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Abstract

We present a time-stepper based approach to the \coarse" integration and sta-
bility/bifurcation analysis of distributed reacting system models. The methods
we discuss are applicable to systems for which the traditional modeling approach
through macroscopic evolution equations (usually partial di�erential equations,
PDEs) is not possible because the PDEs are not available in closed form. If
an alternative, microscopic (e.g. Monte Carlo or Lattice Boltzmann) descrip-
tion of the physics is available, we illustrate how this microscopic simulator can
be enabled (through a computational superstructure) to perform certain integra-
tion and numerical bifurcation analysis tasks directly at the coarse, systems-level.
This approach, when successful, can circumvent the derivation of accurate, closed
form, macroscopic PDE descriptions of the system. The direct \systems level"
analysis of microscopic process models, facilitated through such numerical \en-
abling technologies", may, if practical, advance our understanding and use of
nonequilibrium systems.

1 Introduction

Textbook models of reaction and transport processes typically come in the form of
conservation laws (mass, species, momentum, energy) closed through constitutive
equations (e.g. the representation of viscous stresses for Newtonian 
uids, or mass-
action chemical kinetics expressions). In contemporary engineering modeling we have
entered an era | ushered through materials modeling as well as systems biology
modeling | where the time-honored macroscopic conservation equations are often
not available any more. In this paper we will explore computational approaches that
promise to bypass the derivation of such macroscopic equations, while still being able
to deliver macroscopic level information.
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Macroscopic conservation models often take the form of ordinary, or (for spatially
distributed systems) partial di�erential equations (PDEs) in space and time. A rep-
resentative reaction-di�usion problem that we will use as our illustrative example in
this paper is described by the Fitzhugh-Nagumo PDE in one dimension [1, 2, 3].

ut(x; t) = uxx(x; t) + u(x; t)� u3(x; t)� v(x; t) (1)

vt(x; t) = �vxx(x; t) + �(u(x; t) � a1v(x; t) � a0) (2)

Here u(x; t) and v(x; t) are the local concentrations of the two participating reac-
tants (the \activator" and the \inhibitor"), � is a di�usion coe�cient and the remain-
ing constants pertain to the kinetic terms. The di�usion terms and the kinetic terms
in this system of coupled PDEs, representing distinct physical processes, are clearly
recognizable. The use of such models for both analysis and design purposes then
hinges on the exploitation of numerical analysis techniques to turn them (through dis-
cretization) into large sets of ordinary di�erential or di�erential-algebraic equations.
A number of tasks (integration in time, direct solution of the steady state problem,
linearization at steady state to determine stability) directly follow, and additional
tasks, such as systematic parametric analysis, optimization and controller design, are
also performed on the basis of these (discretized in space and time) models, possibly
after further reduction. Extensive software packages (from general purpose scienti�c
computing libraries such as Nag [4] or environments like MATLAB [5] to continua-
tion/bifurcation codes like AUTO or LOCA [6, 7] and simulation/optimization envi-
ronments like gPROMS [8]) have been and are constantly being developed, pushing
the limits of what a user can easily obtain from such models. We collectively refer to
these macroscopic evolution PDE models and their discretizations as \systems level
models", and the tasks performed with such models, e.g. simulation (integration
and steady state solution), continuation, stability and bifurcation analysis, controller
design, optimization, as \systems level tasks".

An important point on macroscopic systems level modeling is the di�erence be-
tween what we refer to as \direct simulation" and \computer-assisted analysis". These
colloquial terms can be interpreted in a number of ways, but here they are used in
a particular sense: Direct simulation means setting parameters and initial condi-
tions in a dynamic model, and then starting (and monitoring) time integration. In
other words, direct simulation is the computational analog of an actual laboratory
experiment: Setting the reactant concentrations in the reactor by �lling the reactor
(initial conditions), �xing the experimental conditions (setting parameter values, like
valve settings for desired 
ow rates) and observing the system behavior (integrat-
ing) in time. Direct simulation is an important tool for the modeler, but not the
only one, and not necessarily the \best possible" use of the model. The best com-
putational approach depends on the task, i.e. the question asked. If, for example,
steady states are sought experimentally, we are constrained to letting the experiment
evolve to stationarity. Computationally we can perform the same series of tasks, i.e.
integrate repeatedly until stationarity is reached. Alternatively, solving the steady
state equations through a contraction mapping, such as a Newton-Raphson iteration,
may prove much more e�cient. Furthermore, if a limit of stability (e.g. a reactor
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ignition) is sought in parameter space, locating it, experimentally or computation-
ally, through direct simulation is an extremely time consuming task. On the other
hand, numerical bifurcation calculations, through the formulation of augmented sys-
tems |computational superstructures| around the (steady state form of the) same
mathematical model, can be immensely more e�cient for speci�c tasks, like the de-
termination and continuation of stability boundaries. In summary, the extraction
of certain types of information from the model can be performed through scienti�c
computation (embodying applied mathematics considerations into and/or \around"
the model) much more e�ciently than through direct simulation. These latter math-
ematics assisted computational approaches will be referred to as \computer-assisted
analysis". An early and lucid articulation of the power of such approaches can be
found in ref. [10, 11].

Why might macroscopic equations not be available ? Two distinct possibilities
may be responsible:

� coarse, systems level descriptions are simply not feasible (e.g. for small systems,
say of nanometer size);

� systems level descriptions are conceptually possible, but we have no explicit
closed equations at the system level (that is, the kinetics are not available as
functions of just concentration, or the form of the viscous terms is not just a
Newtonian or known non-Newtonian constitutive expression).

In these cases we often do have correct or approximately correct microscopic de-
scriptions of the true, molecular level physics through \microscopic models", such
as Molecular Dynamics (MD), Monte Carlo (MC), or kinetic theory based Lattice
Boltzmann (LB) models. The macroscopic conservation equations for moments, like
concentration, momentum, or energy, of the microscopic variable distributions are,
however, not available in closed form.

If such a microscopic description is available, one could implement it in computer
algorithms, and obtain results through direct simulation. The problem, in this case,
is bridging the much-discussed gap between the time and space scales at which the
microscopic models operate, and the macroscopic scales at which the \systems level"
behavior is desired. It is clear that, for systems level questions, such as the location
of a macroscopic steady state, a coarse macroscopic description (a set of PDEs) |if
available in closed form| can be exploited to provide the best computational answer.
If a system of PDEs describing transport and reaction in a microreactor accurately
enough was available, then we should discretize this PDE system, and either integrate
it in time, or, even better, perform a Newton-Raphson to solve for its steady states.

If, on the other hand, a PDE model is not available in closed form, but we do
have microscopic models, alternative strategies have to be devised. Running the mi-
croscopic simulation for macroscopic space-time scales is (and will continue to be)
inconceivable. Even if this were possible, it would still only be direct simulation.
Practically no systematic ways exist today for implementing the \augmented" com-
putational superstructures, discussed above (which are crucial for performing systems
level tasks) around a microscopic (e.g. a molecular dynamics) code.
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Traditionally, attacking such a problem involves (a) mathematical work, often
enhanced by physically motivated considerations/assumptions, through, for example,
multiscale analysis, to obtain closed meso/macroscopic continuum equations; and (b)
using the systems level numerical tools discussed above to solve these continuum
equations.

The alternative methodology we discuss in this paper aims at bypassing the �rst
step of the traditional approach.

The idea is to perform certain systems level tasks, (typically performed through
the continuum, macroscopic systems description) directly through the microscopic
simulator. We will demonstrate that certain such systems level tasks (that we call
\coarse integration" and \coarse bifurcation analysis") can indeed be performed at
the systems level, without having to explicitly �rst derive a mesoscopic or macro-
scopic system description. The idea is to construct a di�erent type of computational
superstructure that will enable the microscopic simulator produce the information
we would have needed from the meso/macroscopic description had it been available

in closed form. It might be appropriate to refer to this approach as an \unavailable
model motivated processing" of the microscopic simulations [12].

The remainder of this paper is organized as follows: in Section 2 we brie
y dis-
cuss our recent results in the so-called time-stepper based coarse bifurcation analysis.
This will illustrate our use of microscopic timesteppers and set the stage for Sec-
tion 3, where \coarse integration" is brie
y described, implemented and illustrated.
In Section 4 we return to coarse bifurcation analysis using alternative macroscopic
discretization techniques, thus completing what we will refer to as \micro-Galerkin"
methods. We will then conclude with a discussion of current avenues of research, in-
cluding the implications of coarse time-stepping for systems level control calculations.

2 TIME-STEPPER BASED COARSE BIFURCATION

ANALYSIS

This section brie
y outlines the approach we introduced in [3] and have also followed
in our coarse bifurcation analysis of two-phase 
ow simulations [9]. It sets the stage
for the introduction of \coarse integration" in Section 3, and will be revisited in
our discussion and results of micro-Galerkin methods in Section 4. We start with a
discussion of direct time-stepper based bifurcation analysis [13, 15] and proceed to its
\coarse" modi�cation.

Time-stepper based bifurcation analysis is a collective description of a class of
numerical bifurcation techniques that stem from the following basic question: if we
have a dynamic model of a process (a time-stepper) i.e. a subroutine which, given
initial conditions returns the state of the system at the end of a time interval, can
we use it to perform \system level" tasks like stability, continuation or bifurcation
analysis ? Using the timestepper in the traditional way, i.e. taking the results of an
integration and feeding them back as initial conditions for the next step, repeating the
process, and thus following trajectories, is, as argued above, a di�cult and sometimes
impractical way of performing these systems level tasks.
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A clear motivation for posing this question, that will resonate with large-scale
industrial engineering modelers, is the existence of large legacy time-dependent sim-
ulation codes. These validated codes may contain the best available �rst principles
model of the process and they represent man-years of e�ort. Thus, rewriting them
from scratch to e�ciently perform systems level tasks like computing operating di-
agrams is daunting. It makes sense then to seek to construct a computational su-
perstructure, an intelligent co-processing (rather than post-processing) tool that will
enable these codes to perform tasks they were not originally designed to do. We can
think of this branch of numerical analysis as an enabling technology for timesteppers,
and this was the motivation [14] of the paper [15] that constitutes the starting point
of our work. Another original paper (where the term \adaptive condensation" was
used for symmetric matrix problems) was published in 1987 [16], and the subject
was relatively recently reviewed by Tuckerman and Barkley [17]. From the numerical
analysis point of view, this work resonates with iterative large scale linear algebra and
Newton-Krylov methods for solving nonlinear equations [18] as well as with Krylov
integration methods [19, 21, 20]. This is a 
ourishing branch of numerical analysis
research, which we do not review here, and to which our presentation may not do
justice. In this section, we chose to present the procedure from the point of view of
\smart utilization of legacy simulation codes"; we believe this makes a �rst descrip-
tion conceptually easier, and does bring out correctly the mathematical underpinnings
and computational tasks involved.

Brie
y and qualitatively, the starting point is the simple observation that a steady
state of the set of coupled, nonlinear di�erential equations

ut(x; t) = L(u(x; t); �)) (3)

is also a �xed point
u�(x) = '� (u

�(x);�) (4)

of the time-� map,

u�+1 = '� (u
� ;�) (5)

(u� � u(x; t); u�+1 � u(x; t+ �))

the result of integration of equation 3 above with initial conditions u(x; t) for time � .
Practically, we should think of equation 3 as the large set of coupled ordinary di�er-
ential equations (ODEs) resulting from discretizing our macroscopic PDE description
of the problem, and of equation 5 as the output of a subroutine that is used to accu-
rately integrate the problem. Extensions of the discussion to systems of di�erential
algebraic equations (DAEs) are also possible [30] but for simplicity we will deal here
only with large systems of ODEs.

Suppose that we want to avoid writing \from scratch" a steady state solver (a con-
traction mapping like a Newton-Raphson iteration). We also want to avoid writing
a direct solver of equation 3 whose Jacobian would involve variational integrations.
Furthermore, suppose that the physical problem we want to solve has a clear separa-
tion of time scales. This rather loose expression translates to the key mathematical
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assumption about the qualitative nature of the (unknown) spectrum of the lineariza-
tion

@L(u; �)

@u

����
u=u�

(6)

of the dynamics around the steady state we want to �nd: there exist a few eigenvalues
in a narrow strip around the imaginary axis, some are possibly unstable with positive
real parts; then comes a spectral gap, and the rest of the eigenvalues are \far to the
left" in the complex plane. In terms of the eigenvalues of the linearization of the
timestepper,

@'� (u; �)

@u

����
u=u�

(7)

this translates to having a few eigenvalues in a strip around the unit circle, then a
gap, and then many eigenvalues in a small disk around zero. Eigenvalues at zero for
equation 3 (at 1 for equation 4) are special, and can be dealt with. While so much
structure seems like a lot to expect a priori from a model (or from the physical process
that the model springs from) the usually dissipative PDEs modeling reaction and
transport (and including di�usion, viscous dissipation, heat conduction etc.) often do
possess such a separation of time scales. Similar assumptions, for example, underpin
the theory of Inertial Manifolds and Approximate Inertial Manifolds [22, 23, 24], and
many singularly perturbed systems that arise in engineering modeling.

In the so-called Recursive Projection Method (RPM) of Shro� and Keller [15] the
user repeatedly calls the timestepper routine from several nearby initial conditions
and for relatively short times. Under the loose assumptions described above, the re-
sults of these repeated calls can be used to adaptively approximate a low-dimensional
subspace P of the linearization of the system along which time evolution is slowest,
possibly slightly unstable. One then performs a contraction mapping (e.g. a New-
ton iteration based on a small approximate Jacobian) in this subspace, aided by the
integration itself (Picard iteration for the timestepper mapping -equation 4) in its
orthogonal complement Q. This combination of (approximate) Newton iteration in
the low-dimensional, slow subspace, and Picard iteration (integration) to provide a
contraction in its complement, justi�es the classi�cation of such iterative methods as
\Newton-Picard" methods. Such procedures, and their extensions, are being success-
fully used to perform continuation, stability and bifurcation analysis of dissipative
PDEs close to low-codimension bifurcations [15, 25, 26, 27, 28, 29, 30].

The Coarse Time-Stepper: Suppose that we want to solve a problem described
by partial di�erential equations of the type

ut(x; t) = L(u(x; t;�)): (8)

In particular, suppose that a computational code (a subroutine) exists that im-
plements an accurate time-stepper for this PDE. That is, it takes as input initial
conditions for the �eld(s) u(x; t = 0) = u0(x), parameter values � and a report-
ing time horizon T and produces as output an accurate approximation of the �eld(s)
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u(x; T ). The discussion above, in the case of certain dissipative problems, can be sum-
marized as follows: it is possible to perform the bifurcation analysis of the discretized
problem by writing a non-problem-speci�c computational superstructure, whose only
information about the system comes from calls to the time-stepper subroutine. The
Recursive Projection Method is one protocol for these calls, and for the processing
that the superstructure performs for the resulting output. It is, in e�ect, the blueprint
of such a computational superstructure. The work of Roose and coworkers [25, 31]
for the Newton-Picard computation of limit cycles is another such blueprint.

In the case of the Fitzhugh-Nagumo PDE in one spatial dimension, the �elds of
interest are the average local concentrations of the two chemical species involved: the
activator, u(x; t) and the inhibitor, v(x; t). The time-stepper of the PDE (obtained,
for example, through a �nite di�erence, �nite element or spectral discretization in
space, and the method of lines in time) will take as input a �nite vector containing a
truncated description of the �elds at t = t0 (e.g. the values ui; vi, i = 1; :::N , N being
the number of discretization points) as well as parameter values, and will produce as
output the same truncated description of the �elds at t = T .

In chemical engineering modeling practice, we are used to this level of description
of reaction and transport. We do not constantly have to remind ourselves that what
really occurs is molecular motion and collisions; that the unknowns (or \variables")
of the problem really are the positions and velocities of a distribution of molecules.
We are used to the coarse description, where we can write deterministic equations for
moments of the distribution of molecules of reacting species. A typical such moment is
the local concentration, the zeroth moment of the distribution of molecules integrated
over all possible velocities, and averaged over some microscopic space scale. It is
remarkable (and the fact that it was empirically known does not make it less so) that
equations describing the evolution in time of a few moments of the distribution, e.g.
concentration, the zeroth moment, close using only the same few moments themselves.
Indeed, concentration trajectories in time can be followed using chemical kinetics
expressions that depend only on concentrations; only the zeroth moment, and not
the entire distribution. These expressions (as also the expressions for di�usion in
terms of the Laplacian of the zeroth moment �eld) are certainly approximate - but
they have been so succesful over such a long time and in so many problems, that
we have come to sometimes regard them as �rst principles, and not as the coarse,
closed approximations of the detailed problem that they really are. The branch of
chemical engineering probably most aware of this closure problem, and the need of
a dialogue between molecular models and macroscopic conservation equations, has
tradititionally been rheology [32, 33].

Suppose now that a problem arises, for which a microscopic, molecular level de-
scription and a code that implements it are available. This code evolves the entire
molecular distribution in time and we call it the �ne timestepper. It processes a more
detailed description of the system than the coarse one. The coarse description | typ-
ically the �rst few moments of the �ne description | is, in some sense, a projection,
or map, of the �ne description. The �ne timestepper can be a molecular dynamics
code, or a Monte Carlo code, or a kinetic theory based Lattice Boltzmann scheme.

7



Such an LB scheme will constitute our example in this work. Suppose that we also
know, or have reason to believe, that, for this model, a macroscopic description in
terms of moments of the molecular distributions (e.g. reaction-di�usion equations in
terms of concentration �elds) conceptually exists. That is, we believe it is possible
to write deterministic equations for the evolution in time of concentration �elds, but
that the right hand sides of these equations are not explicitly available. This would
occur, for example, if mass action kinetics was inaccurate in describing the reaction
rate. Can we analyze these equations without �rst obtaining them explicitly?

We argued above that this can be done if we are given a subroutine implementing
a timestepper of the PDEs (the coarse, closed moment equations). We will now argue
that, in the absence of a coarse, PDE-level moment description, the timestepper of the
(unavailable) moment equations can be approximated through the microscopic simu-
lator. The procedure for implementing this coarse timestepper involves the following
steps:

� Prescribe a coarse initial condition (e.g. a concentration pro�le), say u(t0).

� Transform (we will use the word \lift" and the symbol �) this initial condition
into one (or more) �ne, consistent microscopic realizations of it U = �(u); that
is, create microscopic distributions conditioned on the coarse initial pro�le (i.e.
prescribed values of some of their lower moments).

� Evolve this (these) realization(s) using the microscopic evolution code (the �ne
time-stepper, �T ) for the desired amount of macroscopic time T.

� Project (we will use the word \restrict" and the symbolM) the results back to
moment space, appropriately averaging over �ne space and/or �ne time and/or
number of realizations u =M(U).

This constitutes the \coarse timestepper", or \coarse time-T map". If this map
is accurate enough, it is immediately obvious (and it was demonstrated in [3, 9]) that
a computational superstructure like RPM can be \wrapped around" it and enable
it to perform the time-stepper based bifurcation analysis of the coarse description
of the problem. Through this \lift-run-restrict" procedure, we enable a code doing
time evolution at a �ne level of description, to perform bifurcation analysis at a
completely di�erent, coarse level of description. The procedure is summarized in
Fig. 1: If a macroscopic PDE is available, we can perform its bifurcation analysis
using its timestepper and RPM around it. If a macroscopic PDE is not available,
we substitute the discretized PDE timestepper with the coarse timestepper, and use
exactly the same code around it, to analyze the, unavailable in explicit form, evolution
equation for the coarse, moments-level, description of the problem.

We illustrate this procedure by repeating a one-parameter bifurcation analysis of
the Fitzhugh-Nagumo PDE in one dimension. Here the PDE represents the \coarse"
description. The \�ne" description is a Lattice-Botzmann BGK (LB-BGK) one, where
we do not evolve overall concentrations in space, but probability densities of kinetic
entities (\particles", \molecules") distributed over a discrete lattice (in space) and
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Figure 1: Schematic description of time-stepper based bifurcation analysis, �ne and
coarse. Notice the lifting of a macroscopic initial condition to an ensemble of consis-
tent microscopic ones, as well as the restriction of the microscopic integration results
back to the macroscopic (usually moments-based) description.
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over a discrete number of velocities (for the 1-D problem just three: left-moving,
right-moving and non-moving). The evolution rules for the LB-BGK model [34, 35]
we have used are as follows:

Nu
i (x+ ci; t+ 1)�Nu

i (x; t) = �!u[Nu
i (x; t)�Nu;e

i (x; t)]

+Ru
i (N

u
j ; N

v
k ) (9)

(and correspondingly for v). Here, Nu
i (x; t) is the population density of activator (u)

particles at position x on the lattice at time t, with velocity ci. In this one-dimensional
system, particles can only move towards the two available adjacent sites (N2, N3) or
(allowing for rest particles) stay in place (N1). For unitary LB temporal and spatial
increments, therefore, ci = f0; 1;�1g and i = 1; 2; 3 respectively. Nu;e

i is the local
equilibrium u population, homogeneous in all velocity directions, and !u(v) is the
u(v) BGK relaxation parameter. The �rst part of the right hand side computes post-
collision populations. Ru

i is the reaction term; we use the (strong) assumption [35] of
local di�usive equilibrium for the reaction term. The local (in space) concentrations
can be uniquely computed as the 0-th moments of the populations, e.g.

u(x; t) =
3X

i=1

Nu
i (x; t) or u =M(N) (10)

The opposite is, however, not true. If a \coarse" initial condition (concentrations,
zeroth moments) is speci�ed, any 3 random numbers (weights) wi summing up to 1
would be a possible choice, i.e.

Nu
i (x; t) = wiu(x; t) or N = �(u) (11)

This example has been chosen because the evolution of the moments (over veloci-
ties) of the LB-BGK procedure (equation 9) asymptotically approximate the evolution
of the u and v �elds for the FHN PDE [3]. We chose to work in a regime where the
coarse description exhibits intense nonlinear e�ects, so that we can test how our coarse
timestepper procedure captures these e�ects. The phenomena of interest include (a)
sharply spatially varying, front shaped steady states; (b) steady state multiplicity
through turning point bifurcations; and (c) spatiotemporal oscillations via a Hopf
bifurcation. The values of the kinetic parametes used were a0 = 0:03 and a1 = 2:0;
the di�usion coe�cient was � = 4:0 and the time-scale ratio � was our bifurcation
parameter.

Fig. 2 depicts a comparison of the nonlinear spatiotemporal behavior of the FHN
model in the regimes of interest, obtained through (a) the discretized PDE directly
using the Galerkin Finite Element (FEM) in 101 nodal points; and (b) the micro-
scopic LB timestepper and the coarse RPM-LB scheme. Figures 2a and b show the
spatiotemporal behavior of u(x; t) on a limit cycle (� = 0:01 in equation 2) computed
through the FEM and the LB timesteppers, respectively.

Branches of steady state solutions in the regime of the turning point and the Hopf
bifurcation are depicted in Figures 3a and 3b, respectively. The solid (broken) lines
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Figure 2: Space-time plot of a limit cycle of the Fitzhugh-Nagumo equation, show-
ing the back-and-forth motion of the unstable front. The �gure compares the u-
component solution of the PDE computed (a) through a �nite element discretization
and (b) the projection of the Lattice-Boltzmann BGK solution onto the corresponding
moment.

represent stable (unstable) steady states obtained from the solution of the (steady
state form of the) FEM-discretized PDEs. Pseudo-arclength continuation was used
to follow the branch past the turning point. The �lled (open) circles represent stable
(unstable) steady state solutions obtained from the coarse RPM-LB scheme. It is
noteworthy that employing RPM around the microscopic timestepper we were able
to calculate both stable and unstable coarse steady states and locate the bifurcation
points by performing eigenvalue analysis on the small approximate Jacobian of the P
subspace. The inset in Fig. 3b depicts a representative steady state from solution of
the PDE (solid lines) and RPM-LB (broken lines).

In order to make a meaningful comparison between the results from the solution
of the PDEs and those obtained from the microscopic timestepper, it is important to
be able to translate macroscopic parameters (for the PDE evolution) into microscopic
ones (for the LB-BGK evolution).

The most important step in the entire procedure is the lifting. In all the work
described above, the �ne description, in which the time evolution was performed,
involved 400 lattice sites, two species, and three velocity bins per site, a total of 2400
unknowns. The coarse description (in which the RPM and the stability analysis was
performed) involved 800 (2 � 400) �nite element coe�cients. Clearly, indeterminacy
is generated (information has to be injected) every time we lift from 800 to 2400
numbers (see equation 11): how do we choose how to initialize all of these additional
degrees of freedom ? The answer is that, under certain conditions, it does not mat-
ter. We can initialize these extra degrees of freedom (the higher moments of our
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Figure 3: Comparison of the FHN bifurcation diagrams showing: (a) A turning point
copmuted through FEM discretization (solid line:stable branch, broken line:unstable
branch) and LB-RPM (�lled circles stable and open circles unstable branch). (b)
A Hopf bifurcation. Solid (broken) line: FEM computed stable (unstable) branch.
Filled (open) triangles: LB-RPM computed stable (unstable) branch. Filled circles
depict the amplitude of corresponding limit cycles. In the inset: comparison of a
representative steady state u-pro�le computed through FEM (red solid line) and LB-
RPM (black dashed line).
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distribution) any way we want. The reason is that we expect that, very quickly, over
the initial stages of our integration towards the timestepper reporting horizon, these
higher order correlations will relax to functionals of the lower order ones (the ones we
prescribed, the ones we conditioned our initial distribution on). For our particular
example this is illustrated both for �ne (Fig. 4a) and coarse (locally space-averaged,
Fig. 4b) initializations at � = 0:01, taking as initial condition (I.C.) the coarse steady
state at a di�erent parameter value (� = 0:1). Figure 4a shows the di�erence in the
moments, u(x; t) � u0(x; t), of two spatiotemporal evolutions: (a) a microscopic pro-
�le encountered in the simulation, giving rise to u0(x; t); and (b) what we will call a
\�ne" local equilibrium initialization consistent with u0(x; 0): triads of equal weights
(wi = 1=3, i = 1; 2; 3 in equation 11), were chosen to consistently lift the density
pro�le u0(x; 0) to Lattice Boltzmann space. In Fig. 4b the di�erence between u(x; t)
and a coarse random lifting (initialization) is depicted. For the coarse initialization,
starting from the same density pro�le, (� = 0:1), locally averaged values of u and v (u
and v) every 4 consecutive lattice points were calculated. These averages were used
to initialize (in a \step" fashion) the corresponding lattice site populations through
random positive triads of weights (a di�erent triad for every lattice point, each sum-
ming up to 1). In both cases the absolute di�erence in the evolution u � u0 coming
from di�erent initializations drops below 2� 10�3 after time T=0.1. Practically, the
discrepancy between the projections on the zeroth moments of di�erent trajectories,
caused by the di�erent initializations, has decayed after times much shorter than the
RPM-LB reporting horizon (after t � 0:1 as compared to T = 15� 25).

For this problem, no matter how the initialization is performed, as long as the
zeroth moment coarse �elds are the same, the coarse result of the integration over
a \mesoscopic" time scale is (more or less) the same. If necessary, averaging over
an ensemble of microscopic simulations, conditioned to have the same coarse initial
condition, can help with variance reduction.

There are too many caveats and too many conditions in the above discussion.
We have presented how it works, but did not quantify under what conditions it is
expected to work, or even proven to work. Discussions of this type are found at the
basis of the statistical mechanical arguments underlying the derivation of chemical
kinetics. They also lie at the basis of Chapman-Enskog expansions [36] closing the
equations for the moments of the Boltzmann equation to yield the Navier-Stokes
equations. We only state here, very qualitatively, that the assumptions under which
our \coarse time-stepper" makes sense are part of the assumptions that underpin the
existence of a deterministic description at a coarse level (closed evolution equations
for a few moments of a distribution). There is a number of additional points we will
return to in the Discussion section. For the moment, we have shown that the coarse
time-stepper, if it exists, is a tool that enables a microscopic simulator (acting on
a �ne problem description) to analyze the same problem at a coarse level, where a
description is not available in closed form. This computer assisted approach, working
across scales, has enabled a microscopic simulator to perform systems level analysis
tasks that it was not designed for, and that, in principle, were inaccessible to it.
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Figure 4: Decay (\healing") of the lifting error: comparison of the di�erence be-
tween an LB-BGK trajectory, and two distinct liftings of its restriction: (a) a lo-
cal equilibrium �ne lifting and (b) a more \coarse" random lifting |see text for
discussion.| Healing has obviously been accomplished even at times much shorter
than the timestepper reporting horizon.
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3 COARSE PROJECTIVE INTEGRATION

Microscopic-level simulators, as described earlier, provide direct information about
the short-term behavior of the simulated system. \Buried" in this output are clues
to the coarse, long-term dynamics of the system; in the previous section we discussed
a way of getting the in�nite-time dynamics (elements of the !-limit set, the steady
states and limit cycles, the attractors and bifurcations) of the problem. Let us now
turn to the coarse trajectories of the system, e.g. time histories of concentrations on
the way to the eventual steady state. These coarse trajectories can be obtained from
the microscopic evolution code directly, by running it over long periods of time, and
occasionally producing as output the moments of interest (e.g. concentrations). It is
not usually feasible, however, to continue the microscopic-level simulation over very
long time periods because of the computational e�ort involved. Instead, we propose
an approach of which the following is the simplest variant:

1. Choose the statistics of interest for describing the long-term behavior of the
system and an appropriate representation for them. For example, in a gas
simulation at the particle level, the statistics would probably be the pressure,
density, and velocity and we might choose to discretize them in a computational
domain via �nite elements. For our LB-BGK problem the statistics of interest
are the zeroth moments of the distribution over velocities (i.e. the concentra-
tions) and we chose to represent them via �nite elements. We will call this
the macroscopic description, u. These choices determine a restriction operator,
M, from the microscopic-level description, U, to the macroscopic description:
u =MU.

2. Choose an appropriate lifting operator, �, from the macroscopic description,
u, to the microscopic description, U. For example, in a gas simulation using
pressure etc. as the macroscopic-level variables, � would probably be chosen to
make random particle assignments consistent with the macroscopic statistics.
In our problem the lifting operator � was discussed above in our presentation
of the coarse time-stepper; � should have the property that M� is the identity
(M� = I). In other words, lifting from the macroscopic to the microscopic and
then restricting (projecting) down again should have no e�ect (except roundo�).

3. From an initial value at the microscopic level, U(t0), run the microscopic sim-
ulator (the �ne timestepper) for a number of simulated time steps, generating
the values U(ti) for i = 1; 2; � � � ; n.

4. Obtain the restrictions u(tk) =MU(tk), for k = n; n� s; n� 2s; � � � ; n� qs for
some integers s and q.

5. Let u(t) be the q-th order polynomial in time, t, through u(tk).

6. Evaluate u(T ), where T = tn +H and H is a large time step, appropriate for
the macroscopic-level description.
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7. Lift u(T ) to get a new consistent microscopic U = �u(T ) and use it as a new
starting value for repeating steps 3 to 6.

Steps 3 and 7, in the spirit of the discussion of Section 2 above, may be per-
formed for an appropriately chosen ensemble of microscopic initial conditions Ui, all
consistent with the same macroscopic condition u : (MUj = u;8j).

The procedure is illustrated in Fig. 5. The lifting and restriction steps { linking
the microscopic (U) and macroscopic (u) descriptions of a state { the microscopic in-
tegration, as well as the extrapolative (\projective") step are schematically depicted.
This projective step is performed in the macroscopic description of the problem, and
is followed by a new lifting step and the procedure is repeated. Notice how a projec-
tive step may cause the solution to deviate from the \slow manifold" on which higher
order moments are functionals of the low order, governing moments. We then rely on
the microscopic integration to \heal" these errors, and approach the slow manifold
again. This is symbolized in the �gure by the �rst few microscopic steps, that appear
to be approaching the correct \low moment" trajectory. We let this \trajectory heal-
ing" go on for some time before we estimate numerical derivatives for the projective
integration step.

The conditions for this method to be successful were presented in an earlier pa-
per [37] that introduced Projective Methods. These methods are related to the one
proposed above without involving the restriction and lifting operators. They were
applied to classes of problems that had two clusters of eigenvalues, a fast set whose
components were damped very rapidly because the eigenvalues had large negative real
parts, and a slow set which determined the long-term dynamics of the system. In the
Projective Methods we relied on a number of initial steps of an \inner integrator" (one
using a very small time step, commensurate with the fast components) to annihilate
the fast components so that the polynomial extrapolation (called a \Projection" in
the cited paper) could be applied to the slow components. We showed that, as long as
there were enough inner steps to damp the fast components su�ciently, the stability
of the method was determined by the stability of the extrapolation (Projection) pro-
cess. That process was called an \Outer Integrator" because it has the characteristics
of a standard numerical integration process for the di�erential equation y0 = f(y).
The derivatives required for the \outer" integration were computed by interpolating
the results from the inner integration (as opposed to evaluation of f(y)).

In the problems discussed in this paper, we cannot evaluate the right hand side
f(y) because the di�erential equation for the macroscopic description is not available;
we therefore have to rely on numerical di�erencing or, more generally, interpolation of
the results of integration to estimate the unavailable derivatives. The computational
gain is that this estimation requires a few short integrations, while, hopefully, the
extrapolation with the coarse estimated derivatives will be over signi�cantly longer

times. The microscopic simulation steps here are equivalent to the inner integrator
steps of the earlier paper, and the extrapolation step is the outer integrator. In
this case, however, we cannot assume that inner integration steps will damp the fast
components - indeed, in most cases involving molecular dynamics, for example, they
are highly oscillatory and will never be damped in an exact simulation. Instead,
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Figure 5: Schematic representation of an explicit projective integrator. Notice the
correspondence between macroscopic and microscopic descriptions through lifting and
restriction.
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we must rely on the restriction operator M to annihilate the fast components. In
what follows we will indeed work in cases where the coarse description (in terms
of moments, such as concentrations) gives rise, due to irreversibility, to dissipative
evolution equations (evidenced by the appearance in the macroscopic equations of
terms containing di�usivity, viscosity, thermal conductivity etc.).

With su�cient assumptions on the problem, it is possible to prove that the method
will work. An outline of the proof for a linear problem is as follows: We assume that
the original microscopic problem is given by the di�erential equation U0 = AU, while
the macroscopic description is u = MU. Then u satis�es the di�erential equation
u0 =MA�u. As long as the matrix B =MA� only picks up the slow eigencompo-
nents from the much higher-dimensional matrix A, then a large time step integration
process will be stable if the step size is commensurate with those slow components.
Thus there are conditions on the macroscopic description (which determines M and
partially �) that are equivalent to requiring that the macroscopic description not in-
clude any fast components | or when it does, the outer integration step must be
correspondingly reduced. These are only conditions for stability of the coarse pro-
jective integrator. Accuracy conditions will also require that the macroscopic-level
descriptions capture all of the active slow components. When nonlinearity is consid-
ered (and virtually all interesting problems are nonlinear), it is di�cult to see how
the analysis can handle other than small non-linearities. Also it is di�cult to give
useful criteria that will permit one to tell in advance when a problem is amenable to
this approach.

An Illustration of Coarse Projective Methods. As in the case of time-
stepper based bifurcation analysis, RPM in particular, Projective Integration is a
technique that can be used on a discretized PDE directly, should this PDE be avail-
able. It shares certain structural features with RPM: the same timestepper that was
part of the RPM procedure is now the \inner integrator" for the projective meth-
ods. The \outer integrator" is now the computational superstructure which, after
appropriately and repeatedly calling the inner timestepper, processes the results and
performs the systems-level task (here projective integration over a long time horizon,
over time scales characteristic of the slow modes). We therefore start by demonstrat-
ing that Projective Methods (and in this case explicit projective methods) can indeed
facilitate the integration of a PDE for which an \inner", short horizon timestepper is
available.

Explicit Projective Methods (Fine and Coarse). Figure 2 illustrates the
results of integrating the Fitzhugh-Nagumo PDE in 1-dimension for the values of the
kinetic parameters reported in the previous section. Here � was set equal to 0.01.
No 
ux boundary conditions were employed and the domain had length S = 20.
The Galerkin FEM method was used to discretize the model in 50 elements and
quadratic basis functions were used to interpolate the solution therefore yielding 101
computational nodes. An implicit Euler scheme was used to advance the solution
in time. Under the above parametric conditions the solution is a stable limit cycle,
shown in Fig 2: the sharp front characteristic of the steady state that lost stability in
the nearby Hopf bifurcation moves back and forth over one period of the oscillation.
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The \correct" converged solution, to which the projective results will be compared,
is the 100 regular spatial mesh quadratic �nite element solution, integrated in time
through an implicit Euler method with step �t = 0:001. Several discretizations with
incresing number of elements, up to 400 elements (802 unknowns) were employed
in order to ensure that the results were mesh independent; the integration results
were also con�rmed to be converged in terms of the temporal discretization through
DASSL [38].

These results are compared �rst with projective integration results of the Fitzhugh-
Nagumo PDE using the same FEM discretization scheme; the \inner" integrator is
the implicit Euler with timestep dt=0.01 and the \outer" integrator is an explicit
Euler method. To provide a sample of the new terminology associated with these
integrators, the overall projective integrator in this �gure would be characterized as a
\50-50-100 inner �nite element implicit Euler, outer �nite element explicit Euler" or,
more brie
y, a \50-50-100 FEM-FEM" method. Fifty inner steps are taken, the solu-
tion recorded, �fty more inner steps are taken, the solution recorded again and then
the solution is linearly extrapolated (projected forward) through an explicit Euler
method, in which the derivative has been evaluated through numerically di�erencing
the two recorded results over H = 100 more steps. In this approach we roughly do
half the work of the detailed integration.

For reasons that will be discussed further below, we have also constructed empir-
ical orthogonal global basis functions (so-called EOFs or POD modes) that can ac-
curately represent the spatiotemporal dynamics of the problem in this regime. POD
modes will be discussed in slightly more detail in Section 4 below. To facilitate the
comparison, the results are shown as (i) time series, starting from the same initial
condition (a stable steady state for � = 0:1), see (Fig6a and b); and (ii) as phase space
projections in the space of these same �rst few global POD modes. We have chosen
to plot, instead of the time series of concentration values at some representative point
u(xi; t), the time series of the components of the solution along the �rst few members
of these POD modes.

Figure 7 now shows a comparison of the detailed problem with a projective LB-
FEM method. This is our �rst example where the inner integrator (a Lattice Boltz-
mann BGK) acts on a di�erent level description (LB) than the outer one (FEM).
The inner integrator is not, strictly speaking, a numerical integrator - it consists of
the \primitive" dynamics of the Lattice Boltzmann methodology. In this case we are
comparing the results of the \full" Lattice Boltzmann limit cycle (projected on the
�rst few density POD modes) with the results of the LB-FEM simulation. Here we
took 100 steps with the inner LB integrator, recorded the restriction of the solution
to the 0th moments; 50 more steps were taken, the solution restricted and again.
The solution was then linearly extrapolated over 350 steps. This can be therefore
called a \100-50-350 LB-FEM" method. There is an important distinction between
the projective integrator of the FHN PDE above, and the coarse projective integrator
described here. In this case the extrapolative step is performed not on the primitive

Lattice Boltzmann variables, but on their projections to coarse variables (densities)
discretized through �nite elements (hence the characterization of this scheme as an
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Figure 6: A comparison of FHN dynamics computed through (1) an implicit Euler
integrator and (2) a 50-50-100 inner-FEM (implicit Euler) - outer FEM (explicit Eu-
ler) projective integrator. The comparisons are performed by projection on subspaces
spanned by a few empirical orthogonal eigenfunctions (EOFs or PODs, see text). Top
two panels: time series for (1, black) and (2, red) starting from the same initial condi-
tions. Bottom four panels: various phase space projections (in POD-mode space) of
the attractors of the discretized PDE (1, black) and the projective FEM-FEM scheme
(2,red).

20



LB-FEM one, more accurately as an \inner LB, outer FEM explicit Euler" scheme.
It is interesting to consider the di�erences between short-term and long-term dy-

namic predictions of the two codes (the \full" LB and the projective LB-FEM)), as
illustrated in Fig. 8

Clearly, the LB-FEM can be thought of as a perturbation of the LB scheme. The
perturbation is obviously due to the projective step in time; but it also comes from
the restriction and lift steps that constitute the communication between descriptions.
Once more, we are counting on irreversibility and separation of time scales to \heal"
the errors we make in the higher order moments upon lifting. By comparison of the
short-term and the long-term results of the two methods we see that (as with any two
numerical schemes) the pointwise predictions gradually deteriorate forward in time,
while the long-term attractors (as sets in the same phase space projection) remain
close to each other.

Implicit Coarse Methods: The extrapolation-based integration method de-
scribed above is equivalent, from a stability point of view, to a q-th order Taylor
series method (which has the same properties as the q-th order, q-stage Runge-Kutta
method that exists for q � 5. For many problems, this is an adequate collection of
methods, but for some the limited range of absolute stability makes implicit methods
desirable. Implicit Projective methods exist, and in the context of this paper they
take the form:

� (i) Compute some number, n, of microscopic simulations steps from an initial
state U(t0), say U(ti).

� (ii) Starting from u(T) (the as-yet-unknown macroscopic result of one outer
integration step) compute U(T) = �u(T), and then compute a further n micro-
scopic simulation steps forward from T, say U(Ti).

� (iii) Using the restrictions of some subset of q+1 of u(ti) =MU(ti) and u(Ti) =
MU(Ti) determine the q-th degree polynomial u(t) that passes through them
and evaluate u(T).

� (iv) Use whatever implicit solution method seems appropriate to ensure that
the u(T) used in step (ii) is the u(T) generated in step (iii). For example,
functional iteration could be used by simply repeating steps (ii) to (iv) starting
with the u(T) computed in the last iteration. Typically the �rst iterate will be
computed with an explicit method - the predictor. The implicit formula is then
called the corrector.

For technical reasons mainly to do with the rate of convergence of any implicit it-
eration, it seems to be preferable to modify step (iii) slightly in the following way:
Take a subset of q+2 restrictions u, with at least 2 from the set u(Ti), but use only
di�erences of the values of the set from u(Ti). This will be illustrated with the analog
of the trapezoidal rule below.

Although we speci�ed the same number of microscopic integration steps, n, in (i)
and (ii) above, this is not essential. Nevertheless, if the same type of outer integration
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Figure 7: A comparison of FHN dynamics computed through (1) an LB-BGK code
and (2) a 100-50-350 inner-LB - outer FEM (explicit Euler) projective integrator. The
comparisons are performed by projection on subspaces spanned by a few empirical
orthogonal eigenfunctions (EOFs or PODs, see text). Top two panels: time series
for (1, black) and (2, red) starting from the same initial conditions. Bottom four
panels: various phase space projections (in POD-mode space) of the attractors of the
LB-BGK (1, black) and the 100-50-350 LB-FEM projective scheme (2,red).
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Figure 8: Short-term dynamic predictions of a 100-50-250 LB-FEM scheme. 20
equidistant points are taken on the converged LB limit cycle, and LB-FEM is per-
formed for approximately 1/20 of the period (t � 8); this is equivalent to 20 of
our projective steps. The initial points in (a,c) are denoted by the red circles and
the �nal points by the blue squares. (a) Phase space projection on u0 and v0. (b)
Magni�cation of panel (a) showing the LB (solid line) and the LB-FEM (color dots)
trajectories, to emphasize the short-term error of the projective integration. (c) Phase
space projection on POD modes �2 and �4; and (d) corresponding magni�cation of
the trajectories of the two integrators starting at two nearby points on the LB limit
cycle.
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step is to be performed again, using the same n means that algorithm step i of the
next outer integration has already been done in the last step of the previous corrector.

Example - The Coarse Projective Trapezoidal Rule: We advance from
U(t) to U(t+T) by the following procedure:

� (i) Using an inner integration step of h compute U(t+ih) for i = 1, 2, 3, ...n, ...
, n+s.

� (ii) Form u(t+nh) = MU(t+nh) and u(t+(n+s)h) = MU(t+(n+s)h).

� (iii) Predict u(t + T ) = u(t + (n + s)h) + (T � (n + s)h)Dn where Dn is an
approximation to the derivative at t+nh obtained by di�erencing, namely Dn =
(u(t+ (n+ s)h)� u(t+ nh))=(sh).

� (iv) Using this as a �rst iterate, and setting H = T + nh solve the correc-
tor equation u(t + T ) = u(t + (n + s)h) + (T � (n + s)h)[aDn + (1 � a)DH ]
whereDH is an approximation to the derivative at t+H obtained by di�erencing
u(t+T+(n+s)h) and u(t+T+nh),

For a = 0:5 a method resembling to the trapezoidal rule is obtained. As described
above, this trapezoidal rule does not have second order since the di�erence estimates
of the derivatives are at the point t+(n+s/2)h and t+T+(n+s/2)h, rather than at
t+nh and t+T. The coe�cients can be corrected to obtain second order accuracy (see
[37]) with the formula

a =
nh+ T

2T
(12)

We have implemented the above algorithm in a 100-50-700 LB-IMPLICIT FEM
integrator with the 2nd order correction described in equation 12, for the same initial
conditions and parameters used earlier in this section. It should be denoted here that
by using a 2nd order accurate implicit projective step a much larger accurate projec-
tion (700 compared to 350) could be achieved compared to explicit outer integrators.
In these implicit integration runs a tolerance of 10�6 was employed for convergence of
the corrector iteration, and each implicit projective step coverged in approximately
5 corrector iterations. Figure 9, analogous to Figures 6 and 7 above, shows the re-
sults of this integration: it compares the results of full LB and projective trapezoidal
\�ne LB, coarse FEM" integration, both for short term (startup) and for long term
dynamics (the limit cycle attractor).

4 MICRO-GALERKIN METHODS

We illustrated above how to use a microscopic time-stepper in order to perform coarse
bifurcation and stability analysis as well as coarse integration. We emphasized the
importance of the lifting step, in which information is generated (since the higher
order moments of the distribution have to somehow be initialized). The relatively
easy restriction step (from microscopic \�ne" to coarse description) was only brie
y
described; we will revisit this now. It might be conceptually useful to consider this

24



0 200 400 600
time

−10.0

−5.0

0.0

5.0

10.0
(a)

LB
LB−IMPL

0 200 400 600
time

−2.0

−1.0

0.0

1.0

2.0

3.0
(b)

LB
LB−IMPL

−0.7 −0.5 −0.3 −0.1 0.1 0.3 0.5
u0

−0.15

−0.05

0.05

0.15

v 0

LB 
LB−IMPL

−10 −5 0 5 10
φ1

−2

−1

0

1

2

3

φ3
LB
LB−IMPL

−8.0 −6.0 −4.0 −2.0 0.0
φ2

−1.5

−1.0

−0.5

0.0

0.5

φ4

LB
LB−IMPL

−10 −5 0 5 10
φ1

−1.5

−1.0

−0.5

0.0

0.5

φ4

LB
LB−IMPL

(f)(e)

(c) (d)

Figure 9: A comparison of FHN dynamics computed through (1) an LB-BGK code
and (2) a 100-50-700 inner-LB - outer implicit projective integrator using the im-
plicit projective trapezoidal rule. The comparisons are performed by projection on
subspaces spanned by a few empirical orthogonal eigenfunctions (EOFs or PODs,
see text). Top two panels: time series for (1, black) and (2, red) starting from the
same initial conditions. Bottom four panels: various phase space projections (in
POD-mode space) of the attractors of the LB-BGK (1, black) and the 100-50-700
LB-implicit projective scheme (2, red).
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restriction as taking place in two stages. The �rst stage consists of obtaining moments,
actually �elds of moments of the distributions in question (like concentration �elds
u(x,t) and v(x,t) in our example); for the sake of simplicity let us consider these �elds
as being obtained as values on a very �ne mesh, much too �ne for, say, coarse �nite
di�erence or �nite element computations. The second stage involves the Galerkin
projection of this \over- resolved" coarse description on a mesh more practical for the
coarse computations performed by our computational superstructure (RPM or outer
integrator). For the above, we used a \generic" library of basis functions (quadratic
�nite elements in one dimension) for the coarse computational work. We have also
performed the same tasks with �nite di�erences as the coarse representation of choice.
A multitude of coarse representations can easily be included as alternatives in the
superstructure; the only di�erence will be the set of coarse basis functions that we
take inner products with.

It makes sense to us to colloquially term our coarse multi-scale methods \micro-
Galerkin" methods: the coarse level computational superstructure (whether for bi-
furcation or for integration purposes) acts on Galerkin projections of the results of
the microscopic evolution scheme on some \reasonable" set of coarse basis functions.

Since all these coarse procedures can be thought of as \on-line" model reduction
procedures exploiting the separation of time scales, we chose to illustrate here a
micro-Galerkin method that contains, by nature, a second level of model reduction:
the micro-POD method. The idea is to perform coarse bifurcation analysis as well
as coarse integration using empirical basis functions for the spatial description of the
coarse variables.

The so-called method of empirical orthogonal eigenfunctions (EOFs), also termed
Proper Orthogonal Decomposition (POD) and Karhunen-Lo�eve expansion (KL) has
long been proposed as a method of model reduction for nonlinear PDEs with low-
dimensional long-term dynamics. The method consists of two stages, one being ef-
fectively data compression, and the other derivation of predictive low-dimensional
dynamic models (see the monograph [39] for a recent review).

The �rst stage consists of statistical analysis of extensive simulation databases
(through, essentially, Principal Component Analysis) to global basis functions. For
nonlinear PDEs these databases may come either from simulation e.g. [40, 41] or
from experiment e.g. [42]. For microscopic/molecular systems the data may also
come from simulation or from experiment. It is obvious, though, that macroscopic
PODs for experimental velocity �elds in 
uid mechanics or concentration �elds in
chemical reactions truly come from molecular systems; it is our measurements of the
molecular systems that appear continuous. The only reason we think of them as
continuum �elds is because of the level at which the experimental system is observed
- we directly observe moments of the microscopic distributions, since that is what our
instruments are capable of measuring. Therefore, the PODs from �eld measurements
of experimental observations are, truly, already \coarse description" PODs obtained
through microscopic realization/evolution of the system. Projecting the solution onto
the �rst few POD modes constitutes data compression: an experimental movie is
reduced to a few time series for the amplitudes of its projection on the most energetic
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modes.
The second stage, that pertains more to systems analysis, is the exploitation

of these eigenfunctions |and the resulting few time series| for the extraction of
accurate, reduced, dynamic models. For macroscopic problems, where the \coarse"
PDE-level dynamic model is available, this is done through a POD-Galerkin projection
(see [43] and [44] for some of the original references). This is a subject of intense
research by many groups on several applications; work by our group has concentrated
on complex geometries for bifurcation/stability applications [40, 41] as well as on
control related applications [45, 46, 47].

If, however, the macroscopic, coarse description is not available, coarse POD
modes are only useful in data compression. The only way to construct low-dimensional
predictive models would appear to be empirical - that is, the �tting (through some
nonlinear system identi�cation method) of a right-hand-side for the evolution of the
coarse POD amplitudes based on the available few time series. One instance where
this was accomplished using an arti�cial neural network (ANN approach) is described
in [42, 48]. Video sequences of real-time micrometer scale experimental data from the
catalytic oxidation of CO on Pt (110) were analyzed through the POD procedure to
produce four time series. These time series were used (through delay reconstruction
methods) to �t discrete-time dynamic models of the process. In a further reduction
step, nonlinear principal components (autoregressive neural networks) were used to
further reduce the degrees of freedom to three, and recurrent neural networks tem-
plated on numerical integration schemes [42] were used to extract a continuous-time
right-hand-side for the equations. Thus three scalar initial conditions were enough to
\replay" the video sequence.

The empirical identi�cation of a right hand side from coarse POD time series,
however, leaves something to be desired. If a microscopic simulation code is available,
it should be possible to use it in constructing a coarse dynamic model. This is precisely
where micro-Galerkin projective integrators come in play. The procedure involves:

1. O� line:

� Collection of a representative ensemble of microscopic simulation data;

� Projection of the data to appropriate moments (e.g. concentration �elds);

� Extraction of empirical eigenfunctions (POD modes) for these �elds.

2. On-line:

� Start with a POD (reduced moment space) initial condition (a small vector);

� Reconstruct the full coarse initial condition (through the POD modes);

� Lift the full coarse initial condition -as was discussed above- to one or more
microscopic initial conditions;

� Evolve this(ese) microscopic initial condition(s) for a time horizon, recording
the solution(s) and its projection onto moment space, and in particular on the
reduced POD moment hyperplane.
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Figure 10: Spatial structure of the leading POD modes |(a): u-component, (b):
v-component| for the LB simulation

� Perform extrapolative integration in the POD hyperplane, through either an
explicit or an implicit projective method, and then

� Go back to the second step.

To illustrate this \doubly reduced" micro-Galerkin method (�rst microscopic to
macroscopic, to moments space, and then from moments discretized space to moments
POD hyperplane) we again turn to our LB simulation of the FHN model. We start
through the collection of a representative set of microscopic (LB) simulations for a
range of parameter values both before and after the Hopf bifurcation, including both
transient simulations \on the way" to the stable steady states (when they exist) or
away from them towards the unstable limit cycle, as well as data on the attractors
themselves. We then project the LB data on moments (�nely discretized concentration
�elds, u(x) and v(x)) and then perform an SVD on these projections to determine
the hierarchy of the POD modes. In this paper we �nd joint, concatenated [u; v]
POD modes. Table 1 shows the energy content of the POD modes and Fig. 10 shows
the shape of the �rst few modes. We mention that the shape of the �rst few modes
obtained through the projected microscopic simulations are in reasonable agreement
with the modes obtained in a completely macroscopic study of the same model [45].
As shown in Table 1, 20 POD modes capture ~99.9999 % of the energy of the system.

We start with an LB-POD integration, doing 100 inner LB steps recording the
solution and performing a double projection: �rst restriction to the 0-th moments
and then to the 20 most energetic POD modes; then 50 more inner LB steps are
taken, the solution restricted to 0-th moments and projected, once more. The outer
integration projective step involving 20 POD coe�cients only, spans 350 timesteps.
Figure 11 shows, in the spirit of Figure 6 above, the short- and long-term integration
results of the \100-50 inner LB - 350 outer explicit Euler POD" integration.
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In. Normalized Eigenvalues Cumulative Energy

1 0.7647237 0.7647237
2 0.1493851 0.9141088
3 0.043923813 0.9580327
4 0.015614404 0.9736471
5 0.014191233 0.9878383
6 0.005535833 0.99337416
7 0.00345 0.9968232
8 0.00185447 0.9986776
9 0.00077568 0.9994533
10 0.00032258 0.999776
11 0.00012495 0.9999010
12 4.824210E-05 0.999949
13 1.949975E-05 0.999968
14 1.487844E-05 0.999983
15 7.433011E-06 0.999991
16 3.058370E-06 0.9999941
17 2.443162E-06 0.9999965
18 1.111155E-06 0.9999977
19 1.015913E-06 0.9999987
20 7.143144E-07 0.9999994

Table 1: Normalized Eigenvalues of POD modes and cumulative energy of the system
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Figure 11: A comparison of FHN dynamics computed through (1) an LB-BGK solver
and (2) a 100-50-350 inner LB-BGK - outer POD (explicit Euler) projective integrator.
The comparisons are performed by projection on subspaces spanned by a few empirical
orthogonal eigenfunctions. Top two panels: time series for (1, black) and (2, red)
starting from the same initial conditions. Bottom four panels: various phase space
projections (in POD-mode space) of the attractors of the LB-BGK (1, black) and the
100-50-350 LB-POD projective scheme (2,red).
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Figure 12: Comparison of the FEM-based and the LB-POD based bifurcation di-
agrams for the FHN PDE. Solid (broken) line: Stable (unstable) branch of steady
states computed through the FEM discretization. Filled (open) triangles: Stable
(unstable) steady states computed through LB-POD. Open square:amplitude of the
corresponding limit cycle computed through the 100-50-350 LB-POD projective inte-
gration.

In a sense this is \as fast as we can go" exploiting our LB-BGK microscopic
simulation code across scales.

Is it clear what we do here? We conclude with the long-term dynamics (the
bifurcation diagram) of our micro (LB)-POD Galerkin scheme. Figure 12 shows the
bifurcation diagram of the coarse (in the POD hyperplane of the moment space)
LB-BGK-based timestepper, and compares it with the FHN FEM and the FHN-LB
bifurcation diagrams.

This time the space dimension is small enough that RPM is actually not necessary:
centered �nite di�erences are quite practical in producing the full (20x20) numerical
Jacobian in this low-dimensional coarse space. The stable and unstable steady states,
the Hopf bifurcation value as well as the amplitude of the oscillations in the POD
hyperplane coarse projection are successfully captured. So also are the coarse critical
eigenvectors at the Hopf bifurcation (see Fig.13)

5 SUMMARY AND DISCUSSION

We have demonstrated the implementation of a suite of computational tools (which
we collectively characterized as micro-Galerkin methods) for the coarse integration,
stability and bifurcation analysis of atomistic level, microscopic simulations. The
methods we described were based on the idea and implementation of a coarse time
stepper, which evolves the system in time at one level of description, and a compu-
tational superstructure that performs bifurcation computations (e.g. the Recursive
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Figure 13: Comparison of the Hopf bifurcation eigenvectors (a) real and (b) imaginary;
the corresponding eigenvalue is: 0:25�1:025i, � = 0:018. The data have been obtained
through a FEM (solid lines) as well as an LB-POD (broken lines) based discretization.

Projection Method) or coarse integration (e.g. explicit or implicit projective integra-
tion) at another level of description. Throughout this paper the transition was from
microscopic to moments space, since moment closures underpin some of the most
standard approaches to multiscale dynamics. It is important, however, to note, that
if some heuristic set of describing variables (and not just the obvious moments of the
distribution) are known to do a good job in parametrizing the coarse dynamics, the
method can be used to go between microscopic and empirical coarse description level
without change. An example would be the coarse description of a problem through
an \order parameter �eld", say, a dislocation density �eld, instead of the �rst few of
a hierarchy of moments of the molecular distribution.

The communication across scales is performed through a lifting procedure from
coarse to �ne, and a restriction, from �ne to coarse. The lifting is a very important
component of the overall computation, which conceptually lies at the heart of the
approach. The idea is that errors made during lifting (the ad hoc initialization of
the higher moments conditioned on the lower, determining ones) are healed since
higher order correlations quickly evolve to functionals of lower order ones. Such a
lifting step has been carefully considered by M. D. Graham and coworkers in their
OSCM scheme in the context of non-Newtonian rheological simulations [49]. They
use an optimization approach for their initialization, a procedure which resonates
with considerations that can be found in the statistical mechanical literature [50]. In
our experience with Monte Carlo methods, initialization is sometimes straightforward
(e.g. when one needs to initialize only the average consistently) but may also require
solving an optimization problem (e.g. making a di�erent type of Monte Carlo run) if
higher order moments (e.g. pair probabilities on a lattice) also need to be initialized
[52].

The various aspects of the procedures we describe raise a number of points for
discussion. What if the simulation in question is a stochastic one, such as a Monte
Carlo simulation? The coarse time stepper from any single realization is then quite
noisy. In this case, variance reduction plays a vital role in approximately (\almost

32



always" solving the noisy �xed point equations, and stochastic approximation algo-
rithms become important [51]. Su�ce it to say that, in our experience with Monte
Carlo methods [52], variance reduction obtained through many simultaneous real-
izations of trajectories starting at the same coarse initial condition hold the key to
variance reduction. At the same time, this underscores the potential of the method
for fruitful utilization of massively parallel computational resources, since many, non-
interacting copies of a simulation starting at the same coarse initial condition are
required. A very interesting interplay arises then between the number of copies that
one uses, and the reporting horizon of the coarse timestepper. The many copies have
to run for a long enough time for the higher order correlations to heal, but not so
long that they sample the entire ultimate probability density function over the entire
phase space, thus losing all phase information and becoming trivial; the (temporal)
\density of collapses" (the time we run microscopic realizations before we average
them and restrict them to moment space, to lift and run again, is vital for the coarse
description to be successful [53, 54].

Some of the points to be made concern the \macro" side of the computation. It
is worth noting, for example, that not only coarse steady states, but also coarse limit
cycles can, and have been computed through this approach. The idea is to locate
(through Newton-Picard iterations [25]) a �xed point not of an arbitrary time T map
(thus a coarse steady state), but of the Poincar�e return map, for the special return
time that is either the period of the coarse oscillation or an integer multiple of it. It
is also important to note that further reductions at the coarse level can also be done.
For example, instead of truncated 
at Galerkin methods with traditional or empirical
global basis functions (like the �nite element or the POD modes used above) it is
possible to use nonlinear Galerkin methods [24, 41] to obtain an even smaller overall
coarse description.

It is �tting that we close the discussion with a brief mention of additional systems-
level tasks such as controller design and optimization. We have already observed that
the slow coarse Jacobian with its eigenvalues and eigenvectors as well coarse paramet-
ric derivatives are a natural byproduct of the process in a continuation environment.
It is precisely these slow coarse linearizations that can be put to good use in controller
design. The concomitant separation of time scales (the coarse problems is a singularly
perturbed one) points to a rich control literature [55] where these slow coarse Jaco-
bians can be used for pole placement, solution of Riccati equations and LQR design,
as well as for the construction of \coarse" observers. And while we described every-
thing so far in terms of coarse Jacobians, coarse Hessians, based on the time-stepper
approach, can also be computed, and local optimization techniques involving these
matrices used for design level computations for a description for which we have no
available closed form model.

We are actively pursuing several avenues in this work. We are working on LB
multiphase 
ow results in collaboration with S. Sundaresan [9]; on lattice gas models
of reaction kinetics with A. Malevanets and R. Kapral; on timestepper based ho-
mogenization with O. Runborg [56]; on coarse bifurcation analysis of discrete lattices
with K. Lust; on �nite temperature crystal lattice transitions through MD with D.
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Maroudas; and so on. In addition to solving various problems, we seek out the com-
mon features as well as the di�erences of the basic steps (lifting, microscopic evolution,
averaging, time-horizon selection issues, variance reduction issues) that arise in the
various �elds. We hope that, as the experience with these time-stepper based methods
develops, they may evolve into a \tool of choice" for bridging scales \on line" com-
plementing the traditional \o�-line" bridging provided by analytical closures. This is
of course a mainstream avenue in current research, where innovative multiscale tech-
niques like [57] and novel stochastic integration techniques [58] are constanly being
proposed and explored.

It is worth mentioning that this approach allows us to construct coarse bifur-
cation diagrams with respect to microscopic model parameters directly. We note,
in closing, that while our techniques were presented as a way to co-process micro-
scopic simulation codes, such as MD, MC, LB-BGK etc., they really are a tool for
co-processing time evolution codes across scales. The better the \�ne scale" code (e.g.
biased MC, Brownian con�guration �elds), the better the results this approach can
give. It is �nally worth mentioning that in what we presented here, timesteppers were
co-processed across two descrition scales; there is nothing to prevent a \telescoping"
co-processing across more than one scale gap; a �rst view of this telescoping procedure
can be found in [59].
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