope — 1 ; thus, if pn is the probability of the rath most frequent word,
we have, roughly

Zipf4 has pointed out that this type of formula, pn = k/n, gives a rather good
approximation to the word probabilities in many different languages. The

3 G. De\vcy, "Relative Frequency of English Speech Sounds," Harvard University
Press, 1923.

1 G. K. Zipf, "Human Behavior and the Principle of Least Effort," Acldison-Wesley
Press, 1949.
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uja (6) clearly cannot hold indefinitely since the total probability ~2pn

t ke unity, while 2^ .!/« is infinite. If we assume (in the absence of any

h tier estimate) that the formula pn = .\/n holds out to the n at which the
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Fig. 1—Relative frequency against rank for English words.

total probability is unity, and that pn — 0 for larger n, we find that the
critical n is the word of rank 8,727. The entropy is then:

8727

— / ! pn Iog2 pn = 11.82 bits per word, (7)
i

or 11,82/4.5 = 2.62 bits per letter since the average word length in English
is 4.5 letters. One might be tempted to identify this value with F4 .B , but
actually the ordinate of the /*'>• curve at N = 4.5 will be above this value.
The reason is that F4 or F;, involves groups of four or five letters regardless
of word division. A word is a cohesive group of letters with strong internal
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statistical influences, and consequently the ]V-grams within words are .
restricted than those which bridge words. The effect of this is that we hav(

obtained, in 2.62 bits per letter, an estimate which corresponds more nearly

to, say, F!, or F$.
A similar set of calculations was carried out including the space as aj

additional letter, giving a 27 letter alphabet. The results of both 26- anj
27-letter calculations are summarized below:
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26 letter
27 letter

Fa

4.70
4.76

Pi
4.14
4.03

3.56
3.32

F, fword
3.3 2.62
3.1 2.14

The estimate of 2.3 for 7;
s, alluded to above, was found by several methods

one of which is the extrapolation of the 26-letter series above out to that
point. Since the space symbol is almost completely redundant when se-
quences of one or more words are involved, the values of FN in the 27-letter

4.5case will be —- or .818 of FN for the 26-letter alphabet when TV is reasonably
O .O

large.
3. PREDICTION OF ENGLISH

The new method of estimating entropy exploits the fact that anyone
speaking a language possesses, implicitly, an enormous knowledge of the
statistics of the language. Familiarity with the words, idioms, cliches and
grammar enables him to fill in missing or incorrect letters in proof-reading,
or to complete an unfinished phrase in conversation. An experimental demon-
stration of the extent to which English is predictable can be given as follows;
Select a short passage unfamiliar to the person who is to do the predicting,
He is then asked to guess the first letter in the passage. If the guess is correct
he is so informed, and proceeds to guess the second letter. If not, he is tolc
the correct first letter and proceeds to his next guess. This is continuec
through the text. As the experiment progresses, the subject writes down th
correct text up to the current point for use in predicting future letters. Th
result of a typical experiment of this type is given below. Spaces were in-
cluded as an additional letter, making a 27 letter alphabet. The first line i-
the original text; the second line contains a dash for each letter correctly
guessed. In the case of incorrect guesses the correct letter is copied in th

second line.
(1) THE ROOM WAS NOT VERY LIGHT A SMALL OBLONG ..,
(2) ROD NOT-? 1 SM OBL

(1) READING LAMP ON THE DESK SHED GLOW ON
(2) REA 0 D SHED-GLO--0--
(1) POLISHED WOOD BUT LESS ON THE SHABBY RED CARPET
(2) P-L-S 0---BU--L-S-0 SH RE-C

total of 129 letters, 89 or 69% were guessed correctly. The errors, as
., , e expected, occur most frequently at the beginning of words and

W<il hies where the line of thought has more possibility of branching out. It
S '̂ ht be thought that the second line in (8), which we will call the reduced

contains much less information than the first. Actually, both lines con-
.' .. game information in the sense that it is possible, at least in prin-

• 1 to recover the first line from the second. To accomplish this we need
identical twin of the individual who produced the sequence. The twin

, kO must be mathematically, not just biologically identical) will respond in
, same way when faced with the same problem. Suppose, no\v, we have

i the reduced text of (8). We ask the twin to guess the passage. At each
oint we will know whether his guess is correct, since he is guessing the same

the first twin and the presence of a dash in the reduced text corresponds
to a correct guess. The letters he guesses wrong are also available, so that at
each stage he can be supplied with precisely the same information the first
twin had available.

COMPARISON COMPARISON
U^!XT

~~ 14-
~ *

PREDICTOR 4

REDUCED TEXT

*•

^L
— *•

PREDICTOR

TEXT

1 ~*

4
Fig. 2—Communication system using reduced text.

The need for an identical twin in this conceptual experiment can be
eliminated as follows. In general, good prediction does not require knowl-
edge of more than N preceding letters of text, with N fairly small. There are
only a finite number of possible sequences of N letters. We could ask the
subject to guess the next letter for each of these possible .V-grams. The com-
plete list of these predictions could then be used both for obtaining the
reduced text from the original and for the inverse reconstruction process.

To put this another way, the reduced text can be considered to be an
encoded form of the original, the result of passing the original text through
a reversible transducer. In fact, a communication system could be con-
structed in which only the reduced text is transmitted from one point to
the other. This could be set up as shown in Fig. 2, with two identical pre-
diction devices.

An extension of the above experiment yields further information con-
cerning the predictability of English. As before, the subject knows the text
up to the current point and is asked to guess the next letter. If he is wrong,
he is told so and asked to guess again. This is continued until he finds the
correct letter. A typical result with this experiment is shown below. The
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first line is the original text and the numbers in the second line indicate thcr
guess at which the correct letter was obtained.

(1) T H E R E I S N O R E V E R S E O N A M O T O R C Y C
(2) 1 1 1 5 1 1 2 1 1 2 1 1 151 1 7 1 1 1 2 1 3 2 1 2 2 7 1 1 1 1 4 1 1 1

(1) F R I E N D O F M I N E F O U N D T H I S O U T
( 2 ) 8 6 1 3 1 1 1 1 1 1 1 1 1 1 1 6 2 1 1 1 1 1 1 2 1 1 1 1 1 1

(1) R A T H E R D R A M A T I C A L L Y T H E O T H E R
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L E A

1 l 3 j

D A Y

(2) 4 1 1 1 1 1 1 11 5 1 1 1 1 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 (9)

Out of 102 symbols the subject guessed right on the first guess 79 times
on the second guess 8 times, on the third guess 3 times, the fourth and fifth
guesses 2 each and only eight times required more than five guesses. Results
of this order are typical of prediction by a good subject with ordinary literary
English. Newspaper writing, scientific work and poetry generally lead to
somewhat poorer scores.

The reduced text in this case also contains the same information as the
original. Again utilizing the identical twin we ask him at each stage to guess
as many times as the number given in the reduced text and recover in this
way the original. To eliminate the human element here we must ask out
subject, for each possible .V-gram of text, to guess the most probable next
letter, the second most probable next letter, etc. This set of data can then
serve both for prediction and recovery.

Just as before, the reduced text can be considered an encoded version of
the original. The original language, with an alphabet of 27 symbols, A,
B, • • • , Z, space, has been translated into a new language with the alphabet
1, 2, • • • , 27. The translating has been such that the symbol 1 now has an
extremely high frequency. The symbols 2, 3, 4 have successively smaller
frequencies and the final symbols 20, 21, • • • , 27 occur very rarely. Thus the
translating has simplified to a considerable extent the nature of the statisti-
cal structure involved. The redundancy which originally appeared in com-
plicated constraints among groups of letters, has, by the translating process,
been made explicit to a large extent in the very unequal probabilities of the
new symbols. It is this, as will appear later, which enables one to estimate
the entropy from these experiments.

In order to determine how predictability depends on the number .V oi
preceding letters known to the subject, a more involved experiment was
carried out. One hundred samples of English text were selected at random
from a book, each fifteen letters in length. The subject was required to gues<
the text, letter by letter, for each sample as in the preceding experiment.
Thus one hundred samples were obtained in which the subject had available
0, 1, 2, 3, • • • , 14 preceding letters. To aid in prediction the subject made
such use as he wished of various statistical tables, letter, digram and trigrair.

a table of the frequencies of initial letters in words, a list of the fre-
jes of common words and a dictionary. The samples in this experiment
from "Jefferson the Virginian" by Dumas Maloiie. These results, to-

rt, r with a similar test in which 100 letters were known to the subject, are
marized in Table I. The column corresponds to the number of preceding

tters known to the subject plus one; the row is the number of the guess.
The entry in column N at row 5 is the number of times the subject guessed
the right letter at the Si\\ guess when (N-\) letters were known. For example,

TABLE I

J
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

i

18.2
10.7

' 8.6
6.7
6.5
5.8
5.6
5.2
5.0
4.3
3.1
2.8
2.4
2.3
2.1
2.0
1.6
1.6
1.6
1.3
1.2

.8

.3

.1

.1

.1

.1

2

29.2
14.8
10.0
8.6
7.1
5.5
4.5
3.6
3.0
2.6
2 .2
1.9
1.5
1.2
1.0

.9

.7

.5

.4

.3

.2

.1

.1

.0

3

36
20
12

7
1
4
3
2
4
2
2
4
1

1

1

4

47
18
14
3
1
5
3
2

1
2

1
1
1

1

5

51
13
8
4
3
2
2
1
5
3
2
2
1

2

1

6

58
19
5
1
4
3
2
1
1

1
1
1

1

1
1

7

48
17
3
4
3
2
8
2
4
3

1
1
1

1
1

1

8

66
15
5
4
6

1

1

1
1

»

66
13
9
4
1

1
1
2

1

1

1

10

67
10
4
4
6
1
1
1
1

3

1

1

u

62
9
7
5
5
4
1
1
1

2

1

1

1

12

58
14

7
6
2
2
4

2

1
1
1
1
1

13

66
9
4
4
3
3
1
2

2
1
1
1

1

2

14

72
6
9
3

4

1
1

2

2

15

60
18
5
5

1
4
3

1
1

1

1

100

80
7

3
4
2
1

1

1

1

the entry 19 in column 6, row 2, means that with five letters known thi cor
rect letter was obtained on the second guess nineteen times out of the hun
dred. The first two columns of this table were not obtained by the experi-
mental procedure outlined above but were calculated directly from the
known letter and digram frequencies. Thus with no known letters the most
probable symbol is the space (probability .182); the next guess, if this is
wrong, should be E (probability .107), etc. These probabilities are the
frequencies with which the right guess would occur at the first, second, etc.,
trials with best prediction. Similarly, a simple calculation from the digram
table gives the entries in column 1 when the subject uses the table to best
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advantage. Since the frequency tables are determined from long samples 0(
English, these two columns are subject to less sampling error than the others

It will be seen that the prediction gradually improves, apart from son,
statistical fluctuation, with increasing knowledge of the past as indicate^
by the larger numbers of correct first guesses and the smaller numbers oj
high rank guesses.

One experiment was carried out with "reverse" prediction, in which th(

subject guessed the letter preceding those already known. Although the
task is subjectively much more difficult, the scores were only slightly poorer
Thus, with two 101 letter samples from the same source, the subject ob.
tained the following results:

No. of guess 1 2 3 4 5 6 7 8 >8
Forward .................. 70 10 7 2 2 3 3 0 4
Reverse ................... 66 7 4 4 6 2 1 2 9

Incidentally, the .V-grarn entropy FN for a reversed language is equal te
that for the forward language as may be seen from the second form in equa.
tion (1). Both terms have the same value in the forward and reversed cases,

4. IDEAL .V-GRAM PREDICTION

The data of Table I can be used to obtain upper and lower bounds to th
AT-gram entropies FN • In order to do this, it is necessary first to develop
some general results concerning the best possible prediction of a languagt
when the preceding N letters are known. There will be for the language a set
of conditional probabilities/)^ , » , , • • • , *y_i (j). This is the probability whet
the (N-\) gram ii , iz , • • • , in-i occurs that the next letter will be j. Th
best guess for the next letter, when this (Ar-l) gram is known to have oc-
curred, will be that letter having the highest conditional probability. The
second guess should be that with the second highest probability, etc. A
machine or person guessing in the best way would guess letters in the ordei
of decreasing conditional probability. Thus the process of reducing a ter
with such an ideal predictor consists of a mapping of the letters into tb:
numbers from 1 to 27 in such a way that the most probable next lette:
[conditional on the known preceding (A7-l) gram] is mapped into 1, etc
The frequency of 1's in the reduced text will then be given by

where the sum is taken over all (N-\) grams ii , i2 , • • • , in-\ the j being tin
one which maximizes p for that particular (N-\) gram. Similarly, the fn
quency of 2's, q% , is given by the same formula with j chosen to be tha
letter having the second highest value of p, etc.

On the basis of A7-grams, a different set of probabilities for the symbol
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• the reduced text, q"+1, q%+i, ... , g£r+1, would normally result. Since this
m H' tion is on the basis of a greater knowledge of the past, one would ex-

t the probabilities of low numbers to be greater, and in fact one can
prove the following inequalities:

s s
E N+1 -^ V^ w 0 1 0 fl1\qt > L, qt S = i, 2, • • • . (ii)i-i »-i

Th's means that the probability of being right in the first S guesses when
the preceding N letters are known is greater than or equal to that when

lv C/V-1) are known, for all S. To prove this, imagine the probabilities
•bd ii, " ' , i" > •?') arrang£d in a table with j running horizontally and all
the TV-grams vertically. The table will therefore have 27 columns and 27N

rows The term on the left of (11) is the sum of the S largest entries in each
row summed over all the rows. The right-hand member of (11) is also a sum
of entries from this table in which S entries are taken from each row but not
necessarily the S largest. This follows from the fact that the right-hand
member would be calculated from a similar table with (TV-1) grams rather
than TV-grams listed vertically. Each row in the TV-1 gram table is the sum
of 27 rows of the TV-gram table, since:

27

p ( k j is, • • • , iy,j) = IL P(ii ,i"z, '' • , itr,j). (12)
.1=1

The sum of the S largest entries in a row of the TV-1 gram table will equal
the sum of the 27S selected entries from the corresponding 27 rows of the
TV-gram table only if the latter fall into S columns. For the equality in (11)
to hold for a particular S, this must be true of every row of the TV-1 gram
table. In this case, the first letter of the TV-gram does not affect the set of the
S most probable choices for the next letter, although the ordering within
the set may be affected. However, if the equality in (11) holds for all S, it
follows that the ordering as well will be unaffected by the first letter of the
JV-gram. The reduced text obtained from an ideal .V-l gram predictor is then
identical with that obtained from an ideal N-gram predictor.

Since the partial sums

Qs = E ql 5 = 1 , 2 , - - . (13)
i-l

are monotonic increasing functions of N, < 1 for all N, they must all ap-
proach limits as N —^ «>. Their first differences must therefore approach
limits as TV —> =o , i.e., the </j approach limits, q™ . These may be interpreted
as the relative frequency of correct first, second, • • • , guesses with knowl-
edge of the entire (infinite) past history of the text.
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The ideal A7-gram predictor can be considered, as has been pointed out, t0

be a transducer which operates on the language translating it into a sequence
of numbers running from 1 to 27. As such it has the following two properties'

1. The output symbol is a function of the present input (the predicted
next letter when we think of it as a predicting device) and the prece<J.
ing (A7-!) letters.

2. It is instantaneously reversible. The original input can be recovered by
a suitable operation on the reduced text without loss of time. In fact
the inverse operation also operates on only the (N-\) preceding sym,
bols of the reduced text together with the present output.

The above proof that the frequencies of output symbols with an N.\
gram predictor satisfy the inequalities:

E > E <?r' 5 = 1, 2, • • • , 27 (14)

can be applied to any transducer having the two properties listed above,
In fact we can imagine again an array with the various (A7-l) grams listed
vertically and the present input letter horizontally. Since the present output
is a function of only these quantities there will be a definite output symbol
which may be entered at the corresponding intersection of row and column,
Furthermore, the instantaneous reversibility requires that no two entries
in the same row be the same. Otherwise, there would be ambiguity between
the two or more possible present input letters when reversing the transla.
tion. The total probability of the 5 most probable symbols in the output,

s
say ̂ ri, will be the sum of the probabilities for 5 entries in each row, summed

i
over the rows, and consequently is certainly not greater than the sum of the
5 largest entries in each row. Thus we will have

Z <??>!>,• 5 = 1, 2 , . - . , 27 (15)
i i

In other words ideal prediction as denned above enjoys a preferred position
among all translating operations that may be applied to a language am
which satisfy the two properties above. Roughly speaking, ideal prediction
collapses the probabilities of various symbols to a small group more than
any other translating operation involving the same number of letters whict
is instantaneously reversible.

Sets of numbers satisfying the inequalities (15) have been studied by
Muirhead in connection with the theory of algebraic inequalities.6 If (15
holds when the q* and r{ are arranged in decreasing order of magnitude, ant

6 Hardy, Littlewood and Polya, "Inequalities," Cambridge University Press, 1934.
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27 £,
. 53of = 2-*ri, (this is true here since the total probability in each

is 1), then the first set, gf , is said to majorizs the second set, rt. It is
\vn that the majorizing property is equivalent to either of the following

properties:
1 The r> can be obtained from the qt by a finite series of "flows." By a

flow is understood a transfer of probability from a larger q to a smaller
one, as heat flows from hotter to cooler bodies but not in the reverse
direction.

2 The TI can be obtained from the <?j by a generalized "averaging"
operation. There exists a set of non-negative real numbers, a a , with

(16)

5. ENTROPY BOUNDS FROM PREDICTION FREQUENCIES

If we know the frequencies of symbols in the reduced text with the ideal
jV-gram predictor, <?»• , it is possible to set both upper and lower bounds to
the A^gram entropy, FN , of the original language. These bounds are as
follows:

=1
i(q" - ?i+i) log i < FN < — ]C q" log q". (17)

The upper bound follows immediately from the fact that the maximum
possible entropy in a language with letter frequencies q" is — ̂  ql log ql.
Thus the entropy per symbol of the reduced text is not greater than this.
The JV-gram entropy of the reduced text is equal to that for the original
language, as may be seen by an inspection of the definition (1) of FX . The
sums involved will contain precisely, the same terms although, perhaps, in a
different order. This upper bound is clearly valid, whether or not the pre-
diction is ideal.

The lower bound is more difficult to establish. It is necessary to show that
with any selection of Ar-gram probabilities p(ii, i%, ... , i N ) , we will have

27

Ys i(q*i — 9?+i) log i < X p(i, ' • • if/) log pi, • • • iff-i(iff) (18)
•—1 i i, • • • , ijv

The left-hand member of the inequality can be interpreted as follows:
Imagine the q* arranged as a sequence of lines of decreasing height (Fig. 3).
The actual q* can be considered as the sum of a set of rectangular distribu-
tions as shown. The left member of (18) is the entropy of this set of distribu-
tions. Thus, the i'h rectangular distribution has a total probability of
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i(qi — q*i+\). The entropy of the distribution is log i. The total entropy L* '

then I *

2 i(q" — 9m) log i. I f4-1 »' c

The problem, then, is to show that any system of probabilities p(ii, ... 1
IN), with best prediction frequencies g; has an entropy FN greater than Q, q
equal to that of this rectangular system, derived from the same set of q. s

£

0.60 1 (

ORIGINAL DISTRIBUTION 1

0.20

10.05 10.05 0.025 0.025 0.025 0.025

1i la 13 1* Is <U <l7 1e

o.4o (q,-qa)
RECTANGULAR DECOMPOSITION j

0.15 10.15 cq2-q3)

10.025 I I Ifcf-oS I10.025 , . ,«fc1»\ , , , 0.025 q, .

Fig. 3—Rectangular decomposition of a monotonic distribution.

The qi as we have said are obtained from the p(ii, ... , i.v) by arrangii
each row of the table in decreasing order of magnitude and adding vertical!
Thus the q^ are the sum of a set of monotonic decreasing distributions, E
place each of these distributions by its rectangular decomposition. Each c
is replaced then (in general) by 27 rectangular distributions; the qt are '
sum of 27 x 27W rectangular distributions, of from 1 to 27 elements, and
starting at the left column. The entropy for this set is less than or equa'
that of the original set of distributions since a termwise addition of twt
more distributions always increases entropy. This is actually an applicaf
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eneral theorem that Hv(x) < H(x) for any chance variables x and y.
uality holds only if the distributions being added are proportional.
e may add the different components of the same width without

ing the entropy (since in this case the distributions are proportional).
~~* suit is that we have arrived at the rectangular decomposition of the

hv a series of processes which decrease or leave constant the entropy,
'*' ting with the original ^-gram probabilities. Consequently the entropy
, j. e original system FN is greater than or equal to that of the rectangular
,Composition of the qt. This proves the desired result.

Tt will be noted that the lower bound is definitely less than FN unless each
Of the table has a rectangular distribution. This requires that for each

~~\ \^ -UPPER BOUND

3 ivT^JTl I l i
i i K i |p"U.~ 1 1 1 1 1 \\\

__ I I ?^4>i t t I I I
1 LOWER BOUND—•J^f*>~~ . Y 9 A i A

i " M M Tn i iIIT1 I I I I I I I I I I I I I I I \u
°0 1 Z 3 4 5 6 7 8 9 10 11 12 13 14 15 " 100

NUMBER OF LETTERS
Fig. 4—Upper and lower experimental bounds for the entropy of 27-letter English.

possible (A7-l) gram there is a set of possible next letters each with equal
probability, while all other next letters have zero probability.

le | It will now be shown that the upper and lower bounds for FK given by
—' (17) are monotonic decreasing functions of N. This is true of the upper bound

since the qt+l majorize the ql and any equalizing flow in a set of probabilities
. increases the entropy. To prove that the lower bound is also monotonic de-

,, creasing we will show that the quantity
Re f/ = X) i(qi - 9>+i) log i (20)

LOtt *
e tht K increased by an equalizing flow among the qi. Suppose a flow occurs from
id al ?i to g,-+1, the first decreased by Ag and the latter increased by the same
ial tt amount. Then three terms in the sum change and the change in U is given by
lVO°: Atf =[- («- 1) log (i - 1) + 2t log i - (i + 1) log (i + l)]Ag (21)
:atiot
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The term in brackets has the form —f(x - 1) + 2f(x) - f(x + 1) where'
f(x) = x log x. Now/(a;) is a function which is concave upward for positive x

since/" (x) = \/x > 0. The bracketed term is twice the difference between the
ordinate of the curve at x = i and the ordinate of the midpoint of the chord
joining i — 1 and i + 1, and consequently is negative. Since A§ also is nega.
tive, the change in U brought about by the flow is positive. An even simpler '
calculation shows that this is also true for a flow from q± to q^ or from g2e to
<?27 (where only two terms of the sum are affected). It follows that the lower
bound based on the TV-gram prediction frequencies <?; is greater than or
equal to that calculated from the N + 1 gram frequencies ql+1.

6. EXPERIMENTAL BOUNDS FOR ENGLISH

Working from the data of Table I, the upper and lower bounds were calcu-
lated from relations (17). The data were first smoothed somewhat to over-
come the worst sampling fluctuations. The low numbers in this table are
the least reliable and these were averaged together in groups. Thus, in
column 4, the 47, 18 and 14 were not changed but the remaining group
totaling 21 was divided uniformly over the rows from 4 to 20. The upper and
lower bounds given by (17) were then calculated for each column giving the
following results:

Column 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 100

Upper 4.03 3.42 3.0 2.6 2 .7 2.2 2.8 1.8 1.9 2.1 2.2 2.3 2.1 1.7 2.1 13
Lower 3.19 2.50 2 . 1 1 . 7 1 . 7 1 . 3 1 . 8 1 . 0 1 . 0 1 . 0 1 . 3 1 . 3 1 . 2 .91 .2 .6

It is evident that there is still considerable sampling error in these figures
due to identifying the observed sample frequencies with the prediction
probabilities. It must also be remembered that the lower bound was proved
only for the ideal predictor, while the frequencies used here are from human
prediction. Some rough calculations, however, indicate that the discrepancy
between the actual VK and the lower bound with ideal prediction (due to
the failure to have rectangular distributions of conditional probability)
more than compensates for the failure of human subjects to predict in the
ideal manner. Thus we feel reasonably confident of both bounds apart from
sampling errors. The values given above are plotted against N in Fig. 4.
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