Markets Demanding More Performance

Networking market
- Demand for high performance
 - Services being integrated in the infrastructure
 - Faster speeds 1Gbps » 2Gbps » 4Gpbs » 10 Gbps
- Demand for more services
 - In-line L4 – L7 services, intelligence everywhere
 - Integration of video with networking

Digital Multimedia market
- Demand for high performance
 - H.264 encoding for High Definition
 - Pre & post processing
- Demand for more services
 - VoD, video conferencing, transcoding, transrating

... and with power efficiency and programming ease
Industry Aggressively Embracing Multicore

![Graph showing trend in cores and performance over time]

Inherent architectural bottlenecks:
- No scalability
- Power inefficiency
- Primitive programming model

Tiled Multicore Closes the Performance Gap

- Cores connected by mesh network
- Unlike buses, meshes scale
- Resources are distributed
 - improved power efficiency
- Modular – easy to layout and verify

Current Bus Architecture

Core + Switch = Tile
Introducing the TILE64™ Processor

Multicore Performance (90nm)
- Number of tiles (general purpose cores): 64
- On chip distributed cache: 5 MB
- Operations @ 750MHz (32, 16, 8 bit): 144-192-384 BOPS
- On chip interconnect bandwidth: 32 Terabits per second
- Bisection bandwidth: 2 Terabits per second

Power Efficiency
- Power per tile: 170 – 300 mW
- Clock speed: 600-1000 MHz

I/O and Memory Bandwidth
- I/O bandwidth: 40 Gbps
- Main Memory bandwidth: 200 Gbps

Programming
- ANSI standard C
- SMP Linux programming
- Stream programming

The TILE64 chip is shipping today

TILE64 Processor Block Diagram
A Complete System on a Chip
Performance in Networking and Video

- **Performance in networking**
 - 10Gbps of SNORT
 - Complete SNORT database
 - All SNORT pre-processors
 - Customer’s real world data
 - Open source SNORT software base

- **Performance in video**
 - H.264 video encode
 - Encodes 40 CIF video streams @ 30fps
 - Encodes two 720p HD streams @ 30fps
 - PSNR of 35 or more
 - Open source X264 software base

Key Innovations

1. iMesh™ Network
 - How to scale

2. General purpose cores
 - How to balance core size & number of cores

3. Multicore Coherent Cache
 - How to obtain both cache capacity and locality

4. Multicore Hardwall™
 - How to virtualize multicore

5. Multicore Development Environment
 - How to program
1- iMesh On-Chip Network Architecture

- Distributed resources
 - 2D Mesh Peer-to-peer tile networks
 - 5 independent networks
 - Each with 32-bit channels, full duplex
 - Tile-to-memory, tile-to-tile, and tile-to-IO data transfer
 - Packet switched, wormhole routed, point-to-point
 - Near-neighbor flow control
 - Dimension-ordered routing

- Performance
 - ASIC-like one cycle hop latency
 - 2 Tbps bisection bandwidth
 - 32 Tbps interconnect bandwidth

- 5 independent networks
 - One static, four dynamic
 - IDN – System and I/O
 - MDN – Cache misses, DMA, other memory
 - TDN – Tile to tile memory access
 - UDN, STN – User-level streaming and scalar transfer

Meshes are Power Efficient

More than 80% power savings over buses
Direct User Access to Interconnect

- Enables stream programming model
- Compute and send in one instruction
- Automatic demultiplexing of streams into registers
- Number of streams is virtualized
- Streams do not necessarily go through memory for power efficiency

2- Full-Featured General Purpose Cores

- Processor
 - Homogeneous cores
 - 3-way VLIW CPU, 64-bit instruction size
 - SIMD instructions: 32, 16, and 8-bit ops
 - Instructions for video (e.g., SAD) and networking (e.g., hashing)
 - Protection and interrupts
- Memory
 - L1 cache: 8KB I, 8KB D, 1 cycle latency
 - L2 cache: 64KB unified, 7 cycle latency
 - Off-chip main memory, ~70 cycle latency
 - 32-bit virtual address space per process
 - 64-bit physical address space
 - Instruction and data TLBs
 - Cache integrated 2D DMA engine
- Switch in each tile
- Runs SMP Linux
- 7 BOPS/watt
How to Size a Core – “KILL Rule” for Multicore

Kill If Less than Linear

Increase resource size within a core only if
for every 1% increase in core area
there is at least a 1% increase in core performance

Insight: For parallel applications,
multicore performance can increase in proportion
to the increase in area as more cores are added

Leads to power-efficient multicore design

E.g., Kill Rule for Cache Size in Video Codec

- Core Area = 1
 - IPC = 0.04
 - 512B Cache

- Multicore 100 Cores
 - Chip IPC = 4

- Core Area = 1.03
 - IPC = 0.17
 - 2KB Cache

- Multicore 97 Cores
 - Chip IPC = 17

- Core Area = 1.15
 - IPC = 0.29
 - 8KB Cache

- Multicore 87 Cores
 - Chip IPC = 25

- Core Area = 1.31
 - IPC = 0.31
 - 16KB Cache

- Multicore 76 Cores
 - Chip IPC = 24

- Core Area = 1.63
 - IPC = 0.32
 - 32KB Cache

- Multicore 61 Cores
 - Chip IPC = 19
3- Distributed Coherent Caching

- Each tile has local L1 and L2 caches
- Combined L2 caches of all tiles act as distributed 4MB L3 cache
- **Low Latency** of local L1 and L2 caches
- **Capacity** of large distributed L3 cache
- Caches are coherent, enabling running SMP Linux

4- Multicore Hardwall Technology for Protection and Virtualization

The protection and virtualization challenge
- Multicore interactions make traditional architectures hard to debug and protect
- Memory based protection will not work with direct I/O interfaces and messaging
- Multiple OS’s and applications exacerbate this problem

Multicore Hardwall technology
- Protects applications and OS by prohibiting unwanted interactions
- Configurable to include one or many tiles in a protected area
5- Multicore Software Tools and Programming

- Arguably biggest multicore challenge
- Multicore software tools challenge
 - Current tools are primitive – use single process based models
 - E.g., how do you single-step an app spread over many cores
 - Many multicore vendors do not even supply tools
- Multicore programming challenge
 - Key tension between getting up and running quickly using familiar models, while providing means to obtain full multicore performance
 - How do you program 100—1000 cores?
 - Intel Webinar likens threads to the “Assembly of parallel programming” – but familiar and still useful in the short term for small numbers of cores
 - Need a way to transition smoothly from today’s programming to tomorrow’s
Tilera’s Approach to Multicore Tools:
Spatial Views and Collectives

Grid view
• Provides spatial view
• For selecting single process or region
• Eclipse based

Multicore Debugger
• GDB standard based -- familiar
• Aggregate control and state display
• Whole-application model for collective control
• Low skid breakpointing of all related processes

Multicore Profiler
• Collective stats
• Aggregate over selected tiles

Gentle Slope Programming™ Model

Gentle slope programming philosophy
– Facilitates immediate results using off-the-shelf code
– Incremental steps to reach performance goals

Three incremental steps
• Compile and run standard C applications on a single tile

• Run the program in parallel using standard SMP Linux models – pthreads or processes

• Use stream programming using iLib – a light-weight sockets-like API
High Performance in Small Form Factor
Example System Design

Market moving to intelligent network systems
• Growing need for in-line L4-L7 services
• Real-time protection against threats

Tile Processor enables
• Integrated in-line performance -- multiple apps at 1 to 10 Gbps of performance
• Glueless interface with leading switch vendors

Tilera: World Class Company

• 64 people, proven veteran team
 – 150+ total tape-outs for revenue
 – 15 years average experience

• Proven leadership team
 – Over 150 years combined experience
 – 7 start-up companies founded

• 40+ patents pending
• Bessemer, Walden, Columbia, VTA (TSMC)
• Series B funding closed in February ’07

Tilera: World Class Company

Rich Heritage

Industry Involvement

One of top 60 emerging startups
Named finalist for Red Herring 100
Summary

- Current multicores face software and scalability challenges
- iMesh network based Tile Processor scales to many cores
- Gentle slope programming offers:
 - Convenience of SMP Linux/pthreads programming model
 - Performance scalability through streaming channels
- TILE64 silicon, software tools, and applications deployed in customers’ systems

Additional Information

PSNR: Peak signal to noise ratio
MDN: Memory dynamic network
UDN: User dynamic network
TDN: Tile dynamic network
IDN: I/O dynamic network
STN: Static network

The following are trademarks of Tilera Corporation: Tilera, the Tilera Logo, Tile Processor, TILE64, Embedding Multicore, Multicore Development Environment, Gentle Slope Programming, iLib, iMesh and Multicore Hardwall. All other trademarks and/or registered trademarks are the property of their respective owners.

© Copyright 2007 Tilera Corporation