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Abstract

The surge in the number of initial coin o¤erings (ICOs) in recent years has

led to both excitement about cryptocurrencies as a new funding model for inno-

vations in the digital age, and to anxiety about a potential bubble. This paper

develops a model to address several basic questions: What determines the funda-

mental value of a cryptocurrency? How would market trading interact with its

fundamentals in an uncertain and opaque environment? In our model, a cryp-

tocurrency constitutes membership in a platform developed to facilitate trans-

actions of certain goods or services. The complementarity in the households�

participation in the platform acts as an endogenous, yet fragile, fundamental of

the cryptocurrency. There exist either two or no equilibria, and the two equilib-

ria, when they exist, have disparate properties. When the transaction demand for

the platform is unobservable, the trading price and volume of the cryptocurrency

serve as important channels for not only aggregating private information about

its fundamental, but also facilitating coordination on a certain equilibrium.
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In 2015-2017, over 2000 initial coin o¤erings (ICOs) emerged to raise over $4 billion from

the public, exceeding venture capital investments in funding innovative projects related to

blockchain technology, according to a report issued by EY Research. Among these ICOs,

1,031 were in the U.S., followed by 310 in Russia, 260 in Singapore, 256 in mainland China,

and 196 in Hong Kong. In 2017, the top three ICOs by Tezos, EOS.IO, and BANCOR

raised $208 million, 200 million, and 153 million, respectively. These successes led to great

excitements about cryptocurrencies as a new funding model for innovations in the upcoming

digital age. Rampant speculation and volatility in the trading of many cryptocurrencies,

however, have also created enormous anxiety about cryptocurrencies as a potential bubble.

The failure of the DAO only a few months after its ICO raising $150 million in 2016, together

with a number of other similar episodes, highlights the risks and potential abuses involved in

investing in cryptocurrencies. In response to these concerns, China and South Korea banned

cryptocurrencies at the end of 2017, even though other countries such as Switzerland and

Singapore remain amenable to them.

In order to properly assess the potential bene�ts and risks brought by cryptocurrencies

and establish a suitable regulatory framework for ICOs, it is important to understand several

basic questions about the technology: What is a cryptocurrency? Is it a medium for trans-

action, a commodity, or a security? Depending on how we classify this key characteristic,

we may adopt di¤erent valuation models and assign entirely di¤erent valuations and risk

attributes to a cryptocurrency. The ample uncertainty and opacity associated with many

of the ICOs, together with the typically observed frenzied trading of cryptocurrencies after

their ICOs, raise further questions regarding whether such trading serves any socially mean-

ingful role, and whether the trading price and volume may a¤ect the underlying behavior of

the cryptocurrencies.

In this paper, we develop a model to address some of these questions. In our model, a

cryptocurrency serves as the membership to a platform, created by its developer to facilitate

decentralized bilateral transactions of certain goods or services among a pool of households
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by using a blockchain technology. The households face di¢ culty in making such transactions

outside the platform as a result of severe search frictions. The value of the platform, conse-

quently, lies with its design in �lling the households�transaction needs, and in its capability

in pooling together a large number of households with the need to trade with each other.

We model a household�s transaction need by its endowment in a consumption good, and its

preference of consuming its own good together with the goods of other households. As a

result of this preference, households need to trade goods with each other, and the platform

serves to facilitate such trading. Speci�cally, we assume that when two households are ran-

domly matched, they can trade their goods with each other only if they both belong to the

platform. Consequently, each household�s desire to join the platform grows with the chance

of meeting other households in the platform, and in the size of their endowments.

The cryptocurrency serves dual roles in the platform, one as the membership to transact

goods with other members, and the other as the initial �nancing for the platform, covering

both compensation to the developer for creating the platform and the fee to coin miners for

providing clearing services for the decentralized goods transactions on the platform. These

dual roles make ICOs in sharp contrast to the traditional project �nancing mechanisms, such

as IPOs and VC �nancing, which usually separate investors from business customers. As

a result of these dual roles, the trading price and volume of the cryptocurrency not only

provide �nancing of the cryptocurrency, but also directly impact the business operations of

the platform.

To highlight these dual roles, we construct a model with two periods. In the �rst period,

a pool of households with random endowment shocks decide whether to join the platform

by purchasing one unit of the cryptocurrency from a centralized market with coin miners

supplying the cryptocurrency at a cost. During the second period, the households in the

platform are randomly matched to transact their goods for consumption. Each household�s

decision to join the platform trades o¤ the cost of paying for the cryptocurrency with the

bene�t from transacting goods on the platform. This bene�t increases with both the house-
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hold�s own endowment, which determines its own need to transact goods on the platform,

and the average endowments of other households, which determine their transaction needs.

We show that each household optimally adopts a cuto¤ strategy to purchase the cryptocur-

rency only if its endowment is higher than an equilibrium threshold, while the equilibrium

cryptocurrency price is jointly determined by the common endowment of all households,

and a supply shock re�ecting the average computing cost for miners in providing accounting

services to complete the transactions of households at the second date.

We analyze two settings, di¤ering in whether the households�aggregate goods endowment

is observable, which captures the demand fundamental for the platform. In the �rst setting,

where the platform fundamental is publicly observable, there exist either two or no cuto¤

equilibria. When there are two equilibria, they exhibit opposing behavior. One of the equi-

libria has a higher cryptocurrency price and a lower equilibrium cuto¤ for each household�s

cryptocurrency purchase decision, and the other has a lower price and a higher equilibrium

cuto¤. These two equilibria are self-enforcing as a result of the complementarity among the

households�trading needs� if more households join the platform by choosing a lower cuto¤

strategy, they all bene�t more from trading goods in the platform, and are therefore willing

to pay a high cryptocurrency price. On the other hand, if each household chooses a higher

cuto¤ strategy, there will be less households in the platform, making the platform less de-

sirable, and lowering the price of the cryptocurrency. The presence of these two opposing

equilibria suggests that one may observe entirely di¤erent dynamics of cryptocurrencies in

practice, simply as a result of the endogenous and fragile nature of their business model,

without necessarily involving any reckless speculation, abuse, or manipulation. In the ab-

sence of a sovereign to provide guidance and support the platform, cryptocurrencies are

vulnerable to these large price swings, and large investors may act as cryptocurrency whales

to help coordinate participant expectations.

This problem worsens in our second setting, in which the platform fundamentals are not

publicly observable based on realistic considerations. In this setting, each household needs to
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use its own endowment and the publicly observed trading price and volume of the cryptocur-

rency as noisy signals to infer the value of the aggregate household demand for the platform.

Despite the highly non-linear equilibrium cryptocurrency price and the complexity involved

in constructing each household�s learning and in aggregating their cryptocurrency demands,

we manage to construct a tractable log-linear noisy rational expectations equilibrium for the

cryptocurrency market. In the equilibrium, each household again uses a cuto¤ strategy, as

in the perfect-information setting, except that its equilibrium cuto¤ is determined by linear

summary statistics of the publicly observed cryptocurrency price and volume, rather than

the households�aggregate endowment and the miners�common mining cost, which are not

observable. Interestingly, there again exist two or no cuto¤ equilibria. The trading price

and volume of the cryptocurrency both serve as important channels for not only aggregat-

ing private information about its fundamental value, but also coordination on the high or

low price equilibrium. As the high and low price equilibria have very disparate behavior,

the currency price and equilibrium cuto¤ also have opposing reactions to news in these two

sources of public information, which makes it di¢ cult for outsiders to diagnose the health of

the currency based on the price alone.

Our work contributes to the emerging literature on cryptocurrencies and ICOs. Li and

Mann (2018) also explore network e¤ects in ICOs, yet their focus is on how dynamic dissemi-

nation can help overcome coordination failure when the platform requires a critical mass, and

how it aggregates useful information for the developer about its product. Easley, O�Hara,

and Basu (2017) analyze the rise of transactions fees in Bitcoin through the strategic in-

teraction of users and miners. Chiu and Koeppl (2017) consider the optimal design of a

cryptocurrency, highlight the importance of scale in deterring double-spending by buyers

and of alternative mining methods, such as Proof of Stake (PoS) to Proof of Work (PoW)

in reducing ine¢ cienct settlement delay and transaction fees. Cong and He (2017) investi-

gate the tradeo¤ of smart contracts in overcoming adverse selection while also facilitating

oligopolic collusion, while Biais et al (2017) considers the strategic interaction among min-
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ers and Abadi and Brunnermeier (2018) of disciplining writers to a blockchain technology

with static incentives. In contrast, our analysis attempts to understand what fundamentals

determine the price and success of an ICO, and emphasizes the role of participation as an

endogenous, yet fragile fundamental. In addition, we characterize the disparate properties

of the two equilibria that naturally arise in our setting, and embed informational frictions

to study the informational role of prices and volumes.

Our work is also related to the literature on the role of currency. Samuelson (1985), in his

pioneering work, studied the role of money as a bubble asset that acts as a store of value in

dynamically ine¢ cient economies. Search models, such as Kiyotaki and Wright (1993) and

Lagos and Wright (2005), frame money as a medium of exchange that facilitates bilateral

trade when search frictions hinder the double coincidence of wants among trading parties.

Cochrane (2005) frames money as a stock claim to the future surpluses of the issuing sov-

ereign. In our framework, a cryptocurrency represents membership to a decentralized trading

platform, and the price of this membership is pinned down by the endogenous expected ben-

e�t from participation of the marginal household. While search models such as Kiyotaki

and Wright (1993) and Lagos and Wright (2005) can have multiple equilibria because of

self-ful�lling expectations that the currency will be accepted in the future, multiple equilib-

ria arise in our setting because the market-clearing price of the cryptocurrency re�ects the

marginal household�s expected surplus from future trade, and there can be either two or zero

marginal households that clear the market given the fundamentals. That money represents

a security in our setting, in which the shareholders are also the customers, is conducive to

the study of infantile currencies and, consequently, ICOs.

Our work also adds to the literature related to cuto¤ equilibrium with dispersed informa-

tion. With risk-neutral investors and normally distributed payo¤s, Morris and Shin (1998)

and Dasgupta (2007) analyze coordination and delay in global games, Goldstein, Ozdenoren,

and Yuan (2013) investigate the feedback e¤ects of learning by a manager to �rm investment

decisions, while Albagli, Hellwig, and Tsyvinski (2014, 2015) focus on the role of asymme-

5



try in security payo¤s in distorting asset prices and �rm investment incentives. Similar to

our framework, Gao, Sockin, and Xiong (2018) employ Cobb-Douglas utility with lognormal

payo¤s to deliver tractable equilibria, yet their focus is on the dynamic distortion of infor-

mational frictions to housing and production decisions. In contrast, our setting features an

interaction of search with centralized trading to explain ICOs. While Goldstein, Ozdenoren,

and Yuan (2013) also features multiple equilibria, multiplicity in their setting arises from

the self-ful�lling nature of trading on investment decisions, while in our setting it occurs

because the bene�ts of participating in the cryptocurrency are endogenous to the size of its

membership.

Our paper also contributes to the literature that explores the asset pricing implications

of strategic complementarity. Plantin (2009) demonstrates that holders of privately placed

securities must o¤er a "coordination premium" when the future liquidity of the market re-

lies on the participation of future less-informed investors, while Malherbe (2014) illustrates

that equilibria multiplicity can arise because �rm cash hoarding endogenously determines

the severity of adverse selection in the future spot market for credit. Asriyan, Fuchs, and

Green (2017) show how endogenous liquidity stemming from issues of adverse selection can

give rise to multiple equilibria in a dynamic setting, and this can generate nonfundamental

price volatility from sentiment shocks. In our setting, multiplicity arises because the decision

to purchase the cryptocurrency, which can be viewed as a security, is intimately tied to the

bene�ts from trading opportunities with the currency in the future. Since the shareholders

are the customers in the ICO, the dividend of this security is endogenous, and this distin-

guishes our setting from models of IPOs, venture capital, and the secondary market trading

analyzed in these other papers.

1 The Model

Consider a cryptocurrency, which serves the membership to a platform with a pool of house-

holds who share a certain need to transact goods with each other. The developer of the
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cryptocurrency designs the platform to reduce the otherwise severe search frictions among

the households, and develops the infrastructure that supports the platform. The success of

the cryptocurrency is ultimately determined by whether the platform can gather these house-

holds together. Households purchase the cryptocurrency as the membership to transact in

the platform, with the payment for the currency purchase shared by the developer and coin

miners, who provide settlement and accounting services for transactions in the platform.

We analyze this cryptocurrency with the model of two periods t 2 f1; 2g and three types

of agents: households, coin miners, and the developer. At t = 1, households purchase the

currency through a centralized exchange to join the platform. In practice, the coin prices

during the Initial Coin O¤ers (ICOs) are often pre-�xed at given levels in order to secure

some initial interests in the o¤erings, while more sales continue after the ICOs at market

prices. For simplicity, we include only one trading round in the model, which serves to

capture not only the ICO but also trading that follows the ICO. By pooling these extended

trading rounds into one trading period in the model,1 we focus on analyzing how the currency

price serves to aggregate the trading needs of the households and a¤ect their participation

in the platform. Nevertheless, we call the trading round in the model the ICO.

At t = 2; the households in the platform are randomly matched to trade endowments.

This trade is supported by two miners whose servers clear the transaction on a blockchain

for the buyer and seller. Households then consume both their own good and their trading

partner�s consumption good.

1.1 Households

We consider a pool of households, indexed by i 2 [0; 1]. These households are potential

users of the cryptocurrency as a result of their trading needs. Each of them may choose to

purchase a unit of the cryptocurrency. We can divide the unit interval into the partition

fN ;Og ; with N \ O = ? and N [ O = [0; 1] : Let Xi = 1 if household i purchases the

cryptocurrency, i.e., i 2 N , and Xi = 0 if it does not. An indivisible unit of currency is
1See Li and Mann (2018) for a model of the trading rounds during ICOs.
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commonly employed in search models of currency, such as Kiyotaki and Wright (1993). If

household i at t = 1 chooses to purchase the cryptocurrency, it purchases one unit at the

equilibrium price P during the ICO.

Household i has a Cobb-Douglas utility function over consumption of its own good and

that of a trading partner, household j; that it randomly meets at t = 2 in the platform,

according to:

U (Ci; Cj;N ) =
�

Ci
1� �c

�1��c �Cj
�c

��c
; (1)

where �c 2 (0; 1) represents the weight in the Cobb-Douglas production function on its

consumption of its trading partner�s good Cj ; and 1� �c is the weight on its own consump-

tion good Ci: A higher �c means a stronger complementarity between the consumption of

household i and its consumption of the good endowed to the other household with which it

trades at t = 2: We assume that both goods are needed for the household to derive utility

from consumption, and if it receives its endowment without trading then it receives zero

utility from it. This utility speci�cation implies that each household cares about the aggre-

gate endowment of all other households in the platform, and this will ultimately de�ne the

currency�s fundamental.

The endowment of household i is eAi ; where Ai is comprised of a component A common

to all households and an idiosyncratic component "i:

Ai = A+ "i;

where A s N
�
�A; ��1A

�
and "i s N (0; ��1" ) are both normally distributed and independent

of each other. Furthermore, we assume that
R
"id� ("i) = 0 by the Strong Law of Large

Numbers. The aggregate endowment A is a key characteristic of the platform. A cleverly

designed cryptocurrency serves to attract a platform of households with a high value of A

so that the households in the platform have strong needs to trade with each other. One

can thus view A as the demand fundamental for the cryptocurrency or the strength of the

platform, and � " as a measure of dispersion between households in the platform.
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In practice, A is usually not directly observed by the potential users as a result of re-

alistic informational frictions. The ICO and the trading of the cryptocurrency serves to

not only provide funding to support the platform but also to aggregate information directly

from the households about the potential demands for transaction services provided by the

cryptocurrency and the platform. To highlight this role, we will proceed with �rst ana-

lyzing a benchmark case when A is publicly observable, and then an extended case when

informational frictions prevent A from being directly observed by all agents.

We start with describing each household�s problem at t = 2 and then go backward to

describe its problem at t = 1: A realistic feature of cryptocurrencies is that many trans-

actions are decentralized and clear on decentralized servers that record the transaction on

blockchains. At t = 2; household i is randomly matched with another household j and, if

both households own the cryptocurrency, then they can trade their goods with each other.

Mutual ownership of the cryptocurrency (i.e., membership to the platform) is necessary to

transact because of realistic issues of fraud, asymmetric information, or transaction costs

that make direct trade prohibitively costly. For instance, while goods inventories are harder

to observe, payment through the cryptocurrency is di¢ cult to falsify and can be veri�ed on

the blockchain. As only owners of the cryptocurrency can trade with each other, the proba-

bility of a currency owner to trade with another household increases with the ownership of

the cryptocurrency.

We quote both the price of the cryptocurrency at t = 1 and the price of the goods at t = 2

in terms of the numeraire good. As we only allow one round of trading of the cryptocurrency

at t = 1, this avoids the complication of re-trading the cryptocurrency at t = 2 together

with the goods trading.

A household who owns the currency N maximizes its utility at t = 2 by choosing its

consumption demand fCi; Cjg conditional on a successful match:

Ui = max
fCi;Cjg

U (Ci; Cj;N ) (2)

such that piCi + pjCj = pieAi ;
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where pi is the price of its good. We assume that at t = 2, the platform strength A is

publicly observed by all agents even in the case where A is not initially observable at t = 1.

Households behave competitively and take the prices of their goods as given. We assume

that households do not discount their �nal consumption at t = 1:

At t = 1; each household needs to decide whether to join the platform by buying the

currency. In addition to the utility �ow Ui at t = 2 from �nal consumption, we assume

that households have quasi-linear expected utility at t = 1; and incur a linear utility penalty

equal to the price of the cryptocurrency P if they choose to buy it and join the platform.

Given that households have Cobb-Douglas preferences over their consumption, they are

e¤ectively risk-neutral at t = 1; and their utility �ow is then the expected value of their �nal

consumption bundle less the cost of the currency. Households choose whether to buy the

currency subject to a participation constraint that their expected utility from the purchase

E [UijIi] � P must (weakly) exceed a reservation utility, which we normalize to 0: One can

interpret the reservation utility as the expected value of �nding another currency in which

to exchange less the cost of search for that currency.

In summary, household i makes its purchase decision at t = 1:

max
Xi

fE [UijIi]� P; 0g : (3)

subject to its information set Ii: In the perfect-information benchmark, each household

observes not only its own Ai but also the platform fundamental A. In the case with infor-

mational frictions, each household observes only its own Ai but not A.

1.2 Miners

There is a population of coin miners, indexed on a continuous interval [0; 1] ; who maintain

the platform at t = 2: These miners mine the cryptocurrency by providing accounting and

custodial services using its underlying blockchain technology, and facilitating the decentral-

ized trades between households in the platform at t = 2: Miners also face uncertainty about

the aggregate strength of the cryptocurrency platform, and the ability of the supply side
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to respond to the demand for the transaction services. Speci�cally, miner i provides the

computing power to facilitate a trade between households subject to a cost to setting up the

required hardware and software to mine the cryptocurrency: e�!iSi; where Si 2 f0; 1g is the

miner�s decision to mine and

!i = � + ei

is the miner�s productivity, which is correlated across builders in the currency through the

common component �: It is realistic to assume heterogeneity in the technologies to which

miners have access for mining the cryptocurrency, with less e¢ cient miners employing more

costly technologies. We assume that � represents an unobserved, common supply shock to

the mining costs of the cryptocurrency and, from the perspective of households and miners,

� s N
�
��; ��1�

�
: Furthermore, ei s N (0; ��1e ) such that

R
eid� (ei) = 0 by the Strong Law

of Large Numbers.

Miners receive a fraction 1� �s 2 (0; 1) of the proceeds from selling the cryptocurrency

at t = 1 to households at price P; which serves as the fee for clearing transactions at t = 2:2

Miners in the currency at t = 1 maximize their revenue:

�s (Si) = max
Si

�
(1� �s)P � e�!i

�
Si: (4)

Since miners are risk-neutral, it is easy to determine each miner�s optimal supply curve:

Si =

�
1 if (1� �s)P � e��+ei
0 if (1� �s)P < e��+ei

: (5)

In the cryptocurrency market equilibrium, the common mining cost � represents the supply

shock. Also note that when the platform strength A is unobservable, � may also a¤ect the

demand side by interfering the households�learning about A:

The cryptocurrency technology is supported by a Proof of Work (PoW) protocol for

recording transactions on blockchains. Each miner, in return for receiving payment for

2To focus on the broader implications of the cryptocurrency for households, we abstract from the strategic
considerations that miners face in adding blocks to the blockchain to collect fees, such as consensus protocols
and on which chain to add a block. See, for instance, Easley, O�Hara, and Basu (2017) and Biais et al (2017)
for game theoretic investigations into these issues.
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the cryptocurrency that it sells to households, provides computing power to facilitate one

potential transaction between households in the platform that is added to the chain at

t = 2: To ensure there are enough servers to clear all household transactions, the platform

requires at least as many miners as households to prevent a failed transaction, since each

transaction requires two miners. We assume miners have commitment so that if they accept

payment at t = 1; they agree to clear a transaction at t = 2 if needed.

1.3 Developer

The developer of the cryptocurrency creates the platform at t = 1: It establishes the code

that speci�es the protocol of how transactions in the platform of owners of the cryptocurrency

are cleared and recorded on the blockchain, how more currency is created, such as through

mining, and how it can be stored in virtual wallets. It receives a fraction �s of the revenue P

from the Initial Coin O¤ering (ICO), with �s �xed as part of the technology.
3 The remaining

revenue is paid to miners as part of the Proof of Work (PoW) protocol in exchange for their

accounting services at t = 2: A lower �s can be viewed as a higher pro�tability of mining

that entices more miners to support the platform.

The developer receives the revenue from the ICO:

�D = E

�
�sP

Z 1

�1
Xid� ("i)

�
:

1.4 Rational Expectations Cuto¤ Equilibrium

Our model features a rational expectations cuto¤ equilibrium, which requires clearing of

the cryptocurrency market that is consistent with the optimal behaviors of households and

miners, as well as clearing of each traded good between two matched households:

� Household optimization: each household chooses Xi at t = 1 to solve its maximization

3As in practice, the developer no longer controls the cryptocurrency or maintains its operation after the
ICO, and consequently has no role at t = 2: By designing the ledger at t = 1; and abandoning it at t = 2;
however, the developer indirectly commits to a quality of transparency in the subsequent transactions that
occur in the currency.
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problem in (3) for whether to purchase the cryptocurrency, and then chooses fCi; Cjg

at t = 2 to solve its maximization problem in (2) for trading and consumption of the

two goods with its matched trading partner.

� Miner optimization: each miner chooses Si at t = 1 to solve his maximization problem

in (4).

� At t = 1; the cryptocurrency market clears:Z 1

�1
Xi (Ai; P ) d� ("i) =

Z 1

�1
Si (!i; P ) d� (ei) ;

where each household�s demand Xi (Ai; P ) depends on its productivity Ai and the cur-

rency price P ,4 and each builder�s housing supply Si (!i; P ) depends on its productivity

!i and the currency price P: The demand from households and supply from miners are

integrated over the idiosyncratic components of their endowments f"igi2[0;1] and costs

feigi2[0;1] ; respectively.

� At t = 2; the market for household i0s good between two matched trading partners

clears:

Ci (i) + Cj (i) = e
Ai :

2 The Perfect-Information Setting

In this section, we focus on the setting with the platform strength A and the miners�mining

cost � being publicly observable at t = 1.

2.1 Choices of Households

At t = 2; households that have chosen to purchase the cryptocurrency need to make their

consumption decisions. Household i has eAi units of good i for consumption and for trad-

ing with another household. It maximizes its utility function given in (2). The following

4Note that each household�s demand for the cryptocurrency may also directly depend on the network
strength A if it is publicly observed, as in the perfect-information benchmark.
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proposition describes each household�s consumption choice. Its marginal utility of goods

consumption also gives the equilibrium goods price.

Proposition 1 Households i�s optimal goods consumption at t = 2 are

Ci (i) = (1� �c) eAi ; Cj (i) = �ceAj ;

and the price of its produced good is

pi = e
�c(Aj�Ai):

Furthermore, the expected utility of household i at t = 1 is given by

E [U (Ci; Cj;N )j Ii] = e(1��c)Ai+
1
2
�2c�

�1
" E

�
e�cA�

�
�c�

�1=2
" +

A� A�

�
�1=2
"

����� Ii� ;
and the ex ante utility of all households before observing their endowment is

U0 = e
A+ 1

2((1��c)
2+�2c)��1" �

�
(1� �c) ��1=2" +

A� A�

�
�1=2
"

�
�

�
�c�

�1=2
" +

A� A�

�
�1=2
"

�
�P�

�
A� A�

�
�1=2
"

�
:

Proposition 1 shows that each household spends a fraction 1 � �c of its endowment

(excluding housing wealth) on consuming its own good Ci (i) and a fraction �c on goods

produced by its trading partner Cj (i) if they match. When �c = 1=2; the household consumes

its own good and the goods of its neighbors equally. The price of each good is determined by

its output relative to that of its partner to the extent that there is complementarity in their

consumption. One household�s good is more valuable when the other household has a greater

endowment, and consequently each household needs to take into account the endowment of

its trading partner when making its own decision. The proposition demonstrates that the

expected utility of a household in the platform is determined by not only its own endowment

eAi but also the endowments of other households. This latter component arises from the

complementarity in the household�s utility function.

We now discuss each household�s decision on whether to purchase the cryptocurrency at

t = 1. As a result of its Cobb-Douglas utility, the household is e¤ectively risk-neutral over
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its aggregate consumption, and its optimal choice re�ects the di¤erence between its expected

output if it buys the currency and is matched with a trading partner, and the cost of the

cryptocurrency, which is the price P to buy a unit of the currency. It then follows that

household i�s purchase decision is given by

Xi =

�
1 if E [U (Ci; Cj;N )j Ii] � P
0 if E [U (Ci; Cj;N )j Ii] < P

:

This decision rule for its purchase supports our conjecture to search for a cuto¤ strategy for

each household, in which only households with endowments above a critical level A� buy the

currency. This cuto¤ is eventually solved as a �xed point in the equilibrium.

2.2 The Equilibrium

We now proceed to discuss the equilibrium at t = 1. We characterize each household�s

cryptocurrency purchase decision and the currency price at t = 1; taking the choice of the

developer as given. Households will sort into the cryptocurrency platform according to a

cuto¤ equilibrium determined by the net bene�t of owning the currency, which trades o¤ the

opportunity of trading with other households in the trading platform with the price of the

platform membership (i.e., the cryptocurrency price). Despite the inherent nonlinearity of

our framework, we derive a tractable cuto¤ equilibrium that is characterized by the solution

to a �xed-point problem over the endogenous cuto¤of the marginal household that purchases

the cryptocurrency, A�, as summarized in the following proposition.

Proposition 2 In the perfect-information setting, there are generically two cuto¤ equilibria,

with cuto¤s A� (A; �) < �A� (A; �) ; respectively, in which the following hold:

1. Household i follows a cuto¤ strategy in its cryptocurrency purchase decision:

Xi =

�
1 if Ai � A�
0 if Ai < A�

;

where A� 2
�
A�; �A�

	
solves

e

�
1��c+

p
�"=�e

�
(A��A)

�

�
�c�

�1=2
" � A

� � A
�
�1=2
"

�
= e�A���

1
2
�2c�

�1
" �log(1��s) (6)
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where � (�) is the CDF function of normal distribution.

2. The cryptocurrency price takes a log-linear form:

logP =

r
� "
� e
(A� A�)� � � log (1� �s) :

3. In the high (low) price equilibrium A� ( �A�), the cryptocurrency price P; the developer�s

revenue �D = �s�
�
A�A�
�
�1=2
"

�
P; and the ex ante utility of households U0 are increas-

ing (decreasing) in A; and the number of households that purchases the currency is

increasing (decreasing) in A and �:

4. No household buys the cryptocurrency if A or � are su¢ ciently small.

Proposition 2 characterizes the cuto¤ equilibrium in the platform when A is publicly

observed at t = 1, and con�rms the optimality of a cuto¤ strategy for households in their

choice to purchase the cryptocurrency. Households sort based on their endowments into

the platform, with those with higher endowments, who expect more gains from trade with

other households in the platform, entering and participating in decentralized trading at

t = 2: In this cuto¤ equilibrium, the cryptocurrency price is a function of both the demand

and supply fundamentals but, despite its log-linear representation, it is actually a generalized

linear function of
p

�"
�e
A� � � log (1� �s) ; since A� is an implicit function of A and �:

As a result of the complementarity in the households�decision to buy the cryptocurrency,

there are generically two equilibria in the cryptocurrency market: one with a high price and

a lower cuto¤A�; in which a larger population enter the platform, and one with a low price

and a higher cuto¤ �A�; in which few households enter the platform. This occurs because

households have backward-bending demand curves and, consequently, a high or a low price

equilibrium can be self-con�rming.5 The household with the highest endowments enter �rst

but, if too few others enter, then the marginal bene�t of trading in the platform is low, since

5Backward-bending demand curves can also arise from portfolio insurance motives, as in Gennotte and
Leland (1990), learning by less informed investors, as in Barlevy and Veronesi (2000,2003), and Yuan (2005),
and from endogenous collateral margins for arbitrageurs, as in Brunnermeier and Pedersen (2009).
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the probability of meeting another household in the platform is low. This leads to a low

price. If instead many households enter, then the marginal bene�t of entering the platform

is high, sustaining a high price. It is also possible that no household buys the cryptocurrency

if A or � are su¢ ciently small.6

We illustrate the intuition for this multiplicity with a numerical example, in which we

choose the following parameters:

�A = � � = 1; � " = � e = :5; �A = �� = 0; �c = :3; and �s = :5:

The left-hand side (LHS) of equation (6), which determines the cuto¤, is bell-shaped in

A� (A; �)�A; and corresponds to the backward-bending demand curve of households, while

the right-hand side (RHS) is the straight line exp (�A� � � log (1� �s)) : The dotted line

is the RHS when A = � = 0; while the lower, dashed line sets A = �
�1=2
" at one standard

deviation away from 0: The y-intercept of the �at line is decreasing in both A and �: As

one can see, the �at lines intersect the bell-shaped curve generically at two points, with the

intersection on the left side of the bell corresponding to the high price equilibrium with the

lower cuto¤, while the intersection on the right side is the low price equilibrium with the

higher cuto¤. As A increases, then intersections shift down the y-axis, and correspond to a

lower cuto¤A� (A; �)�A in the high price equilibrium, and a higher cuto¤ �A� (A; �)�A in the

low price equilibrium. Whenever, the �at line is above the bell-shaped curve, corresponding

to very low realizations of the demand and supply fundamentals, no cuto¤equilibrium exists,

and no households purchase the cryptocurrency.

6It is important to note that the discreteness of the household entry decision is not su¢ cient for multi-
plicity of equilibria. The models of Albagli, Hellwig, and Tsyvinski (2014, 2015) and Gao, Sockin, and Xiong
(2018) also have economic agents face a discrete choice problem, yet in their settings the cuto¤ equilibrium
is unique.
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Figure 1: Plot of Left-hand Side and Right-Hand Side of Equation (6)

The existence of the two equilibria is directly related to the ICO funding model. In

this model, buyers of the cryptocurrency are also the customers that the funded business

(i.e., the platform) aims to serve, in sharp contrast to the typical models of funding new

business projects by venture capitalists or by IPOs, in which investors and customers are

usually di¤erent. As a result of this direct overlap between investors and customers of

cryptocurrencies, there is a strong interaction between the funding cost and the business

operation, which ultimately underlies the multiple equilibria.7

Proposition 2 also provides several comparative statics of the two equilibria. Due to the

nature of the two equilibria, they behave exactly opposite in many ways. As the demand

and supply fundamentals increase, the cryptocurrency price increases and more households

join the platform by buying the cryptocurrency in the high price equilibrium, while the

opposite happen in the low price equilibrium with the cryptocurrency price dropping and

less household joining the platform.

7Treating equation (6) as a functional �xed-point equation that iterates over the cuto¤A�, one can show
that the high price equilibrium is stable while the low price is unstable, in the sense that the market returns
to the equilibrium following small perturbations to the cuto¤.
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The multiplicity of equilibria can cause a viable currency to fail. Even a platform with

a strong demand fundamental A may attract little interest from investors, and this is self-

sustaining, even though it could support a much larger subscriber base. Since the revenue

from developing the platform in the high price equilibrium, �s
1��s

�
�
A�A�

�
�1=2
"

�
e�
p

�"
�e
(A�A�)��; is

strictly higher than in the low price equilibrium, �s
1��s

�
�
A� �A�
�
�1=2
"

�
e�
p

�"
�e
(A� �A�)��; the developer

also prefers the high price equilibrium, since the currency would then be both viable and

more pro�table. The existence of multiple equilibria also motivates large traders, such as

the so-called coin whales in practice, to take on strategic positions to push the price of a

cryptocurrency to its high price equilibrium. To the extent that all agents involved in the

platform, including the developer, the households, and the miners, bene�t from the high

price equilibrium, such strategic trading may be socially bene�cial.

While much of the current media and policy debate about cryptocurrencies emphasizes

that they do not fall within the purview of any goverment regulatory agency, such as the SEC,

that could protect consumers, our analysis suggests that less attention is given to another

important feature that distinguishes cryptocurrencies from national currencies and other

�nancial instruments: the lack of a sovereign that provides policy interventions to control

in�ation, set exchange rates, and promote economic activity. The government, as a large

player that internalizes how economic actors make decisions and how prices are determined,

plays a pivotal role in setting agent expectations on the future path of the economy, and helps

stabilize prices and exchange rates by committing to act to ensure this path. In the absence of

such guidance and policy interventions, however, it is not so surprising that cryptocurrencies

are often associated with large price swings, confusion, and potentially self-ful�lling traps

that lead to their failure. The absence of a stabilizing hand also explains why large investors

have an incentive to act like cryptocurrency whales.

The multiplicity of equilibria also underscores and exacerbates the challenges in evaluat-

ing the fundamental value of a cryptocurrency in practice, and helps to rationalize a wide

spectrum of observed dynamics of di¤erent cryptocurrencies. When the price of a cryptocur-
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rency rises, it may have opposite implications about the underlying platform depending on

whether the market is in the high price or low price equilibrium. This problem becomes

particularly relevant when realistic informational frictions about the platform makes its fun-

damental not directly observable to the public. We analyze this issue in the next section.

3 The Setting with Unobservable Fundamentals

Motivated by realistic informational frictions, we now assume that both the households�

common endowment A and the miners�ming cost � are not observable to households at

t = 1 when they need to make the decision of whether to purchase the cryptocurrency and

join the platform. Instead, each household observes its own endowment Ai. Intuitively, Ai

combines the aggregate endowment of the relevant households A and the household�s own

attribute "i. Thus, Ai also serves as a noisy private signal about A at t = 1. The parameter

� " governs both the dispersion in endowments and the precision of this private signal. As

� " ! 1, the households�signals become in�nitely precise and the informational frictions

about A vanish. Households care about the aggregate endowment because of complemen-

tarity in their demand for consumption. Consequently, while a household may know its

own endowment, complementarity in consumption demand motivates it to pay attention to

the price of the cryptocurrency to learn about the level of aggregate endowment A, which

eventually determines the chance of trading with another household in the platform.

In addition to their private signals and the market-clearing price of the cryptocurrency,

households also observe a noisy signal V about the number of other households that have

joined the platform at t = 1:An advantage of the blockchain technology that cryptocurrencies

employ is that it acts as an indelible and veri�able ledger that records the decentralized

transactions that take place in the cryptocurrency. As such, it provides a history of public

information about the volume of trade in the cryptocurrency. Since households buy the

currency for decentralized trading with each other at t = 2; this volume is akin to the

demand fundamental in our setting. Anticipating a cuto¤ equilibrium in which households
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with endowment signals above A� buy the cryptocurrency, we construct a volume signal:

V = �(
p
� " (A� A�) + "V ) ;

where � (�) is the CDF of normal distribution and "V s N (0; ��1v ) independent of all other

shocks in the economy. This speci�cation has the appeal that the volume signal is always

between 0 and 1; and is highly correlated with the number of decentralized transactions

that are added to the ledger at t = 2; which, by the weak LLN, is �
�p
� " (A� A�)

�2
: This

volume signal can also be viewed as the number of coins in active circulation.

The noise in the signal re�ects that, in practice, blockchains from the ledger are an

imperfect signal about the demand for trade in the cryptocurrency. Only a fraction of trans-

actions, for instance, hit the blockchain, where they are recorded, because of how costly it is

to pay transaction fees to miners in Proof of Work (PoW) coins. As such, many transactions,

such as the purchase and sale of coins with another currency, take place on exchanges and

never hit the blockchain. In addition, the anonymous nature of the transactions makes it

di¢ cult to assess the e¤ective supply of cryptocurrencies in circulation, since transferring

cryptocurrencies across wallets, in which no actual currency is traded between two parties,

is a transaction that hits the blockchain.8 Furthermore, while the underlying code of cryp-

tocurrencies records the total supply of coins, even as new coins are mined, the e¤ective

supply of coins in circulation is estimated in a manner similar to asset �oat for stocks. Some

currency developers, for instance, retain ownership of a fraction of the total supply of coins in

escrow accounts, and some coins sit in accounts that are no longer active. We parameterize

the residual uncertainty arising from these issues as measurement error.

Since the CDF of the normal distribution is a monotonically increasing function, we can

invert V to construct an additive summary statistic v:

v = ��1=2" ��1 (V ) + A� = A+ ��1=2" "V ;

8Even now, some cryptocurrencies are adopting �no knowledge proof� encryption to be able to verify
transactions without having to disclose any of the underlying details of the transaction recorded on the
chain.
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which, in the sequel, serve as the volume signal about the cryptocurrency. Interestingly, the

precision of the volume signal is � "� v; which reveals that the less dispersed the endowments

of households, the more informative is the history of transactions recorded in the currency�s

ledger.

To forecast the platform fundamental A, each household�s information set Ii now includes

its own endowment Ai, the volume signal V , and the equilibrium cryptocurrency price P .

Like in the perfect-information setting, each household would still use a cuto¤ strategy, and

the equilibrium cryptocurrency price is a nonlinear function of A, which posts a challenge

to our derivation of households�learning of A. It turns out that the information content of

P can be summarized by a summary statistic z that is linear in A and the supply shock �:

z = A�
r
� e
� "
�:

In our analysis, we shall �rst conjecture this linear summary statistic for the equilibrium price

and then verify that it indeed holds in the equilibrium. This conjectured linear statistic helps

to ensure tractability of the equilibrium despite that the equilibrium cryptocurrency price is

highly nonlinear.

By solving for the learning of households based on the conjectured summary statistic

from the housing price and the volume statistic, and clearing the aggregate cryptocurrency

demand of the households with the supply from miners, we derive the cryptocurrency market

equilibrium. The following proposition summarizes the price and each household�s cryptocur-

rency demand in this equilibrium.

Proposition 3 If the platform fundamental A is not publicly observable at t = 1, there are

generically two cuto¤ equilibria, in which the following hold:

1. The cryptocurrency price takes a log-linear form:

logP =

r
� "
� e
(A� A�)� � � log (1� �s) : (7)
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2. The posterior of household i conditional on the summary statistic of the cryptocurrency

price z; the volume signal summary statistic v; and its own endowment Ai is Gaussian

with the conditional mean Âi and variance �̂A given by

Âi = �̂�1A

�
�A �A+ � vv +

� "
� e
� �z + � "Ai

�
;

�̂A = �A + � v +
� "
� e
� � + � ":

3. Household i follows a cuto¤ strategy in its cryptocurrency choice:

Xi =

�
1 if Ai � A�
0 if Ai < A�

;

where A� (z; v) solves equation (17) in the Appendix.

4. There are either two or no equilibria. When the two equilibria exist, in response to a

positive shock "v to the volume signal, the equilibrium cuto¤ A� decreases, and both the

cryptocurrency price and the number of households that purchase the cryptocurrency

increase in the high price equilibrium, while shock has the opposite impact in the low

price equilibrium.

Proposition 3 con�rms even when the platform fundamental A is not publicly observ-

able, the equilibrium cryptocurrency price in (7) takes exactly the same log-linear form as

in the perfect-information setting, as shown by Proposition 2. The only di¤erence is the

equilibrium cuto¤ A� used by the households. With the fundamental variables A and �

being unobservable, each household has to make its decision based on its own endowment

Ai, together with the publicly observed price and volume signals, as captured by the two

summary statistics z and v. While each household continues to use the cuto¤ strategy, the

equilibrium cuto¤ A� now becomes a function of z and v. Being the only di¤erence in the

equilibrium price function from the perfect-information setting, A� (z; v) is also the only

channel, through which the households�learning of A through the price and volume signals

a¤ects the market.
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Like the perfect-information setting, there are again either two equilibria or no equilibria

at all. This situation arises from solving A� (z; v) from its �xed-point condition given in

equation (17), which is similar to equation (6), albeit more complex. Equation (17) may

have either two solutions or no real solution, which leads to the existence of two or no

equilibria. When two equilibria exist, one of them has lower equilibrium cuto¤for households�

cryptocurrency purchase decision and higher cryptocurrency price, while the other has higher

equilibrium cuto¤ and lower price. These two equilibria again behave in opposite ways.

Proposition 3 formally shows that in response to a shock to the volume signal, the equilibrium

cuto¤ A� and cryptocurrency price P have opposite reactions across the two equilibria.
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Figure 2: Responses of A� (z; v) to v and z in the high-price and low-price equilibria across

di¤erent values of � �:

To further illustrate the key properties of these two equilibria, Figure 3 depicts the

responses of the equilibrium cuto¤ A� (z; v) to shocks to both v and z, as measured by @A�

@v

and @A�

@z
; across the high-price and low-price equilibria. The left panel shows that in the

high-price equilibrium, the equilibrium cuto¤ A� moves down in response to an increase

in v, a positive signal about the platform fundamental, indicating that more households
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join the platform. In contrast, A� reacts positively to v, causing a smaller population to

enter the platform. Interestingly, the reactions in both equilibria diminish as � � increases.

This is because the reactions in A� are driven by the households�learning about the platform

fundamental A from the volume signal v: As � � rises, the price of the cryptocurrency becomes

more informative about A and, as a result, crowds out the learning e¤ect of v.

The right panel illustrates how the cuto¤A� responds to a unit impulse to the su¢ cient

statistic in the price z: For � � close to 0; the currency price contains little information

about the demand fundamental, and consequently the cost e¤ect dominates the impact of an

increase in z. As a result, less households enter the platform in the high price equilibrium, in

response to the higher price of entry, while more households enter in the low price equilibrium,

as the low price equilibrium features an opposite reaction to prices. As � � increases, however,

the role of a higher z in re�ecting a higher demand fundamental becomes more pronounced,

and the learning e¤ect begins to o¤set the cost e¤ect of a higher price. As a result, less

households are crowded out by a higher price in the high price equilibrium, as they believe

the higher price also re�ects a higher bene�t from joining the platform. Interestingly, the

learning e¤ect dominates in the low price equilibrium for su¢ ciently high � �: less households

enter the platform because of the increased optimism about the demand fundamental, as a

higher A raises the cuto¤ in the low price equilibrium.

In traditional asset market models with dispersed information, in the Grossman and

Stiglitz (1980) and Hellwig (1980) paradigms, trading volume plays no role in learning,9 and

is often studied only for its empirical predictions, as in, for instance, Wang (1994) and He

and Wang (1995).10 In our setting, households learn from both the cryptocurrency price and

volume when deciding whether to purchase the cryptocurrency. As such, volume provides

9This is, in part, an artifact of the CARA-Normal paradigm, in which trading volume is the expectation
of a folded normal random variable. This makes learning intractable if a noisy version of trading volume
were observed. An advantage of our focus on a cuto¤ equilibrium is that we are able to incorporate a noisy
measure of volume while still maintaining tractability.
10Notable exceptions are Blume, Easley, and O�Hara (1994) and Schneider (2009). In the former, past

prices and volumes trivially reveal the su¢ cient statistics of all past trader private information (which still
contain residual uncertainty because of correlated signal error). In the latter, trading volume provides a
signal about how informative prices are about an asset�s fundamentals.
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a complementary source of information to the cryptocurrency price and, as can be seen in

the left panel of Figure 2, any noise in the volume signal distorts households�participation

decisions. Since the precision of the volume signal is increasing in the precision of each

household�s private information � "; it mitigates the information asymmetry more than an

exogenous public signal: when households know more (high � "), the volume signal is more

informative, and similarly when households know less (low � "). In addition, households

substitute toward (away) from this source of information the less (more) informative is

the price. Consequently, our model suggests that market participants should pay more

attention to the records of the decentralized ledgers the more homogeneous are the users of

the currency.

An important implicit assumption underlying our analysis with informational frictions is

that market participants can coordinate on a high or low price equilibrium. This separates

the inference and coordination problems, enabling market participants to glean successfully

the su¢ cient statistics from the price and volume signals. Once they correctly recover the

linear summary statistics z and v; they can reconstruct the trading price P and volume V

according to:

P =
1

1� �s
exp

�
z �

r
� "
� e
A�
�
;

V = �(v �p� "A�) ;

since A� (z; v) 2
�
A� (z; v) ; �A� (z; v)

	
; which are what is actually observed by market par-

ticipants.11 From the proof of Proposition 3, each (z; v) pair maps to two (P; V ) pairs, one

corresponding to a high price equilibrium, A� (z; v) ; and the other to a low price equilibrium,

�A� (z; v) : By similar logic, each (P; V ) pair maps to two (z0; v0) pairs, one rationalizing (P; V )

as a high price equilibrium a� (P; V ) ; and the other as a low price equilibrium �a� (P; V ) ; with

the lower case a� denoting a di¤erent cuto¤mapping than A�: While there is only one �xed

point, i.e. either A� (z; v) = a� (P; V ) or �A� (z; v) = �a� (P; V ) ; it is not clear to an outsider

11In technical terms, we implicitly assumed the equivalence of � (fv; zg) and � (fP; V g) without modeling
the coordination device, i.e. sunspot. We did this for parsimony of exposition.
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from just observing the price on which equilibrium market participants are coordinating.

Consequently, the nature of the market makes it is di¢ cult for outsiders and regulators

to interpret market conditions, which is particularly problematic since the response of the

market to changes in fundamentals is very di¤erent across the high and low price equilibria.

This potential confusion introduces a secondary role for volume as a signal about coordi-

nation in conjunction with prices. While any given cryptocurrency price could be rationalized

as corresponding to a high or low price equilibrium, the volume signal provides a second piece

of information. A high price with a high volume signal is indicative of a high price equi-

librium, while a low price with low volume suggests the market has coordinated on a low

price equilibrium. In practice, we view this volume signal as being analogous to the volume

of transactions recorded on the ledgers of the cryptocurrency, and our analysis emphasizes

the importance of examining both prices and quantities in cryptocurrency markets. Conse-

quently, any fundamental analysis of the cryptocurrency should look beyond prices and to

volumes as an anchor.

Our analysis also suggests that, in the presence of informational frictions, the dual in-

ference problem makes it particularly di¢ cult for outsiders to infer both the fundamental

and the nature of the equilibrium from prices. This may lead to erratic trading behavior

by outside investors based on technical analysis. In particular, a rising price is positively

correlated with higher fundamental in the high price equilibrium, while indicative of lower

fundamental in the low price equilibrium. Thus, depending on an investor�s assessment of

which equilibrium the market is currently in, he may adopt either trend-chasing or the op-

posite contrarian strategy. Furthermore, the investor may choose to dramatically reverse the

strategy if he speculates that the market is switching from one equilibrium to the other.

4 Conclusion

We develop a model of the initial coin o¤ering (ICO) of a cryptocurrency to understand what

fundamentals govern its success and the price at which the currency trades. Our analysis
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reveals that, since the shareholders who participate in the ICO are also the customers that

use the currency to trade goods and services, there is an intimate link between the success

of the ICO and the viability of the currency as a medium of exchange. This link gives rise

to the possibility of coordination failure, in which the currency price and the volume of

coins in active circulation re�ect whether the market is in a high price equilibrium, in which

the currency price is high and many households participate, or a low price equilibrium, in

which the currency price is low and few coins are in active circulation. Importantly, these

two equilibria have very disparate properties and, as a result, observing the same price

and volume �uctuations have very di¤erent implications for diagnosing the health of the

currency depending on the equilibrium. As cryptocurrencies are not backed by a sovereign

that can help coordinate platform participants along an equilibrium path, this multiplicity

has a pronounced and destabilizing impact on the currency, and invites manipulation from

large investors.

In the presence of realistic informational frictions, the currency price and volume take

on an additional dimension as useful signals about the demand fundamental underlying the

cryptocurrency. Since coordination issues also extend to this incomplete information setting,

the market reacts very di¤erently to news stemming from these price and volume signals de-

pending on whether the market is in the high or low price equilibrium. Furthermore, infer-

ence about the fundamental and coordination cannot easily be disentangled, which suggests

that there are many ways to rationalize any price �uctuations from the perspective of an

outsider. Our analysis suggests that analyzing measures of quantities for cryptocurrencies,

such as the volume of transactions recorded on its ledgers, can provide helpful insight when

trying to tether valuations of these cryptocurrencies, and that technical analysis can poten-

tially worsen price �uctuations. To assess whether there is a bubble, one must �rst take a

stance on an asset�s fundamentals, and our work cautions an approach that does not take

into account the dual roles of the currency as a security and a medium of exchange.
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Appendix Proofs of Propositions

A.1 Proof of Proposition 1

The �rst order conditions of household i�s optimization problem in (2) respect to Ci (i) and

Cj (i) at an interior point are:

Ci (i) :
1� �c
Ci (i)

U (Ci (i) ; Cj (i) ;N ) = �ipi; (8)

Cj (i) :
�c
Cj (i)

U (Ci (i) ; Cj (i) ;N ) = �ipj; (9)
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where �i is the Lagrange multiplier for the budget constraint. Rewriting (9) as

�cU (Ci (i) ; Cj (i) ;N ) = �ipjCj (i) :

Dividing equations (8) by this expression leads to �c
1��c

=
pjCj(i)

piCi(i)
, which in a symmetric equi-

librium implies pjCj (i) =
�c
1��c

piCi (i) : By substituting this equation back to the household�s

budget constraint in (2), we obtain:

Ci (i) = (1� �c) eAi :

The market-clearing for the household�s good requires that Ci (i)+Ci (j) = eAi, which implies

that Ci (j) = �ce
Ai.

The �rst order condition in equation (8) also gives the price of the good produced by

household i: Since the household�s budget constraint in (2) is entirely in nominal terms, the

price system is only identi�ed up to �i, the Lagrange multiplier. We therefore normalize �i

to 1: It follows that:

pi =
1� �c
Ci (i)

U (Ci (i) ; Cj (i) ;N ) = e�c(Aj�Ai): (10)

Furthermore, given equation (1), it follows since Ci (i) = (1� �c) eAi and Cj (i) = �ceAj that:

U (Ci (i) ; Cj (i) ;N ) = e(1��c)Aie�cAj = pieAi ;

from substituting with the household�s budget constraint at t = 2:

It then follows that, conditional on meeting another holder of the crypto currency, then

the expected utility of investor i conditional on Ii and a successful match (given by the
dummy M) is:

E [U (Ci (i) ; Cj (i) ;N )j Ii;M ] = e(1��c)Ai+�cA+
1
2
�2c�

�1
"

�
�
�c�

�1=2
" + A�A�

�
�1=2
"

�
�
�
A�A�
�
�1=2
"

� ;

and, since the probability of meeting another holder of the crypto currency is �
�
A�A�
�
�1=2
"

�
;

the expected utility of investor i is:

E [U (Ci (i) ; Cj (i) ;N )j Ii] = e(1��c)Ai+
1
2
�2c�

�1
" E

�
e�cA�

�
�c�

�1=2
" +

A� A�

�
�1=2
"

����� Ii� :
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Finally, the ex ante expected utility of a household before it learns its endowment Ai :

U0 = E

�
max
Xi

fE [UijIi]� P; 0g
�

= E

�
e(1��c)Ai+�cA+

1
2
�2c�

�1
" �

�
�c�

�1=2
" +

A� A�

�
�1=2
"

�
� P j A; �

�
= eA+

1
2((1��c)

2+�2c)��1" �

�
(1� �c) ��1=2" +

A� A�

�
�1=2
"

�
�

�
�c�

�1=2
" +

A� A�

�
�1=2
"

�
� P�

�
A� A�

�
�1=2
"

�
= u0 � P�

�
A� A�

�
�1=2
"

�
;

where u0 is the utility bene�t of entering the currency platform.

A.2 Proof of Proposition 2

When all households and builders observe A directly, there are no longer information frictions

in the economy. From Proposition 1, the expected utility of household i at t = 1 who chooses

to buy the currency is:

E [UijIi] = e(1��c)Ai+�cA+
1
2
�2c�

�1
" �

�
�c�

�1=2
" +

A� A�

�
�1=2
"

�
;

Since the household with the critical productivity A� must be indi¤erent to its neighborhood

choice at the cuto¤, it follows that E [UijI�i ]� P = 0; which implies:

e(1��c)Ai�

�
�c�

�1=2
" +

A� A�

�
�1=2
"

�
= e�

1
2
�2c�

�1
" ��cAP; with Ai = A

� (11)

which implies the bene�t of living with more productive households is o¤set by the higher

cost of living in the neighborhood.

Fixing the critical value A� and price P; we see that the LHS of equation (11) is increasing

in monotonically in Ai; since 1� �c > 0: This con�rms the optimality of the cuto¤ strategy
that households with Ai � A� enter the neighborhood, and households with Ai < A� choose
to live somewhere else. Since Ai = A+ "i; it then follows that a fraction �

�
�p� " (A� � A)

�
enter the neighborhood, and a fraction �

�p
� " (A

� � A)
�
choose to live somewhere else. As

one can see, it is the integral over the idiosyncratic productivity shocks of households "i that

determines the fraction of households in the neighborhood.

From the optimal supply of housing by builder i in the neighborhood (5), there exists a

critical value !� :

!� = � logP � log (1� �s) ; (12)
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such that builders with productivity !i � !� build houses. Thus, a fraction�
�
�p� e (!� � �)

�
build houses in the neighborhood. Imposing market-clearing, it must be the case that

� (�p� " (A� � A)) = � (�
p
� e (!

� � �)) :

Since the CDF of the normal distribution is montonically increasing, we can invert the above

market-clearing conditions, and impose equation (12) to arrive at

logP =

r
� "
� e
(A� A�)� � � log (1� �s) : (13)

By substituting for P in equation (11), we obtain an equation to determine the equilibrium

cuto¤ A� = A� (A; �):

e

�
1��c+

p
�"=�e

�
A�
�

�
�c�

�1=2
" +

A� A�

�
�1=2
"

�
= e(

p
�"
�e
��c)A��� 1

2
�2c�

�1
" �log(1��s): (14)

Let the log of the LHS of equation (14) be f (A�) as a function of A�: Taking the derivative

of f (A�) with respect to A� gives

df

dA�
= 1� �c +

r
� "
� e
� 1

�
�1=2
"

�
�
�c�

�1=2
" + A�A�

�
�1=2
"

�
�
�
�c�

�1=2
" + A�A�

�
�1=2
"

� :
Notice as A� ! �1; df(A

�)
dA� ! 1� �c +

p
�"
�e
> 0; while as A� !1; then:

df

dA�

����
A�!1

! 1 +

r
� "
� e
+ lim
A�!1

A� A�
��1"

! �1:

Furthermore, we recognize that:

d2f

dA�2
= � 1

�
�1=2
"

0@�c + A� A���1"
+

1

�
�1=2
"

�
�
�c�

�1=2
" + A�A�

�
�1=2
"

�
�
�
�c�

�1=2
" + A�A�

�
�1=2
"

�
1A �

�
�c�

�1=2
" + A�A�

�
�1=2
"

�
�
�
�c�

�1=2
" + A�A�

�
�1=2
"

� ;
which achieves its maximum at A ! 1; where d2f

dA�2 = 0: Consequently, d2f
dA�2 � 0; and

therefore f (A�) is concave and therefore hump-shaped in A�: Furthermore, the LHS of (14)

tends to 0 as A� ! �1 and A� !1: Therefore, the LHS of (14) is quasiconcave in A�:
Notice that we can rewrite equation (14) as:

e

�
1��c+

p
�"=�e

�
s
�

�
�c�

�1=2
" � s

�
�1=2
"

�
= e�A���

1
2
�2c�

�1
" �log(1��s); (15)
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where s = A��A determines the population that buys the currency. Notice that the LHS of
equation (15) is log concave, since the pdf and CDF of the normal distribution is log concave

and the exponential function is log-linear. Consequently, d
2 logLHS
ds2

< 0:

Notice that the properties of the LHS of equation (15) are the same as for A� in equation

(14), and, importantly, the LHS is now independent of A: The LHS is then a quasiconcave

bell curve as a function of s; while the RHS is a horizontal line. Given that the LHS is

quasiconcave in s; it achieves a maximum at ŝ such that d logLHS
ds

��
s=ŝ

= 0: Since the RHS of

(15) is �xed, it follows that the LHS and RHS of equation (15) intersect generically twice,

with once being a knife-edge case when the equilibrium s is ŝ: Therefore, there are generically

two cuto¤ equilibrium. It can occur, however, that the RHS of equation (15) is above the

LHS evaluated at ŝ; and then the cost of buying the currency always exceeds its value for

the marginal household. From the RHS, this can occur if A or � are su¢ ciently small, and

then no household buys the currency.

In what follows, let the high price equilibrium, corresponding to a lower cuto¤ threshold,

for s be s and the low price equilibrium for s be �s; which correspond to cuto¤s A� and �A�: If

we increase A or �; then the RHS of equation (15) decreases, and this implies for the high

price equilibrium that s decreases, while for the low price equilibrium �s increases. Since the

population that purchases currency, �
�
�p� "s

�
; is strictly increasing in s; our comparative

statistics for �s consequently also apply to the population.
In addition, since P = exp

�
�
p

�"
�e
s� � � log (1� �s)

�
; it further follows that the cur-

rency price is increasing in A for the high price equilibrium s; and is decreasing in A and � for

the low price equilibrium �s: Since the developer�s revenue from the ICO�D is �s�
�
�p� "s

�
P;

it follows that:

d

dA
�D = ��s

r
� "
� e

ds

dA
� (�p� "s)P

 
1 +

p
� e
�
�
�p� "s

�
�
�
�p� "s

�! > 0;
In the high price equilibrium, ds

dA
< 0; and therefore the developer�s revenue is increasing

in A; while in the low price equilibrium, ds
dA
> 0; and the developer�s revenue is instead

decreasing in A:

Finally, expressing the ex ante expected utility of a household before it learns its endow-

ment Ai; U0; as:

U0 = u0 � P�
�
� s

�
�1=2
"

�
:
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Then, given that:
ds

dA
= � 1

d logLHS
ds

;

where:

d logLHS

ds
= 1� �c +

r
� "
� e
� 1

�
�1=2
"

�
�
�c�

�1=2
" � s

�
�1=2
"

�
�
�
�c�

�1=2
" � s

�
�1=2
"

� ;
it follows, with some manipulation, that:

dU0
dA

= � ds
dA

��
1� �c +

r
� "
� e

�
u0 �

r
� "
� e
P�

�
� s

�
�1=2
"

��
= � ds

dA

�
(1� �c)u0 +

r
� "
� e
U0

�
:

Since U0 = E [maxXi fE [UijIi]� P; 0g] ; it follows that E [UijIi] � P � 0; and therefore

u0 � P�
�
� s

�
�1=2
"

�
: Consequently, since ds

dA
< 0 in the high price equilibrium:

dU0
dA

> 0;

while, since ds
dA
> 0 in the low price equilibrium:

dU0
dA

> 0:

A.3 Proof of Proposition 3

Given our assumption about the su¢ cient statistic in housing price, each household�s pos-

terior about A is Gaussian A jIi s N
�
Âi; �̂

�1
A

�
with conditional mean and variance:

Âi = �A+ ��1A
�
1 1 1

� 24 ��1A + ��1v ��1A ��1A
��1A ��1A + z�2� �

�1
� ��1A

��1A ��1A ��1A + ��1"

35�1 24 v � �A
z � �A
Ai � �A

35
= �̂�1A

�
�A �A+ � vv + z

2
� � �z + � "Ai

�
;

�̂A = �A + � v + z
2
� � � + � ":

Note that the conditional estimate of Âi of household i is increasing in its own productivity

Ai: This completes our characterization of learning by households and the currency developer.

By substituting the expressions for Ki and li into the utility of household i given in

Proposition 1, we obtain:

E [UijIi] = e(1��c)Ai+�cA
�+ 1

2
�2c�

�1
" E

�
e�c(A�A

�)�

�
�c�

�1=2
" +

A� A�

�
�1=2
"

����� Ii� :
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Since the posterior for A � A� of household i is conditionally Gaussian, it follows that the
expectations in the expressions above are functions of the �rst two conditional moments

Âi � A� and �̂A: Let

G
�
Âi � A�; �̂A

�
= E

�
e�c(A�A

�)�

�
�c�

�1=2
" +

A� A�

�
�1=2
"

����� Ii�
De�ne x = A�A�

�
�1=2
"

; and the function g (x) :

g (x) = e�c�
�1=2
" x�

�
�c�

�1=2
" + x

�
;

as the term inside the bracket. Then, it follows that:

d log g (x)

dx
= ���1=2" +

�
�
�c�

�1=2
" + x

�
�
�
�c�

�1=2
" + x

� > 0;
and therefore dg(x)

dx
> 0; since g (x) � 0: Consequently, it follows that dG

dx
(x; �̂A) > 0; since

this holds for all realizations of A�A�: That the inequality is strict comes from recognizing,
as x! �1; by L�Hospital�s Rule:

lim
x!�1

d log g (x)

dx
= � lim

z!�1
x =1:

Since the household with the critical productivity A� must be indi¤erent to its currency

choice at the cuto¤, it follows that Ui � P = 0; which implies:

e
1
2
�2c�

�1
" +(1��c)Ai+�cA�G

�
Âi � A�; �̂A

�
= P; Ai = A

� (16)

which does not depend on the unobserved A or the supply shock �; and we have substi-

tuted for u0: As such, A� = A� (logP; v) : Furthermore, since Â�i is increasing in Ai and

G
�
Â�i � A�; �A

�
is (weakly) increasing in Âi; it follows that the LHS of equation (16) is

(weakly) monotonically increasing in Ai; con�rming the cuto¤ strategy assumed for house-

holds is optimal. Those with the RHS being nonnegative purchase the currency, and those

with it being negative choose to refrain.

It then follows from market-clearing that:

� (�p� " (A� � A)) = � (�
p
� e (!

� � �)) :

Since the CDF of the normal distribution is montonically increasing, we can invert the above

market-clearing condition, and impose equation (12) to arrive at:

logP =

r
� "
� e
(A� A�)� � � log (1� �s) ;
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from which follows that:

z =

r
� e
� "

�
logP + log (1� �s) +

r
� e
� "
��

�
+ A� = A�

r
� e
� "

�
� � ��

�
;

and therefore z� =
p

�"
�e
: This con�rms our conjecture for the su¢ cient statistic of the

currency price and that learning by households is indeed a linear updating rule.

As a consequence, the conditional estimate of household i is:

Âi = �̂�1A

�
�A �A+ � vv +

� "
� e
� �z + � "Ai

�
;

�̂A = �A +
� "
� e
� � + � ":

Substituting for prices, and simplifying A� terms, we can express equation (16) as:

e

�
1+
p
�"=�e

�
A�
G
�
Â�i � A�; �̂A

�
= ez�

p
�e
�"
��� 1

2
�2c�

�1
" �log(1��s); (17)

where

Â�i = �̂
�1
A

�
�A �A+ � vv +

� "
� e
� �z + � "A

�
�
;

is the posterior belief when Ai = A�: Notice that the LHS of equation (17) is continuous in

A�:

Now let us rewrite equation (16) as:

exp (h (A�)) = ez�
p

�e
�"
��� 1

2
�2c�

�1
" �log(1��s);

where:

h (A�) =
�
1 +

p
� "=� e

�
A� + logG

�
Â�i � A�; �̂A

�
;

and it follows that:

dh

dA�
= 1 +

p
� "=� e +

1

G
�
Â�i � A�; �̂A

� dG (x; �̂A)
dz

����
x=Â�i�A�

d
�
Â�i � A�

�
dA�

:

Since dG(x;�̂A)
dx

� 0; by the above arguments, and:

d
�
Â�i � A�

�
dA�

= �̂�1A
d

dA�

�
�A
�
�A� A�

�
+ � v (v � A�) +

� "
� e
� � (z � A�)

�
= ��̂�1A

�
�A +

� "
� e
� �

�
< 0;

since z is independent of A�; it follows that the second term in dh
dA� is negative.
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As A� ! �1; since �
�
�c�

�1=2
" + A�A�

�
�1=2
"

�
! 1; we see, by rewriting h (A�) as:

h (A�) =
�
1� �c +

p
� "=� e

�
A� + logE

�
e�cA�

�
�c�

�1=2
" +

A� A�

�
�1=2
"

����� I�i �
!

�
1� �c +

p
� "=� e

�
A� + �cÂ

�
i +

1

2
�2c �̂

�1
A

that:

lim
A�!�1

dh

dA�
= 1� �c +

p
� "=� e + �̂

�1
A � " > 0;

while as A� !1; one has that:

lim
A�!1

dh

dA�
= 1 +

p
� "=� e � �̂�1A

�
�A +

� "
� e
� �

�
lim
A�!1

d

dx
logG (x; �̂A)

����
x=A�A�

= �1;

since limx!�1
d log g(x)

dx
=1; and G (E [x] ; �̂A) is an expectation over g (x) :

As A� ! �1; we also notice that:

lim
A�!�1

exp (h (A�)) = 0:

and, by the Sandwich Theorem, one also has that:

lim
A�!1

exp (h (A�)) = 0:

In addition, similar arguments to those in Proposition 2, suitably modi�ed, reveal that
d2h
dA�2 � 0: As such, exp (h (A

�)) is quasiconcave in A�: Since the RHS of equation (16) is �xed

as a horizontal line, while the LHS is bell-shaped, it follows that generically there are two

cuto¤equilibria in the economy, when a cuto¤equilibrium in the economy with informational

frictions exists.

Notice now that, since G
�
Â�i � A�; �̂A

�
is monotonically increasing in its �rst argument,

and Â�i is increasing in v; it follows that the bell-shaped curve of the LHS of equation (16)

shifts up for each value of A� from an increase in the noise shock "v to v: Given that the

RHS of equation (16)is �xed with respect to the noise in the volume signal "v; it follows that

A� shifts down in the high price equilibrium after a positive shock to "v; and shifts up in

the low price equilibrium. Since this noise impacts A� and not A or �; it follows that the

currency price and population that buy the currency increases in the high price equilibrium,

and decreases in the low price equilibrium.

38


