
Finding Stationary States of Noisy Processes

C. W. Gear

October 3, 2002

Abstract

We discuss the problem of estimating the \stationary state" of an iterative pro-

cess that is generating a sequence of vectors whose output is contaminated by noise

in various ways. If the dimension of the system is not too large, it is also possible

to estimate the eigenvalues of the system near equilibrium. The method can also

be adapted to �nding an underlying \smooth" function if the iterative process is,

in fact, yielding a noisy approximation to a continuously changing function.

Keywords Stochastic Processes, Steady States

1 Introduction

We suppose we have an iterative process, such as a one-step integrator, that generates a
sequence of M -dimensional vectors, yn; n = 0; � � � ; according to the process

yn+1 = �(yn) + rn (1)

where rn is the M -dimensional noise introduced by the process. (For example, the
\integrator" could actually be a Monte Carlo simulation of an evolutionary process.)

We wish to compute a stationary state of �, that is, a z such that

z = �(z)

The approach we will use will be to compute some maximum likelihood estimate
based on some assumptions about the process and the noise. As far as the noise goes,
we will assume that it consists of independent Gaussian noise with the same variance in
each component. (Obviously one could also consider estimating the variance component
by component if it was thought that this assumption was signi�cantly in error.)

We will also assume that we are near the stationary state and that near this state it
is reasonable to use a linear approximation to �. (This implicitly assumes that the noise
is small enough compared to the second derivatives of � so that a linear approximation
is reasonable.) Let the Jacobian of � be J . Then we have

yn+1 = �([yn � z] + z)) + rn (2)
= �(z) + J [yn � z] + rn (3)
= z + J [yn � z] + rn (4)

1

Let
w = (I � J)z (5)

Then we have
rn = yn+1 � Jyn � w

Under the assumption that rn is independent Gaussian, we can simply compute J and
w to minimize

S =
N�1X
n=1

jjyn+1 � Jyn � wjj22 (6)

This is a linear least squares problem for J and w. Then we �nd the stationary state, z,
by solving (5). Thus, a possible iterative process for computing a stationary state is the
following:

1. Choose an initial estimate of z, say z0 and set j = 0.

2. Set y0 = zj.

3. Use eq. (1) to compute N values of y1; � � � ; yN where N > M + 1 (much greater if
the noise is large).

4. Minimize S in eq, (6) for J and w.

5. Use eq. (5) and compute zj+1 = (I � J)�1w.

6. Set j j + 1 and repeat steps 2 - 7 until convergence.

Once we have estimated J we can then compute its eigenvalues to estimate the
eigenvalues of the process.

There are several potential problems with the method outlined above. The most
obvious is that eq. (6) involves M(M + 1) unknowns, where M is the dimension of
the vector y. If M is large, it is not practical. The second is that if the estimate for
the matrix J has an eigenvalue of one, eq. (5) is singular, and is ill-conditioned if an
eigenvalue is close to one.

There are two approaches to the high dimensionality problem. The �rst is to use a
suitable restriction of y to a lower dimensional space as was done, for eaxmple, in [2]
and [1]. The least squares �t is then done in this lower-dimensional space to get a new
estimate of the stationary state in the low dimensional space. This result has to be lifted
back to the original space to get a starting value for the iteration (1). This approach
requires that we can identify a low-dimensional space that will contain a reasonable
approximation to the sequence of yn's.

A second approach is to assume that there is only one \slow" eigenvalue in the
process, so to assume that J can be taken as a scalar. In that case, there are only M +1
unknowns to �nd in the least squared process, so a much smaller N can be used in step
3 above.

The near singularity of J � I presents diÆculties. If J � I is truly singular, it means
that z = �(z) does not have a unique solution locally. If we had computed a zj that is
a solution, if the noise in subsequent iterations causes us to take a random walk in the
manifold of local solutions with small perturnations o� the manifold, and if it can be
approximated as a linear manifold, the best estimate we could make is simply the least

2

squared �t of z to the set of iterates, yi, in other words, the average. This suggests an
approach: use a suitable combination of the average of the yi and the solution of eq. (5)
to estimate z where the combination is chosen so the if J� I is far from singular, eq. (5)
is favored, whereas the average is favored as J � I approaches singularity. This can be
done with a \penalty function" type approach in which we compute z as the minimizer
of

jj(J � I)z � wjj22 + �jjz �
NX
i=0

yi=(N + 1)jj22 (7)

where � is a small positive value (dependent on M and machine precision).

2 An Extension to Smooth Functions

The above method can be viewed as an attempt to compute a constant function, z,
as an approximation to the solution of the iterative process. If we are performing an
integration, rather than �nding a stationary state, we might want to �nd a smooth
funtion, z(t), that approximates the values found from the iteration. The above process
can easily be extended as follows.

Suppose that we want to approximate each of the components of the solution by a
low degree polynomial (any other approximation could be used).

Now we assume that our underlying process in the absence of noise gives

z(tn+1) = �(z(tn)) (8)

and, in the presence of noise we rewrite eq. (1) as

yn+1 = �([yn � z(tn)] + z(tn)) + rn (9)
= �(z(tn)) + J [yn � z(tn)] + rn (10)
= z(tn+1) + J [yn � z(tn)] + rn (11)

Now let
wn = z(tn+1)� Jz(tn)

so we have
yn+1 = wn + Jyn + rn

Let the approximation to z(t) be expressed in terms of the m basis functions �k(t); k =
1; � � � ; m. Then we want to �nd a z(t) given by

z(t) =
mX
k=1

�k�k(t) (12)

(Note that the m �k are each column vectors of dimension M .) Let �(t) be a column
vector whose m entries are �k(t). Since the �k(t) are a basis set (for polynomials or any
other m-dimensional approximation), there exists a \forward step" operator, E, such
that

�(tn+1) = E�(tn)

3

Let A be the M by m matrix whose columns are �k; k = 1; 2; � � � ; m, and let �p be the m
by N matrix whose n-th column is �(tn); n = p; � � � ; N + p� 1, where p = 0 or 1. Thus

�1 = E�0

If we de�ne
Z0 = A�0 (13)

and
Z1 = A�1 = AE�0 (14)

then the columns of Zp are zn for n = p; � � � ; N + p � 1. De�ne, similarly, the matrices
Yp from the computed values, yn, and R0 from the noise vectors, rn.

De�ning B by
B = AE � JA (15)

we can write eq. (11) as

Y1 = Z1 � JZ0 + JY0 +R0 (16)
= B�0 + JY0 +R0 (17)

This gives a linear least squares problem for B and J which can be written as

min
J;B

trace([Y1 � JY0 � B�0][Y1 � JY0 � B�0]
T) (18)

Having found B and J we can solve for A using eq. (15). As before, we will run into
problems if J has an eigenvalue near 1 because E has an eigenvalue equal to one. As
before we can instead minimize a problem with a \penalty function," namely

min
A

[jj(AE � JA)�0 � Bjj+ �jjY1 � A�1jj] (19)

where the norm is the Frobenius norm (sum of squares).

3 Implementation

The solution of eq. (18) is straightforward. Di�erentiating w.r.t. J and B we get the
linear equations

Y0Y
T
0 J

T + Y0�
T
0B

T = Y0Y
T
1 (20)

�0Y
T
0 J

T + �0�
T
0B

T = �0Y
T
1 (21)

Eq. (19) involves the minization of a quadratic function of A so yields a linear equation
for A. However, A is \buried" inside so it is a little tedious wo write out for computer
solution.

We can proceed by \reshaping" A into a vector (reshape is a MatLab function) as
follows. De�ne the column vector r(A) consisting of concatenation of the transposes of
the rows of A in turn. In other words, if A is an n by m matrix:

r(A) = [A11A12 � � �A1mA21A22 � � �A2m � � �Anm]
T

4

Also de�ne c(A) to be the vector consisting of the columns of A, or

c(A) = r(AT)

De�ning the outer product of two matrices P and Q to be

P
Q =

2
66664

P11Q P12Q � � � P1mQ
P21Q P22Q � � � P2mQ

...
Pn1Q Pn2Q � � � PnmQ

3
77775

we �nd the following relations for the operators c and r on the matrix product UV where
U is m by n and V is n by p:

r(UV) = (Im
 V T)r(U) = (V T
 Im)c(U) (22)
r(UV) = (U
 Ip)r(V) = (Ip
 U)c(V) (23)

We can rewrite the minimization problem (19) as

min
A
[vT1 v1 + �vT2 v2] (24)

where

v1 = r((AE � JA)�0 �B) (25)
v2 = r(A�1 � Y1) (26)

Using the relations above, we can express these as matrices times r(A), namely

v1 = (IM
 �T
0)r(AE � JA)� r(B) (27)

= (IM
 �T
0)[(IM
 ET)� (J
 Im)]r(A)� r(B) (28)

= [(IM
 �T
1)� (J
 �T

0)]r(A)� r(B) (29)

v2 = (IM
 �T
1)r(A)� r(Y1) (30)

Then we can di�erentiate the expression in eq. (24) to get

[(IM
 �T
1)� (J
 �T

0)]
T [(IM
 �T

1)� (J
 �T
0) + �(IM
 �T

1)
T (IM
 �T

1)]r(A)

= [(IM
 �T
1)� (J
 �T

0)]
T r(B) + �(IM
 �T

1)
T r(Y1)

which can be solved for r(A).

References

[1] Gear, C. W., Kevrekidis, I. G., and Theodoropoulos, C., \Coarse" Integra-
tion/Bifurcation Analysis via Microscopic Simulators: micro-Galerkin Methods,
NEC Research Institute Report 2001-106, to appear, Computers and Chemical En-
gineering.

[2] Projective Integration Methods for Distributions, NEC TR 2001-130, 26 Nov, 2001

5

