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Abstract

Projective methods were introduced in an earlier paper. In this paper we

consider their application to the output of simulations of a collection of randomly

moving objects. In the limit (of a large number of these objects) the solution would

be a time varying probability distribution of the objects in space. A key idea in

this paper is the representation of the probability distribution, a representation

that permits the application of the projective method.

Keywords Integration, probability density functions, cumulative distribution func-
tions

1 Introduction

The motivation for this paper comes from some biological models, but the method is
applicable to a large class of problems. The biological models of interest have the fol-
lowing general structure. The system consists of a set of cells. Each cell, Ci, has an
internal state, Si that evolves following a di�erential equation whose driving term(s) are
the values of external stimuli. Part of the internal state is whether the cell is moving
or not, and if it is moving, in which direction it is moving. (This is often assumed to
be a constant direction until there is a discrete change.) There is some probability that
the cell will change the part of its state concerned with the motion, either by stopping
if it is currently moving or starting to move (usually in some random direction) if it is
stationary. The length of time that it remains in a particular moving state is dependent
on other internal state variables, and can thus be in
uenced not only by the value of
external stimuli, but their time gradient as observed by the moving cell. Clearly such a
mechanism can bias the random walk taken by the cell in favor of preferring directions
in which certain stimuli increase (or decrease). Models for this are discussed in [4] and
[5].

In earlier papers ([1], [2]) we considered projective methods for sti� problems with
gaps in their spectra. In the projective method, a numerical solution is computed at a
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sequence of relatively closely spaced points (in time) and then a \giant" step is taken
using polynomial extrapolation from the last few of those computed points. The extrap-
olation computation is explicit and fast, and its purpose was to use large, explicit steps
even in the presence of sti�ness. In [3] we applied the projective method to problems that
were described at a \microscopic" level, that is, by a high-dimensional model requiring
a small time step. The projective integration step was then done on a restriction of the
solution of the microscopic model to a macroscopic model in a much lower dimension.
An example would be the restriction of a Lattice Boltzman model of a system to one
involving velocities and densities on, for example, a �nite element discretization.

In this paper we apply the projective methods to restrictions of the results of a
stochastic simulation of moving particles. Because the objective of this paper is to
examine the numerical method, and not the physical problem, a particularly simple
biased random walk is chosen as the model problem. This is described in the next
section.

The simulation of the biased random walk yields a �nite distribution of positions at
each time step. This has to be represented in some compact (low-dimensional) manner
by a restriction operator so that the projective method can be applied. It is natural to
think in terms of probability density functions (PDFs), but it is diÆcult to get \reason-
able" functions from discrete samples without a priori knowledge of the nature of the
distribution - something we do not want to require. For plotting purposes, one usually
resorts to histograms. These are either to coarse (if few bins are used) or too jagged (if
many bins are used) for projective integration. What we can plot easily is the cumula-
tive distribution function (CDF). Suppose that the simulation of N cells yields the set
of positions x = fxig; i = 1; 2; � � � ; N for the cells at time tn. Assume that these have
been sorted into ascending order (xi � xi+1). Simply plot the graph consisting of the
points (xi; (i � 0:5)=N); i = 1; � � � ; N . Any sort of interpolation can be used between
the points, but if N is not small - say 500 or more - the graphical presentation could
use just the points or a simple linear interpolant. As we will see, we will not need to
perform any sort of interpolation in the algorithm to be presented, so interpolation does
not introduce accuracy issues.

The reader can easily see that this produces a reasonable approximation to a CDF
by executing the Matlab statement

plot(sort(randn(1,N)),((1:N)-0.5)/N)

having set N to some largish value such as 1,000. The result is good in an error norm such
as L2 or L1. However, note that if we wanted to plot the PDF, we have to di�erentiate
the CDF, and this means that we have to specify what interpolation is used. In a way, the
reason that the PDF is diÆcult to generate is that it is the derivative of a numerically-
speci�ed function - and numerical di�erentiation is poorly conditioned. We will work
with low-dimensional representations of CDFs in this paper.

The most complete representation of a CDF is the sorted set fxig, but that is not
a concise representation. We will approximate a CDF using a set of orthogonal basis
functions. However, we �rst \turn the graph on its side." That is, we will approximate
x by a weighted sum of orthogonal functions of y. The easiest way to visualize this is
that we �rst re
ect the CDF in the line y = x so that the y axis is horizontal and the
x axis is vertical. We then choose a set of basis functions, �(y) on [0,1] with respect to
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some suitable weight and use the approximation

x(y) �
qX

j=0

�j�j(y) (1)

However, note that we are only interested in approximating x(y) on the discrete point
set y = f(i� 0:5)=Ng. Therefore, we choose an orthogonal basis on this discrete set.

As with any approximation problem, the best weight function depends on the prob-
lem. In limited experiments on the example discussed later, we have found that a uniform
weight and polynomial �i work well. Thus �i(y) is a polynomial of degree i. Computa-
tionally, the �i; i = 0; � � � ; q are represented by their values on the point set y. We have
seldom found it necessary to use more than the �rst six basis functions (q = 5). They
can be pre-computed (they depend only on N) and form a (q+1) by N matrix, �. Then
the coeÆcients � = f�ig in eq. (1) are computed from � = �x. The approximation to
x can then be computed from x � �T� when needed.

Figures 1, 2, and 3 show the results of three approximations to a random sample.
In all three cases, there are 250 points in the sample (the small number was chosen to
amplify the deviation from the limiting distributions). The samples are plotted as points,
the approximant by a line. In Figure 1 all points are drawn from an N(0,1) distribution,
and the approximation is via 5-th degree polynomials. Figures 2 and 3 consists of 125
samples each from the two distributions N(2,0) and N(-2,0) (normal with unit variance
and means -2 and +2). Figure 2 also uses 5-th degree polynomials, and, as might be
expected, the �t is not good. Because of symmetry, all even coeÆcients except for the
constant term are zero except for noise, so the 5-th degree polynomial really only provides
four degrees of freedom. A 13-th degree polynomial provides eight degrees of freedom -
and we might expect to need twice as many degrees of freedom to �t a combination of
two nearly disjoint distributions. That �t is shown in Figure 3.

Two points are worth noting in Figure 1: the approximation \smoothes out" the
irregularities in the sample (although this doesn't show that it is necessarily any closer
to the underlying CDF), and the tails of the curve do not �t well. The latter problem
is to be expected with polynomial approximants to a distribution with long tails. If it is
known that there are long tails, then the basis functions should be changed. For exam-
ple, the error function could be included as a basis function, and either combined with
polynomials, or polynomials could be built on it. (This is not a signi�cant cost because
the basis functions are pre-computed.) Another suggestion, due to Sima Setayeshgar of
Princeton, is to use a non-linear transformation of the independent variable (y in this
case). She proposed using the inverse sine transformation: z = 0:5 � arcsin(1 � 2y)=�
and then building a polynomial basis on z. It gives results that match the tails well.
The user should be aware that any of these approaches will tend to add tails to the
approximant even when the sample doesn't have them!

2 A Biased Random Walk Example

The example treated in this paper is the following problem: time is discretized into in-
tervals of length �t and tn = n�t. A collection of cells, fcig, occupy positions x(i; t)
on the real line. At each time step, tn, cell ci moves a distance �x left or right. The
probability of a left move is p(xi) = (1 + f(x(i; tn)))=2 where �1 � f(x) � +1. The
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Figure 1: 5-th Degree Polynomial Approximation of Gaussian CDF
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Figure 2: 5-th Degree Polynomial Approximation of Double Gaussian CDF
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probability of a right move is, therefore, (1� f(x(i; tn)))=2. The function f(x) is mono-
tonic non-decreasing. If f(x) = �1 for x � xL and f(x) = +1 for x � xR it is clear
that after a �nite time, any initial distribution will be constrained to the open interval
(xL � �x; xR + �x). If, in addition, xR � xL = M�x and all particles are initially
assigned to the discrete point set xm = xL + m�x;m = 0; 1; � � � ;M then they remain
on that set. If, in addition, f is linear (in its range from -1 to 1), M is even, and the
number of cells initially assigned to odd values of m is the same as the number initially
assigned to even values of m, then the probability distribution of the cells converges to
the binomial distribution. (The odd/even condition is required because in the model it
is clear that each cell alternates between an even- and an odd-numbered position. This
could be avoided by providing for a �nite probability, p, of a cell remaining in place at
each step and adjusting the left and right probabilities appropriately, but it slows the
simulation while adding no value to the model's illustrative capability.)

In the limit as the number of cells becomes in�nite, and as �x goes to zero and f(x)
goes to zero as f(x) = �xq(x), the distribution satis�es the partial di�erential equation:

@u

@t
=

(�x)2

�t
(1� p)

"
@(qu)

@x
+

1

2

@2u

@x2

#

where p is the probability of remaining in place.
Note that if q(x) is linear in x, say q(x) = �x with � > 0, then a steady-state solution

is
u(x) = Ae��x

2

which is a normal distribution. A general solution is

u(x; t) = Ae�
(t)(x�z(t))
2+�(t)

where 
; z; and � satisfy the ODEs

d


dt
= 2�
(t)(�� 
(t))

dz

dt
= ���z

and
d�

dt
= �(�� 
(t))

with

� =

 
(�x)2

�t

!
(1� p)

3 Projective Integration of CDFs

The basic idea of projective integration, described in [1], is to compute the solution (by
the \inner integration" method) at a sequence of k + q time steps and then to perform
a q-th degree polynomial extrapolation on the results of the last q + 1 steps. The �rst k
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time steps serve to damp the sti� components (or to equilibrate statistically unreasonable
initial conditions). The next q provide the information for the extrapolation forward in
time (called the projective step).

In the context of this stochastic example, we do the following starting from any initial
random distribution of cells on the real line:

1. Perform the random simulation for k time steps.

2. Perform the random simulation for a further q time steps.

3. Restrict the outputs from the k through k+ q-th time steps to the orthogonal basis
representations, �n, for n = k; k+1; � � � ; k+ q. (This requires that the components
of xn be sorted into ascending order before forming �n = �xn.)

4. Perform the projective step (a polynomial extrapolation) through the �n for n =
k to k + q to get �k+q+M .

5. Compute the value of xk+q+M = �T�k+q+M .

This process is then repeated as often as necessary to cover the total interval of
integration. Note that after step 5 the values in the vector x may no longer be ordered.
This does not matter as all we are concerned about is that we have a sample of N values.
They will be resorted before further restriction operations.

In the earlier paper the projective step was a q-th order extrapolation through the
last q + 1 points. In the stochastic case, such as this example, the results at each time
step di�er from the limiting distribution by random \noise." This can be reduced by
increasing the sample size. Its e�ect can also be reduced by increasing q but not increasing
the order of the polynomial extrapolation. In our tests, for example, we typically used
q = 10, but did a �rst or second order polynomial extrapolation for the projective step
based on a least-squares �t. This was done separately for each component of �. As might
be expected, the amount of noise in the components �i of �n increases with i and we
found that it was best to use a lower-order extrapolants for larger i's. In fact, for modest
N (2000) we found that second degree for �0, �rst degree for �1 and zero-th degree for
the other extrapolants was adequate.

Figures 4, 5, and 6 show the results of a sample run of this problem for the coeÆcients
�0, �1, and �3. N was 2000, k was 0 (it is not necessary to equilibrate after the projective
step in this problem), q was 10, and M was 10. The �gures show the output of direct
simulation (points), the output of the simulation steps used to form the projective step
(x marks), and the projections (lines). Five \outer" steps are performed, each consisting
of 10 simulation steps followed by an extrapolation over 10 steps for a total distance of
100 steps. �t was 0.1 - this is an arbitrary choice since it plays no part in anything but
the asymptotic di�erential equation which is not used in the simulation. The random
numbers used in the direct simulation and the projective one were the same - that is,
when a simulation step is done preparatory to a projection step, the random numbers
that are used to decide whether to go right or left are the same ones as those used in the
direct simulation step at the same time level.

The initial conditions were drawn from a Gaussian with mean and variance signi�-
cantly di�erent from the steady state so the solution consists of samples from a moving
Gaussian (its mean and variance are changing with time). The value of �0 is the mean,
while the value of �1 is proportional to the standard deviation.
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Figure 3: 13-th Degree Polynomial Approximation of Double Gaussian CDF
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Figure 4: CoeÆcient �0
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Figure 5: CoeÆcient �1
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Figure 6: CoeÆcient �3
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The second-order extrapolation for �0 is not appreciably better than �rst order would
have been. As can be seen in Figure 6 the computed values of �3 contain a lot of noise,
so using higher than zero-th order extrapolation would be folly unless N and/or q were
increased signi�cantly. We do not show �2 since it is similar to �3. Also, since the CDF
of the Gaussian \on its side" is a constant plus an odd function about the midpoint of
the interval, the large N limit solution for �2 (and all the higher even coeÆcients) is
zero. The noise in the projective solutions is not signi�cantly di�erent in size from the
noise in the direct simulation coeÆcients.

The projective method uses half the number of simulation steps of the direct simu-
lation approach in this example (because k + q = 10 and M = 10). If the simulation of
each individual cell is computationally expensive, the projective method could be roughly
twice as fast.

4 Comments

We have shown how the projective integration method can be applied to a stochastic
simulation. The two key ideas in this paper, in our view, are the way in which the
distribution is represented (the CDF \on its side") and the use of a least squares ap-
proximation in the projective step. The former avoids all of the diÆculties associated
with the representation of the PDF, while the latter reduces the sample size needed to
get suÆcient accuracy in the projective step.
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